
The Mindanao Forum Vol. XX, No. 2 December 2007 -
An Open Source Solution to Spell Checking

and Grammar Checking Add-in for
Open Office Writer

. EDITHA D. DIMALEN
DA VIS MUHAJEREEN D. DIMALEN

Abstract

Writing manuscripts, communications and other forms of

documents that include Tagalog can be very difficult, and daunting task

if there are no available tools that can check its spelling and grammar.

Hence, a Tagalog spell checker and grammar checker add-in for

OpenOffice Writer has been developed. Since Tagalog is a free-word

order language, processing of text is very complex. This research

addressed several issues in the development of the add-in. These word

processing tools are being developed for OpenOffice Writer word

processing application. OpenOffice Writer is a non-proprietary software

(a free ware) that is readily available for all users. The spell checker and

grammar checker checks the spelling of the word, incomplete sentences,

awkward phrases, wordiness and poor grammar construction.

EDITHA D. DIMALEN, Associate Professor, College of Computer Studies, MSU-

lligan Institute of Technology, lligan City; DAVIS MUHAJEREEN D. DIMALEN,

Associate Professor, College of Computer Studies, MSU-Iligan Institute of

Technology, Iligan City

159

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

The research has been tested and evaluated using a separate
program that automatically computes the execution time in checking
each document written in Tagalog. The result showed better results in
spell check and grammar checking, respectively. It can also successfully
spell checked words (inflected or not) as long as root words are found in
the lexicon. It can also spell check words with hyphen or apostrophe. In
addition, it can checked words that are not present in the lexicon due to
the stemmer employed in the system. New words can be generated out of
the given root words which is exponential. This is due to the stemmer
employed in the system which means the lexicon is very powerful in
handling a very large wordlist.

1.0 Introduction

The importance of written communication using word p:rocessing is a very
important tool for better writing. It even let the worst speller to appear flawless;
and is the first defense against typographical errors. As a result, the aim of
electronic word processing has expanded. The effort in obtaining an error-free
spell checking of words and automatically suggests possible match is a great
research challenge [3]. Several issues are being addressed to give an appropriate
resolution to a spell checker in. varied natural languages. According to O'Neill,
et. al., 2003 (11], "spelling checkers have looked for four possible errors: a wrong
letter ("wird"), an inserted Jetter ("woprd"), an omitted letter ("wrd"), or a pair of
adjacent transposed letters. ("wrod")". This process can be resolve by means of a
simple dictionary lookup·. However, the notion of having languages with high
degree of inflection (like Tagalog) requires additional computational work such as
morphological analysis and stemming.

Currently, the developments of open source spell checkers are only
available for foreign languages such as the Bahasa Melayu (BM) Spell Checker
for Malay language [8], Fijian Spell Checker developed for .Fijian language [16),
Divvun a spell checker research for Sarni language [9]. Other variations of
existing open source spell checkers family are the !Spell, Myspell and HunSpell.
!Spell is a unix-based system, MySpell and Hunspell support spell checking in
OpenOffice.org [6].

Developing a spell checker and grammar checker as add-in ~or
~penOffi~e.org from scratch is complex especially for a language with words rich
in affixations like Tagalog. A word processor add-in is a supplemental progr~m
that extends the capabilities and functionalities of a word processing application
[7]. Aside from the formulation of an effective algorithm that can process a
bunch of text and lexicon to produce good results, storage optimization_ a::
management should also be considered to complement the algorith •

160

The Mindanao Forum Vol. XX, No. 2
.:..:----

DIMALEN, et al December 2007

Development will be focused on how these elements would complement each
other and can be time consuming. Issues in building hash tables, memory
optimization is still an open problem in developing spell checker and grammar
checker for OpenOffice [5]. Thus, we employed postgreSQL wherein hashing,
storage management and memory optimization is not an issue [13]. There are no
current researches that use postgreSQL as a resource and spell checker and
grammar checker engine for OpenOffice.

2.0 Spell Checking

Spell checking proceeds

2.1 Spell Checker Architectural Design

Figure 1 illustrates the spell checker architecture of the add-in. It
describes the processes in spell checking a document how suggestions are listed.

1G1

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

OpenOffice
nn.r11m,ant m\

'='~' nm

false

Figure 1: Tagalog Spell Checker Architecture.

Consider a document D with number of words equal ton where n-1 is equal
to the index of the last word in document D. Let i=O be the index of the first word
found in document D and D[i] be the word pointed to by the index i. Let i + 1 be
the index of the next word. Let check.Spell(w) be the function that will accept a
parameter w wherein w can be the word D[i]. The function will return true if the
word w is spelled correctly. Correctly spelled word means that tlie root word of
the input word w is found in the lexicon after stemming is done. Let
suggestionList(m) be the function that will return a list of suggested words as
replacement for the mj.ssspelled word m.

The following steps describe the algorithm shown in the architectural
design of the spell checker in Figure 1.

Step 1: At i=O, get the word D[i]
Step 2: if chcckSpell(D/i]) returns true, consider the next word i wherein i=i+ J and repeat Step 2 if i

is equal to n goto Step 5. If checkSpell(D/i]) returns false then continue to Step 3.
Step 3: Display a list of word suggestions returned by the function suggestionList(D/i]). Select a

word from the list returned by suggestionList(D/i]) (the process can be pre-empted or
manually terminated by jumping to Step 5 or continue to Step 4). .

Step 4: if i < n then consider next word D[i] wherein i=i+ J and repeat Step 2 or else go to step 5 •
Step 5: terminate algorithm.

162

•

The Mindanao Forum Vol. XX, No. 2 DI MALEN, et al December 2007

The checkSpell(Dfi]) is lexicon based It T S . . .

b t • th t ·11 h k · • uses ag a as an m1tial

su rou 1ne a w1 c ec if a root word can be t t d f •

fi 11 . . ex rac e rom an input word

before a na ex1con look-up is done. Words are tagg d • II d ·f •

b d . e as miss-spe e 1 after 1t

has een stemme to _its r~ot word, it is still not found in the lexicon.

. The su~gestionList(Dfi]) uses an n-gram approach and at the same

time uses a lexicon based approach to look up generated f • t d
. . - n-grams o mpu wor s

to the lexico?. What is compared to the input word n-gram is not the entire word

from the lexicon but the substring of the words found in the lexicon that matches

the n-gr~m of the wor~. In _this case there is no need to maintain an n-gram

pro~e. since the_ a~gonthm 1s more of a direct string pattern matcher. No

statistical analysis mvolved in the algorithm unlike an n-gram based algorithm

that makes use of an-gram profile table.

2.2 Tagalog Stemmer

According to Surian ng Wikang Pambansa (2003) as mentioned by Bonus

(2003) [1], some of the morphological features of the language are the complex

system of affixes, the reduplication of a syllable in a word or the whole word

itself, compounding, and its combination. Tagalog affixation has several types:

prefixation, infixation, suffixation and circumfixation (Surian ng Wikang

Pambansa, 1940; Gana & Matute, 1964; Schachter & Otanes, 1972; Komisyon ng

Wikang Filipino, 1998, as cited by Bonus (2003) [l]).

Bonus (2003) [I], cited that prefixation is involves attaching a bound

morpheme before the root word. Prefixes in Tagalog can be just 1 syllable (e.g.

ma-) and as many as 7 syllables (e.g. ikinapagpapaka-). Suffixation involves

attaching the bound morpheme at the end of the root word. There are four

suffixes defined in Tagalog, namely: I-in/, /-an/, 1-hinl, and 1-han/. Normally,

/-in/ or /-an/ is attached to words ending with a vowel, while 1-hin/ or 1-han/,

to words ending with a consonant. Infixation is a process where the bound

morpheme is attached within the root word. There are two infixes defined in

Tagalog, /-in-/ and /-um-/. The base form of the word may undergo in.fixation of

either /-in-/ or /-um~/ wherein the infix occurs after the first consonant of the

stem. However, in circumfixation bound morphemes maybe present (as prefix,

infix and suffix). Table 1 below shows the different affixation and its

corresponding examples; and phoneme change and its examples also.

163

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

Table 1. List of Tagalog Affixations [l].

Chanl!es
Affixation Basic Example Morphophonemic Phoneme

Change Change
Prefixation maG+Sama 2 types: Id/ Ir/

magsama 1. Partial Assimilation
(consonant/ consonant) Ex: /-ng/ - /ml maram1

sing+ puti
maG mag-
away (consonant / vowel) 2. Full Assimilation

Ex: mang + kuha

Suffixation sikap + in sikapin Id/ Ir/+ /-in/
puna + hin punahin or /-an/

lipad
liparin
tawid
tawiran

lnfixation in+ bili binili infix /-in-/ to be attached within a prefix and
um + sayaw sumayaw must appear immediately after the first

consonant of the prefix
Ex: in + pag + sama

in + ipag + bili ipinagbili
Circumfixat pa + in + punta + ban pinapuntahan
10n ipag + um + hiyaw + an ipaghumiyawan

There are two types of reduplication in Tagalog: partial or full. In partial
reduplication, certain syllables are duplicated to project the form of the stem.
However, in full reduplication the entire stem is repeated to express continuative
aspect, and happens in the derivational process. A single word also may have
reduplicated syllables (prefixation or suffixation and ·infixation) all at the same
time. Table 2 depicts examples of partial and full reduplications, respectively.
The following rules are used in partial reduplication (Komisyon ng Wikang
Filipino, 1998; Schachter & Otanes, 1972 as cited by Bonus (2003) [1]).

164

The Mindanao Forum Vol. XX, No. 2 DIMALEN,etal December 2007

Table 2. List of Reduplication Rules [I].

Rules Examples

Partial 1. If the root of a two-syllable word begins with alis - a + alis aalis

Redup. a vowel, the initial letter is repeated. iwan - i + iwan iiwan

2. In a two-syllable root, if the first syllable of takbo - ta + takbo

the stem starts with a consonant vowel, the tatakbo
consonant and the succeeding vowel IS

reduplicated.
3. If the first syllable of the root has a cluster of

consonants, two approaches can be used. This is

based on the speaker's habit.
. a. Reduplicates the first consonant and the first plantsa hin + +

vowel of the stem. plantsa + hin -
paplantsahin

b. Reduplicates the cluster of consonants plantsa + hin pla +

including the succeeding vowel of the stem. plantsa + hin -
plaplantsahin

4. In a three-syllable root, the first two syllaples bahagya baha + bahagya

are reduplicated and hyphenated from the stem. - baha-bahaE?Va

Full 1. Reduplication and hyphenation of a two- araw - araw + araw

Redup. syllable root without any affix. araw-araw

Exceptions to this rule are words that consist of alaala

two segments that are alike, but are not gamugamo

hyphenated and treated as a whole.
2. Reduplication of an adjective prefixed by /ma- ma + taas - ma + taas +

I.
taas

mataas-taas

3. Reduplication of adjective in the superlative ka + liit - ka + liit + liit + an

del?'l'ee.
kaliit-liitan

4. Reduplication of nouns wherein the root is tao - tao + tao + ban

. suffixed ·by /-an/, /-ban/, /-ahan/, or /-anan/, to

mean reduction or smaller than normal.

5. Inflectional reduplication of verbs suffixed by bati - bati + bati + in

/-an/ /-hln/ or /-nin/.
6. R;duplication of verbs affixed by /um/, /ika-/, um + alis - um + alis + alis

/maki-/, /mapa-/, /magka-/, /makipag-/,

/mairoaka-/, /ipaka- /, etc.
7. Reduplication of verbs prefixed by /pagka-/, pagka + ani + ng - pagka +

and suffixed by the linker /-ng/ in the first part. ani + ng + pagka + ani
pagkaaning-pagkaani

8. Reduplication of an adverbial root. It is also ka + hapon + ng - ka +

the case with a root normally prefixed by /ka-/ hapon + ng + ka + hapon

or /pa-/.
kahapung-kahapon

165

The Mindanao Forum Vol. XX, No. 2 DIMALEN,etal December 2007 ----....:..::..

Compound word also exists in Tagalog in which two or more w d united to form a new meaning. It could be either with or without a hyphe: ; ~e 3 presents certain rules that govern the forming of hyphenated compound. a ~e in the Tagalog Language (Surian ng Wikang Pambansa, 1940): . wor 8

Table 3. Rules in Forming Compound Words [l].

Rules
1. Missing words (one or more)

words will be
replaced by a hyphen.
Meanings will be retained but
have another definition.

2. Compounded two different
words (with or without a linker
in between). These compounded
words can be of the following
types: noun-noun, adjective-
adjective, derived noun-noun,
derived verb-noun, and adverb-
noun.

Exemption:
For a two different compounded
word that establishes its own
meaning different from that of
the two words being combined,
the compound word must be

Example
a. Missing sa or ng.

For example: ningas-kugon (ningas rig kugon)
b. Missing ni, katulad ng kay, or katulad ng sa.

For example: kapit-tuko
(kapit ng tuko or kapit katulad ng

sa tuko)
a. Noun-Noun

For example: matang-tubig bungang-araw
b. Adjective-Adjective

For example: magandang-pangit matabang•
payat
c. Derived Noun-Noun

For example: kadaupang-palad kabigayang-loob
d. Derived Verb-Noun

For example: kamagandahang-loob
kamasamaang-salita
e. Adverb-Noun

For example: biglang-yaman walang-hiya

For example: bahaghari hampaslupa
hanapbuhay pataygutom

written as a whole. L_ ____ _j_ _________ __
. . ll erbs and nouns. Affixation in Tagalog language is complex, especia Y on v 'd red a . l • h T galog cons1 e TagSA [1] a dictionary-based stemming a gont m 10r a n forlll• ' . . h h t to a commo procedure in reducing all words (inflected) wit t e sam~ roo . t affixes This is basically done by stripping each word with ap~ro~~:;bination (derivational and inflectional affixes). The Tagalog mor~hologi~a duplication. includes prefixation infixation, suffixation, circumfixation an br~ re the root , . b d rpheme e10 Prefixation involves the process of attaching a oun mo

166

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

word. An example is maG mag-aral in whi h G •

l A · h h . . ' c a consonant is attached

to vowe wit a yphen. Infixation 1s attaching a bound h • hi

d E l h
, . morp eme wit n the

root wor .• xamp et e word 'kinuha" has the infix/ • / h • h
· ''k h " I uffix · -in- w ere1n t e root word

1s u a • n s ation, bo~nd morpheme is attached at the end of the root

word. For example, harap + ID harapin In ci·rc·umfix t· b d h
. . a 10n, oun morp eme

may occur ~s ID any order (prefix, infix and suffix). The example pa + in + punta

+ han ~IDapunt~han, morph~mes appear anywhere within the word. Tagalog

reduplication can either be partial or full. Partial includes certain syllables that

are_ duplicated to project the form of the stem. Full reduplication includes the

entire stem to be repeated ..

TagSA consists of several· routines in handling different affixation. The

m~ rout~es are the following [1]: Hyphen-Search Routine, Dictionary-Search

RoutIDe, /-m-/ Removal Routine, Prefix Removal Routine, /-um-/ Removal

Routine, Partial Reduplication Routine, Suffix Removal Routine, and Full

Reduplication/Compounding Routine.

2.3. Spell Checker Suggestion Strategy

The suggestion strategy employed in the system is based on n-gram. If a

word in a document is found to be misspelled (that is, no match/root word found

in the lexicon), corresponding suggestions are readily available. The nearest n-

grams (sub-sequence of n items from a given word) will be displayed on the

screen and one can choose among these the suggestions.

Each word found in the document will be processed by first checking if

there are words in the dictionary containing a substring equal to the word being

tested. If no match is found in the dictionary, the next substring of the word from

left to right with length (n-1) will be looked up in the lexicon for a substring

match. The process of taking, looking up the substring (n-i) continues until (n-i)

is equal to 2 or if the maximum number of matches is achieved.

N-gram is a result of removing spaces from a given string. In a given

string, n items can be generated from a given sequence. The sub-sequence of

these items can be compared to other sequences [17].

An n-gram can also be seen as an n-character slice of a longer string in

which a string is sliced into sets of overlapping n-grams. However, blanks are

appended at the beginning and end of the string before the string is sliced [2].

Example,

String = "text"
Token = "_text_"

bi-grams (N=2) = _t, te, ex, xt, t_
tri-grams (N=3) = _te, tex, ext, xt , t
quad-grams (N=4) = _tex, text, ext

167

The Mindanao Forum Vol. XX, No. 2 DIMALEN,etal December 2007

3.0 GRAMMAR CHECKER

Grammar components include grammar rules, lexical entries, principles
and parts-of-speech specifications of each lexical entry. The input text is passed
through a s·eries of filter: preprocessing, segmentation, tokenization, lookup,
chunking, disambiguation, rules and recourse.

Preprocessing stage converts the text into the native character if the
default text is in different encoding. The segmentation step involves breaking
text into sentences and split the sentence into words. The next step is to look up
each word in the lexicon in which each word is tagged with its part-of-speech
(POS). Words that are not found in the lexicon will be processed by the
morphology engine to be able to recognize the known root word. In this stage,
phrases will be grouped together to form a single unit by the grammar checker.
The text that has been analyzed will be matched against the built-in rules [14].

It turns out that there are basically three ways to implement a grammar
checker: syntax-based checking, statistics-based checking and rule-based
checking. Rule-based checking is the most common method used. It comprises a
set of rules that is matched against a text which has been at least tagged with
POS. In this approach, all the rules are developed manually [10].

3.1 Grammar Checker Architectural Design

In Figure 2, the architectural design of the grammar checker is shown.

h=1+1

false

OpenOffice
Document (D)

false

Fi2W'C 2: Tagalog Grammar Checker Architecture.
168

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

Consider a document D with number of s t

I th . d f h I en ences equal to n where n 1 is
equa to em ex o t e ast sentence in document D Let ·-ob h • · -

first sentence found in document D and D'i 1 be th • t i- e e index of the
. d . Let . 1 b h . d ,1:1 e sen ence pomted to by the
m ex i. i+ e t e 1n ex of the next sentence Let h kG

· h will • c ec rammar(s) be the
function t at accept a parameter s wherein 8 can be th t n1r, Th

· ill . e sen ence 1i1• e
1unction w return true if the sentence s 1·s gr t' II

. . amma ica y correct. Let

suggest1onStrat(m) be the function- that will return a t 'th d d
. . sen ence WI appen e

POS otf missmg word or words in the sentence that would make the sentence

correc .

Stq, 1: At i=O, get the sentence D/i}
Step 2: if checkGrarnrnar(D/,J) returns true, consider the next sentence i

wherein i=i+ 1 and repeat
Step 2 if i is equal to n goto Step 5. If check:Grammar(D/ij) returns

false then continue to Step 3.

Stq, 3: The function suggestionList(D/,J) will display a corrected sentence

with appended POS of missing words or display recommendation to

rephrase sentence if needed. Apply the suggestion to sentence and do the necessary

word replacement. (the process can be pre-
empted or manually terminated by jumping to Step 5 or continue to

Step4)
Stq, 4: if i < n then consider next word D[i} wherein i=i+ 1 and repeat Step 2

else goto step 5.
Step 5: terminate algorithm.

3.2 Grammar Checker Suggestion Strategy

The system recognizes ungrammatical Tagalog sentences by evaluating

the grammatical construction of each sentence. The evaluation of the

grammaticality of the sentence proceeds by parsing each token in a sentence.

The approach employed in the grammar suggestion strategy is simply based on

the closest CFG rules stored in the database that matches that of the input

sentence.
If the requirements specification is not met, the system will flag (through

a green wavy line) that the sen~ence is ungra~m~tical and su~gestions are

displayed. The system display which tokens are missing as part of its suggestion

strategy.

4.0. LEXICON AND GRAMMAR RESOURCE DEVELOPMENT

In Natural Language Processing, a lexical knowledge (that is, the

knowledge about individual words) is essential. Lexical knowledge in encoded

169

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

though a lexicon in strictly formal structures. The lexicon has been long
recognized as a critical system resource [4]. A lexicon is typically developed and
encoded in a textfile.

A basic lexicon typically includes explicit and specific linguistic
information about the word. It includes the morphology either by enabling the
generation of all potential word-forms or by simply listing all associated pertinent
morphosyntactic features, or as a combination of the two. Lexicons are
traditionally been built by hand specifipally for the purpose of language analysis
and generation. A more complex lexicon may include semantic information, such
as a classification hierarchy and selectional patterns or case frames stated in
terms of this hierarchy. This includes the typical subjects and objects for verbs,
semantic features for nouns such as inanimate, human, etc. (13].

In this research, the lexicon is created using a third party engine, the
Postgres SQL Database Management System (DBMS). It is being populated with
Tagalog root words only with corresponding attribute (linguistic information).
The necessary attribute being identifies is the Parts-of-Speech (POS) which is
necessary for grammar checking.

Similarly, the grammar resource of the system is built in the Postgres
SQL DBMS. It comprises a set of grammar rules for Tagalog.

5.0 SYSTEM'S IMPLEMENTATION

The implementation of the system is based on the final architectural
designs discussed in the later sections. The different components used in the
implementation of the add-in are depicted in Figure 3.

C.#

,
I

..

Writer

OpeaDB
Coaaec:tlv

Database
Management

S)'ltem

'"' • I
I
I

I
I

Figure 3. Architectural Design of Add-in System Components.

170

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

To be able to create an add-in feature to OpenOffice w ·t
• 1 h n er, a

programmmg anguage t at supports UNO must be used to access and

manipulate the elements of the OpenOffice writer document. There are four

programming languages to choose from namely, Ctf., Java, C++ and Star Office

Basic. In this research, StarOffice Basic programming language and UNO

(Universal Network Object) [12] was used to develop the add-in. SDBC

(StarOffice Database Connectivity) and ODBC {Open Database Connectivity) was

used to bridge the postgreSQL engine with the OpenOffice document.

ODBC is a multi-platform driver that connects applications to supported

DBMS and applications. Unfortunately, Open Office does not support ODBC

because it has its own DBMS connectivity driver exclusive to Open Office

applications. However, the Star Office Database Connectivity (SDBC) driver can

connect to a registered ODBC definition making it possible for Open Office

applications to communicate with postgreSQL via ODBC thru SDBC.

The mechanism employed is a new implementation strategy in

developing an add-in in OpenOffice.org, which gives more comfort and flexibility

in handling a very large resource.

6.0 EVALUATION METRICS

In the evaluation process, the input text is categorized having two types

of words: correct and incorrect. Correct words are words that are accepted by

Tagalog (excluding proper nouns not unless th~y are added t? th? lexic~n). The

system identifies a word as correctly spelled, if after stemmmg IS applied, the

resulting root word is found in the lexicon.

The system finds misspelled words and flagged It with a ~nnk wavy line.

Th aluation is done using a separate program that automatically computes

thee t:;al number of words found as correct and the ~ords found as misspelled .. It

also computes the total execution time. Table 4 dep1~ts the automated evaluation

results in spell checking Tagalog documents having large number of words

(example, books in the Bible).

171

The Mindanao Forum Vol. XX, No. 2 DlMALEN, et al December 2007
---.;.

Table 4. Automated Evaluation Results

IME (in seconds) Correct Error
tart End End - Start umber 0 isspelled)

ords
0 14 min and

3:23:16 27 sec 31,398

8:37:48 8:38:28 0 sec 25

The book of Genesis consists of 35,739: the system found 31,398 correct
words and the 4,341 mispelled words or 12.14%. In Obadiah, the system found
671 words correct, and 46 mispelled words or 7.36%. The errors (misspelled) are
caused by the lack of conformity with the lexical entries (that is, proper noun or
absence of the root words in the lexicon). Misspelled words also include words
that are over-stemmed and under-s_temmed by TagSa. The only solution is to
recognize words that cannot be handled by TagSa is to add the over-stemmed and
under-stemmed words to the lexicon.

7.0 SUMMARY AND CONCLUSION

A Tagalog spell Checker and grammar checker was developed for
OpenOffice Writer to aid in writing documents in Tagalog. The system's
capability in handling large wordlist in the lexicon, powerful parsing and
stemming power is due to the third party engine employed and enhancement
made in TagSA, respectively.

The grammar checking that was incorporated in the system is capable of
handling basic sentence structures of Tagalog. There is no program re-
compilation needed since the program, as stored procedures, can be edited on the
fly on the third party software's end without restarting Open Office or even t~e
operating system. Currently, no grammar checker has been incorporated in
OpenOffice Writer. It is still a research proposal for the up coming season by Sun
Microsystems which was presented in Summer of Code Project 2006 ~15] • NL

The advantage of having postgreSQL as parsing engine for It .
8

applications is its ability to store, manage and manipulate very large data. t~e
independent to applications like Open Office, thus avoiding interferencehto dis
functionality of Open Office applications. The disadvantage on the other an

172

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

that you need to install postgreSQL along with Open Office ands t d t b
• • b 'd h e up a a ase

connectivity to n ge t e two.
While running _on a corpus of 14,000 root words (plus the root words

extracte~ fro1:11 words wtth affixes processed by TagSa), we found that our system

works ~1th high accuracy. The ·misspelled words are all correctly detected. They

are mainly due to the presence of proper nouns and non-existent of the root

words in the lexicon. We are planning to take care of euphony and assimilation in

near future.

8.0 IMPLICATIONS AND RECOMMENDATIONS

The wordlist in the lexicon can be further incorporated with more

Tagalog root words. To include more grammar rules and enhanced suggestion

strategy is also a necessary improvement for the grammar checker.

Other Philippine-type languages can be incorporated in the system,

which could be used for web, web-based document processing applications. An

example of these applications is the google docs.

9.0 LITERATURE CITED

[1] Bonus, Don Erick J. (2003). A Stemming Algorithm for Tagalog Words. MS

Thesis. De La Salle University, Manila.

[2] Dimalen Davis (2004). AutoCor: Automatic Acquisition of Corpora of Closely-

Related Languages from a Closed Corpus (MS Thesis). De la Salle University -

Manila.

[3] Chaudhuri, Bidyut Baran (2004). Reversed Word Dictionary and Phonetically

s· ·1 Word Grouping Based Spell-checker to Bangla Text. Proc. 2nd

1~:~::tional Conference on Information Technology for Applications (ICITA),

China.
Available at: http://www.emille.lancs.ac.uk/lesal/bangla.pdf

[4] Grishman~ R., & Calzolari, N. New York ~niversity, New York, USA. Istituto

d • Linguistica Computazionale del CNR, Pisa, Italy.
A~ailable at: http://cslu.cse.ogi.edu/HLTsurvey/ch12node6.html

(5) Hendricks, Kevin B. The Mail Archive.

17::J

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 200?

Available at: http://www.mail-
archive.com/dey@lingucomponent.openoffice.org/msg01312.html

[6] Lingucomponent Project (2001). OpenOffice.Org
Available at: http://lingucomponent.op~noffice.o~g/

[7] Microsoft Corp., 2005.
Available at:
http://msdn.microsoft.com/office/technologyinfo/developing/overview/default.as

[8] MIMOS Open Source R&D Group (2004).
Available at:

http://opensource.mimos.my/?main-mimos/openoffice spellchecker

[9] Moshagen, S., Pieski, T. & Trosterud, T.
(2005). OpenSource Speller Technical Documentation.
Available at: http://www.divvun.no/doc/proof/Spelling/X-

spelliindex.html#MySpell

[10] Naber, Daniel (2003). A Rule-Based Style and Grammar Checker.
Technische Fakultat,

Universitat Bielefeld.
Available at:

www.danielnaber.de/languagetool/download/style and grammar checker .pdf

[11] O'Neill, M.E. & Connelly, C.M. (2003). Spell Checking Using Hash Tables.
Available at:

http://www.cs.hmc.edu/courses/mostRecent/cs70/homework/cs70ass9.pdf

[12] OSTG (Open Source Technology Group),
(2006).

Available at:
http://sourceforge.net/docman/display doc.php ?docid-2937 4&group id-1437 54

[13] PostgreSQL
Available at: http://www.postgresql.org/

[14] Scannel, Kevin. (2005). An Gramad6ir.
Available at: http://borel.slu.edu/gramadoir/

174

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

[15) SummerOfCode2006.
Available at: http://wiki.services.openoffice.org/wiki/SummerOfCode2006

[16) UNDP APDIP (2007). Fijian Spell Checker for OpenOffice.org.
Available at: http://www.apdip.net/news/fijianspellchecker/view

[17) Wikipedia (2006).
Available at: http://en.wikipedia.org/wiki/N-gram

6.0 ACKNOWLEDGEMENT

This research was funded by the Philippine Council for Advanced Science
and Technology Research and Development (or PCASTRD) under the
Department of Science and Technology (DOST), Philippines.

176

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

