The Mindanao Forum Vol. XX, No. 2 December 2007

An Open Source Solution to Spell Checking
and Grammar Checking Add-in for
Open Office Writer

EDITHA D. DIMALEN
DAVIS MUHAJEREEN D. DIMALEN

Abstract

Writing manuscripts, communications and other forms of
documents that include Tagalog can be very difficult, and daunting task
if there are no available tools that can check its spelling and grammar.
Hence, a Tagalog spell checker and grammar checker add-in for
OpenOffice Writer has been developed. Since Tagalog is a free-word
order language, processing of text is very complex. This research
addressed several issues in the development of the add-in. These word
processing tools are being developed for OpenOffice Writer word
processing application. OpenOffice Writer is a non-proprietary software
(a free ware) that is readily available for all users. The spell checker and
grammar checker checks the spelling of the word, incomplete sentences,
awkward phrases, wordiness and poor grammar construction.

EDITHA D. DIMALEN, Associate Professor, College of Computer Studies, MSU-
DAVIS MUHAJEREEN D. DIMALEN,

Iligan Institute of Technology, Iligan City; \ . \
Associate Professor, College of Computer Studies, MSU-Iligan Institute of
Technology, Iligan City

169

The Mindanao Forum Vol. XX,No.2

The research has been tested and evaluated using a separate
program that automatically computes the execution time in checking
each document written in Tagalog. The result showed better results in
spell check and grammar checking, respectively. It can also successfully
spell checked words (inflected or not) as long as root words are found in
the lexicon. It can also spell check words with hyphen or apostrophe. In
addition, it can checked words that are not present in the lexicon due to
the stemmer employed in the system. New words can be generated out of
the given root words which is exponential. This is due to the stemmer
employed in the system which means the lexicon is very powerful in
handling a very large wordlist.

1.0 Introduction

The importance of written communication using word processing is a very
important tool for better writing. It even let the worst speller to appear flawless;
and is the first defense against typographical errors. As a result, the aim of
electronic word processing has expanded. The effort in obtaining an error-free
spell checking of words and automatically suggests possible match is a great
research challenge [3]. Several issues are being addressed to give an appropriate
resolution to a spell checker in varied natural languages. According to O'Neill,
et. al., 2003 [11], “spelling checkers have looked for four possible errors: a wrong
letter (“wird”), an inserted letter (“woprd”), an omitted letter (“wrd”), or a pair of
adjacent transposed letters (“wrod”)”. This process can be resolve by means of a
simple dictionary lookup. However, the notion of having languages with high
degree of inflection (like Tagalog) requires additional computational work such as
morphological analysis and stemming.

Currently, the developments of open source spell checkers are only
available for foreign languages such as the Bahasa Melayu (BM) Spell Checker
for Malay language [8], Fijian Spell Checker developed for Fijian language [16],
Divvun a spell checker research for Sami language [9]. Other variations of
existing open source spell checkers family are the ISpell, Myspell and HunSpell
ISpell is a unix-based system, MySpell and Hunspell support spell checking in
OpenOffice.org [6].

Developing a spell checker and grammar checker as add-in for
QpenOfﬁce.org from scratch is complex especially for a language with words rich
in affixations like Tagalog. A word processor add-in is a supplemental program
that extends the capabilities and functionalities of a word processing application
[7). Aside from the formulation of an effective algorithm that can process &
bunch of text and lexicon to produce good results, storage optimization &0
management should also be considered to complement the algorithm.

160

Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

The

pevelopment will bg focused on how these elements would complement each
other and can bg time consuming. Issues in building hash tables, memory
optimizat'on is still an open problem in developing spell checker and grammar
checker for OpenOffice [5]. Thus, we employed postgreSQL wherein hashing,
storage management and memory optimization is not an issue [13]. There are no
current researches that use postgreSQL as a resource and spell checker and
grammar checker engine for OpenOffice.

2.0 Spell Checking

Spell checking proceeds

2.1 Spell Checker Architectural Design

Figure 1 illustrates the spell checker architecture of the add-in. It
describes the processes in spell checking a document how suggestions are listed.

161

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

OpenOffice
Nacimant (MY

DIinl

suggestionList (D[i])

Figure 1: Tagalog Spell Checker Architecture.

Consider a document D with number of words equal to n where n-1 is equal
to the index of the last word in document D. Let i=0 be the index of the first word
found in document D and D[i] be the word pointed to by the index i. Let i+I be
the index of the next word. Let checkSpell(w) be the function that will accept a
parameter w wherein w can be the word D[i/. The function will return true if the
word w is spelled correctly. Correctly spelled word means that the root word of
the input word w is found in the lexicon after stemming is done. Let
suggestionList(m) be the function that will return a list of suggested words as
replacement for the missspelled word m.

The following steps describe the algorithm shown in the architectural
design of the spell checker in Figure 1.

Step I: At i=0, get the word DJi]

Step 2: if checkSpell(Dfi]) returns true, consider the next word i wherein j=;+1 and repeat Step 2 if {
is equal to goto Step 5. If checkSpell(D/i]) returns false then continue to Step 3.

Step 3: Display a list of word suggestions returned by the function suggestionList(D/i). Select a
word from the list returned by suggestionList(D/i]) (the process can be pre-empted or
manually terminated by jumping to Step 5 or continue to Step 4).

Step 4: if i < n then consider next word Dfi] wherein i=i+/ and repeat Step 2 or else go to step 5

Step 5: terminate algorithm,

162

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

The checkSpell(D[i]) is lexicon based. It uses TagSa as an initial
subroutine that }Nill check if a root word can be extracted from an in utu:olrad
before a final lexicon look-up is done. Words are tagged as miss-spelled}i)f after it
has been stemmed to its root word, it is still not found in the lexicon.

. The suggestionList(D[i]) uses an n-gram approach and at the same
time uses a lexicon based approach to look-up generated n-grams of input words
to the lexicon. What is compared to the input word n-gram is not the entire word
from the lexicon but the substring of the words found in the lexicon that matches
the n-gram of the word. In this case there is no need to maintain an n-gram
profile since the algorithm is more of a direct string pattern matcher. No
statistical analysis involved in the algorithm unlike an n-gram based algorithm

that makes use of a n-gram profile table.

2.2 Tagalog Stemmer

According to Surian ng Wikang Pambansa (2003) as mentioned by Bonus
(2003) [1], some of the morphological features of the language are the complex
system of affixes, the reduplication of a syllable in a word or the whole word
itself, compounding, and its combination. Tagalog affixation has several types:
prefixation, infixation, suffixation and circumfixation (Surian ng Wikang
Pambansa, 1940; Gana & Matute, 1964; Schachter & Otanes, 1972; Komisyon ng

Wikang Filipino, 1998, as cited by Bonus (2003) [1D.
ited that prefixation is involves attaching a bound

Bonus (2003) [1], cite .
morpheme before the root word. Prefixes in Tagalog can be just 1 syllable (e.g.
paka-). Suffixation involves

ma-) and as many as 7 syllables (e.g. ikinapagpa
root word. There are four

attaching the bound morpheme at the end of the
/, /-an/, /-hin/, and /-han/. Normally,

suffixes defined in Tagalog, namely: /-in :
ending with a vowel, while /-hin/ or /-han /s

/-in/ or /-an/ is attached to words tha
to words ending with a consonant. Infixation is a process where the bound
morpheme is attached within the root word. There are two infixes defined in

Tagalog, /-in-/ and /—um-/. The base form of the word may undergo infixation of
either /-in-/ or /-um-/ wherein the infix occurs after the first consonant of the
stem. However, in circumfixation bound morphemes maybe present (as prefix,
infix and suffix). Table 1 below shows the different affixation and its

corresponding examples; and phoneme change and its examples also.

163

The Mindanao Forum Vol. XX, No. 2

DIMALEN, et al

December 2007

Table 1. List of Tagalog Affixations [1].

Changes
Affixation | Basic Example Morphophonemic Phoneme
Change Change
Prefixation | maG + Sama = 2 types: 1d/ = Ir/
magsama 1. Partial Assimilation ma + dami >
(consonant / consonant) Ex: /-ng/ - /m/ marami
sing + puti >simputi
maG + Away > mag-
away (consonant / vowel) [2. Full Assimilation
Ex: mang + kuha
- manguha
Suffixation sikap + in = sikapin /d/ = [r/ + [-in/
puna + hin 2 punahin or /-an/
lipad + in =2
liparin
tawid + an 2>
tawiran
Infixation in + bili - binili infix /-in-/ to be attached within a prefix and
um + sayaw = sumayaw | must appear immediately after the first
consonant of the prefix
Ex: in + pag + sama =>pinagsama
in + ipag + bili = ipinagbili
Circumfixat | pa + in + punta + han - pinapuntahan
ion ipag + um + hiyaw + an - ipaghumiyawan

There are two types of reduplication in Tagalog: partial or full. In partial
reduplication, certain syllables are duplicated to project the form of the stem.
However, in full reduplication the entire stem is repeated to express continuative
aspect, and happens in the derivational process. A single word also may have
reduplicated syllables (prefixation or suffixation and infixation) all at the same
time. Table 2 depicts examples of partial and full reduplications, respectively.
The following rules are used in partial reduplication (Komisyon ng Wikang
Filipino, 1998; Schachter & Otanes, 1972 as cited by Bonus (2003) [1]).

164

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al —
Table 2. List of Reduplication Rules [1].
= - Rules Examples
Partial | L. If the root of a two-syllable word begins with | alis - a + alis - aalis
Redup. | a vowel, the initial letter is repeated. iwan - i + iwan = iiwan
2. In a two-syllable root, if the first syllable of | takbo - ta + takbo =
the stem starts with a consonant vowel, the | tatakbo
consonant and the succeeding vowel is
reduplicated.
3. If the first syllable of the root has a cluster of
consonants, two approaches can be used. This is
based on the speaker’s habit.
a. Reduplicates the first consonant and the first plantsa + hin Jpa +
vowel of the stem. plantsa + hin -
paplantsahin
b. Reduplicates the cluster of consonants | plantsa + hin > pla +
including the succeeding vowel of the stem. plantsa + hin -
plaplantsahin
4. In a three-syllable root, the first two syllables | bahagya = baha + bahagya
are reduplicated and hyphenated from the stem. | - baha-bahagya
Full 1. Reduplication and hyphenation of a two- | araw - araw + araw
Redup. | syllable root without any affix. - araw-araw
Exceptions to this rule are words that consist of | alaala
two segments that are alike, but are not | gamugamo
hyphenated and treated as a whole.
2. Reduplication of an adjective prefixed by /ma- | ma + taas - ma + taas +
taas
.) - mataas-taas
3. Reduplication of adjective in the superlative | ka + liit - ka + liit + liit + an
degree. - kaliit-liitan
4. Reduplication of nouns wherein the root is | tao - tao +tao+ han
suffixed by /-an/, /-han/, /-ahan/, or /-anan/, to —tau-tauhan
mean reduction or smaller than normal.
5. Inflectional reduplication of verbs suffixed by | bati - bati + bati + in
/-an/, /-hin/ or /-nin/. . bati-batiin
6. Reduplication of verbs affixed by Jum/, /ika-/, | um + alis - um + alis + alis
/maki-/, /mapa-/, /magka-/, /makipag-/, -umalis-alis
/magpaka-/, /i aka- /, etc.
7. Reduplication of verbs prefixed by Ipagka-/, | pagka + ani + ng - pagka +
and suffixed by the linker /-ng/ in the first part. | ani+ ng+ pagka +ani
< pagkaaning-pagkaani
8. Reduplication of an adverbial root. It is also | ka + hapon + ng - ka +
the case with a root normally prefixed by /ka-/ | hapon + ng + ka + hapon
Y T — - kahapung-kahapon

165

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al

December 209,

Compound word also exists in Tagalog in which two

united to form a new meaning. It could be either with or without a hyphen, T b
3 presents certain rules that govern the forming of hyphenated compound w:r;e
8

in the Tagalog Language (Surian ng Wikang Pambansa, 1940): |

Or more wordg are

Table 3. Rules in Forming Compound Words [1].

Rules Example
1. Miss_,ing words (one or more) | a. Missing sa or ng.
2missing words will be For example: ningas-kugon (ningas ng kugon)

replaged l.)y a hyphen. | b. Missing ni, katulad ng kay, or katulad ng sa.
Meanings will be retained but For example: kapit-tuko

have another definition. (kapit ng tuko or kapit katulad ng

sa tuko)
2. Compounded two different | a. Noun-Noun
words (with or without a linker For example: matang-tubig bungang-araw
in between). These compounded | b. Adjective-Adjective
words can be of the following For example: magandang-pangit matabang-
types: noun-noun, adjective- | payat
adjective, derived noun-noun, | ¢. Derived Noun-Noun

derived verb-noun, and adverb- For example: kadaupang-palad kabigayang-loob
noun. d. Derived Verb-Noun
For example: kamagandahang-loob

kamasamaang-salita
e. Adverb-Noun .
For example: biglang-yaman walang-hiya

Exemption: For example: bahaghari hampaslupa
For a two different compounded hanapbuhay pataygutom
word that establishes its own
meaning different from that of
the two words being combined,
the compound word must be
written as a whole.

B

Affixation in Tagalog language is complex, especially on verbs an%:;‘;“i
TagSA [1], a dictionary-based stemming algorithm for Tagalog con81on i
procedure in reducing all words (inflected) with the same root to 2 COFIT; affixes
This is basically done by stripping each word with app'ropna pination
(derivational and inflectional affixes). The Tagalog morphological comlicm:ion-
includes prefixation, infixation, suffixation, circumfixation and redup t

. re the
Prefixation involves the process of attaching a bound morpheme befo

166

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

word. An exa-mple is maQG + Aral - mag-aral, in which a consonant G is attached
to vowel A with a hyphen. Infixation is attaching a bound morpheme within the
Fo(:t wor(}.- Example the word “kinuha” has the infix /-in-/ wherein the root word
is “kuha”. In suffixation, bound morpheme is attached at the end of the root
word. For exz_ample, harap + in = harapin. In circumfixation, bound morpheme
may occur as in any order (prefix, infix and suffix). The example pa + in + punta
+ han -) p.mapuntahan, morphemes appear anywhere within the word. Tagalog
reduphcetlon can either be partial or full. Partial includes certain syllables that
are duplicated to project the form of the stem. Full reduplication includes the
entire stem to be repeated. -

. TagSA consists of several routines in handling different affixation. The
main routines are the following [1]: Hyphen-Search Routine, Dictionary-Search
Routine, /-in-/ Removal Routine, Prefix Removal Routine, /-um-/ Removal
Routine, Partial Reduplication Routine, Suffix Removal Routine, and Full

Reduplication/Compounding Routine.

2.3. Spell Checker Suggestion Strategy

tegy employed in the system is based on n-gram. If a
word in a document is found to be misspelled (that is, no match/root word found

in the lexicon), corresponding suggestions are readily available. The nearest n-
grams (sub-sequence of n items from a given word) will be displayed on the

screen and one can choose among these the suggestions.

The suggestion stra

he document will be processed by first checking if

Each word found in t

there are words in the dictionary containing a substring equal to the word being

tested. If no match is i ictionary, the next substring of the word from
1) will be looked up in the lexicon for a substring

left to right with length (-) : _ e
match. The process of taking, looking up the substring (n-1) continues until (n-i)
is equal to 2 or if the maximum number of matches is achieved.

N-gram is a result of removing spaces from a given string. In a given
string, n items can be generated from a given sequence. The sub-sequence of

these items can be compared to other sequences [17].

An n-gram can also be seen as an n-character slice of a longer string in

which a string is gliced into sets of overlapping n-grams. However, blanks are
appended at the beginning and end of the string before the string is sliced [2].

Example,

bi-grams (N=2) = _t, te, ex, - &
tri-grams (N=3) = _te, tex, ext, xt_, t_
quad-grams (N=4) = _tex, text, ext_,

String = “text’
Token = “_text_’

167

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

3.0 GRAMMAR CHECKER

Grammar components include grammar rules, lexical entries, principles
and parts-of-speech specifications of each lexical entry. The input text is passed
through a series of filter: preprocessing, segmentation, tokenization, lookup,
chunking, disambiguation, rules and recourse.

Preprocessing stage converts the text into the native character if the
default text is in different encoding. The segmentation step involves breaking
text into sentences and split the sentence into words. The next step is to look up
each word in the lexicon in which each word is tagged with its part-of-speech
(POS). Words that are not found in the lexicon will be processed by the
morphology engine to be able to recognize the known root word. In this stage,
phrases will be grouped together to form a single unit by the grammar checker.
The text that has been analyzed will be matched against the built-in rules [14].

It turns out that there are basically three ways to implement a grammar
checker: syntax-based checking, statistics-based checking and rule-based
checking. Rule-based checking is the most common method used. It comprises a
set of rules that is matched against a text which has been at least tagged with
POS. In this approach, all the rules are developed manually [10].

3.1 Grammar Checker Architectural Design

In Figure 2, the architectural design of the grammar checker is shown.

OpenOffice
Document (D)

i=i+]

Dfil Din]

checkGrammar(D[i

suggestionStrat(D[i])

p mpted
termination

Figure 2: Tagalog Grammar Checker Architecture.
168

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

Cons'lder a document D with number of sentences equal to n where n-1 i
equal to the index of 13he last sentence in document D. Let i=0 be the index of t}:s
first sentence found in document D and Dfi] be the sentence pointed to b th:
index i. Let i+1 .be the index of the next sentence. Let checkGrammar(s) b}; the
function that will accept a parameter s wherein s can be the sentence Dfi]. The
function will return true if the sentence s is grammatically correct.. Let
suggestio‘nS_tr at(m) be the function that will return a sentence with appended
POS of missing word or words in the sentence that would make the sentence

correct.

Step I: At i=0, get the sentence Dfi

Step 2: if checkGrammar(D/i]) returns true, consider the next sentence i
wherein i=i+] and repeat

Step 2 if i is equal to n goto Step 5. If checkGrammar(D/i]) returns
false then continue to Step 3.

Step 3: The function suggestionList(D/i/) will display a corrected sentence
with appended POS of missing words or display recommendation to
rephrase sentence if needed. Apply the suggestion to sentence and do the necessary
word replacement. (the process can be pre-

empted or manually terminated by jumping to Step 5 or continue to
Step 4)

Step 4: if i < nthen consider ne
else goto step 5.

Step 5: terminate algorithm.

xt word DJi] wherein i=i+/ and repeat Step 2

3.2 Grammar Checker Suggestion Strategy

m recognizes ungrammatical Tagalog sentences by evaluating
n of each sentence. The evaluation of the

grammaticality of the sentence proceeds by parsing each token in a sentence.
The approach employed in the grammar suggestion strategy is simply based on
the closest CFG rules stored in the database that matches that of the input
sentence. . .

If the requirements specification 18 not met, the system will flag (through

en wavy line) that the sentence 1s ungrammatical and suggestions are
lay which tokens are missing as part of its suggestion

The syste ;
the grammatical constructio

a gre ;
displayed. The system disp

strategy.
4.0. LEXICON AND GRAMMAR RESOURCE DEVELOPMENT

In Natural Language Proce.ss
knowledge about individual words) is e

ing, a lexical knowledge (that is, the
ssential. Lexical knowledge in encoded

169

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

though a lexicon in strictly formal structures. The lexicon has been long
recognized as a critical system resource [4]. A lexicon is typically developed and
encoded in a textfile.

A basic lexicon typically includes explicit and specific linguistic
information about the word. It includes the morphology either by enabling the
generation of all potential word-forms or by simply listing all associated pertinent
morphosyntactic features, or as a combination of the two. Lexicons are
traditionally been built by hand specifically for the purpose of language analysis
and generation. A more complex lexicon may include semantic information, such
as a classification hierarchy and selectional patterns or case frames stated in
terms of this hierarchy. This includes the typical subjects and objects for verbs,
semantic features for nouns such as inanimate, human, etc. [13].

In this research, the lexicon is created using a third party engine, the
Postgres SQL Database Management System (DBMS). It is being populated with
Tagalog root words only with corresponding attribute (linguistic information).
The necessary attribute being identifies is the Parts-of-Speech (POS) which is
necessary for grammar checking.

Similarly, the grammar resource of the system is built in the Postgres
SQL DBMS. It comprises a set of grammar rules for Tagalog.

5.0 SYSTEM’S IMPLEMENTATION

The implementation of the system is based on the final architectural
designs discussed in the later sections. The different components used in the
implementation of the add-in are depicted in Figure 3.

=) ()

Universal Network Objects

DB
Connectivity

Figure 3. Architectural Design of Add-in System Components.

170

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

To. be able to create an add-in feature to OpenOffice Writer, a
programming language that supports UNO must be used to access z;nd
manipulate the elements of the OpenOffice writer document. There are four
programming languages to choose from namely, C#, Java, C++ and Star Office
Basic. In this research, StarOffice Basic programming language and UNO
(Universal Network Object) [12] was used to develop the add-in. SDBC
(StarOfﬁc-e Database Connectivity) and ODBC (Open Database Connectivity) was
used to bridge t:he postgreSQL engine with the OpenOffice document.

ODBC is a multi-platform driver that connects applications to supported
DBMS al}d applications. Unfortunately, Open Office does not support ODBC
because it has its own DBMS connectivity driver exclusive to Open Office
applications. However, the Star Office Database Connectivity (SDBC) driver can
connect to a registered ODBC definition making it possible for Open Office
applications to communicate with postgreSQL via ODBC thru SDBC.

The mechanism employed is a new implementation strategy in
developing an add-in in OpenOffice .org, which gives more comfort and flexibility

in handling a very large resource.

6.0 EVALUATION METRICS

In the evaluation process, the input text is categorized having two types
of words: correct and incorrect. Correct words are words that are accepted by
Tagalog (excluding proper nouns not unless they are added to the lexicon). The
system identifies a word as correctly spelled, if after stemming is applied, the

resulting root word is found in the lexicon.
ds and flagged it with a pink wavy line.

The system finds misspelled wor
The evaluation is done using a separate program that automatically computes
the total number of words found as correct and the words found as misspelled. It

also computes the total execution time. Table 4 depicts the automated evaluation
results in spell checking Tagalog documents having large number of words

(example, books in the Bible).

171

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al

December 2007
Table 4. Automated Evaluation Results
Test Data [TIME (in seconds) Total Correct Error)
Start |End End - Start [Number of (Misspelled)
Words

Book o 14 min and i9at 2
Genesis [03:23:16 (03:37:43 |27 sec 35,739 31,398 words or

12.14 %
ok ot 46 word
Obadiah |08:37:48 [08:38:28 |40 sec 671 625 -

or 7.36%

The book of Genesis consists of 35,739: the system found 31,398 correct
words and the 4,341 mispelled words or 12.14%. In Obadiah, the system found
671 words correct, and 46 mispelled words or 7.36%. The errors (misspelled) are
caused by the lack of conformity with the lexical entries (that is, proper noun or
absence of the root words in the lexicon). Misspelled words also include words
that are over-stemmed and under-stemmed by TagSa. The only solution is to
recognize words that cannot be handled by TagSa is to add the over-stemmed and
under-stemmed words to the lexicon.

7.0 SUMMARY AND CONCLUSION

A Tagalog spell Checker and grammar checker was developed for
OpenOffice Writer to aid in writing documents in Tagalog. The system’s
capability in handling large wordlist in the lexicon, powerful parsing and
stemming power is due to the third party engine employed and enhancement
made in TagSA, respectively.

The grammar checking that was incorporated in the system is capable of
handling basic sentence structures of Tagalog. There is no program reé
compilation needed since the program, as stored procedures, can be edited on the
fly on the third party software’s end without restarting Open Office or even t1'1e
operating system. Currently, no grammar checker has been incorporated 1n
OpenOffice Writer. It is still a research proposal for the up coming season by Sun
Microsystems which was presented in Summer of Code Project 2006 [15]). NL

The advantage of having postgreSQL as parsing engine for It is
applications is its ability to store, manage and manipulate very large data. e
independent to applications like Open Office, thus avoiding interference to dis
functionality of Open Office applications. The disadvantage on the other han

172

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

that you need to install postgreSQL along with O
B it g ther s, g pen Office and setup database
While running on a corpus of 14,000
. n root words (plus the root word

extractec.l from words with afﬁxes'processed by TagSa), we found that our sys(:an:
works “.nth high accuracy. The misspelled words are all correctly detected. They
are mgmly due. to the presence qf proper nouns and non-existent of the root
words in the lexicon. We are planning to take care of euphony and assimilation in

near future.

8.0 IMPLICATIONS AND RECOMMENDATIONS

The wordlist in the lexicon can be further incorporated with more
Tagalog mt words. To include more grammar rules and enhanced suggestion
strategy is also a necessary improvement for the grammar checker.

Other Philippine-type languages can be incorporated in the system,
which could be used for web, web-based document processing applications. An

example of these applications is the google docs.

9.0 LITERATURE CITED

[1] Bonus, Don Erick J. (2003). A Stemming Algorithm for Tagalog Words. MS

Thesis. De La Salle University, Manila.
toCor: Automatic Acquisition of Corpora of Closely-

[2] Dimalen, Davis (2004). Au
Related Languages from a Closed Corpus (MS Thesis). De la Salle University -

Manila.
[3] Chaudhuri, Bidyut Baran (2004). Reversed Word Dictionary and Phonetically

Similar Word Grouping Based Spell-checker to Bangla Text. Proc. 2nd
International Conference on Information Technology for Applications (ICITA),

China.
Available at: http://y_rww.emille.lancs.ac.uk/lesal/bangla.pdf

i, N. New York University, New York, USA. Istituto

onale del CNR, Pisa, Italy.
du/HLTsu rvey/ch12node6.html

(4] Grishman, R., & Calzolar
di Linguistica Computazl :
Available at: http://cslu.cse.0gl.€

evin B. The Mail Archive.

(5] Hendricks, K

173

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al

December 2007

Available at: http:/www.mail-
archive.com/dev@lingucomponent.openoffice.org/msg01312.html

[6] Lingucomponent Project (2001). OpenOffice.Org
Available at: http:/lingucomponent.openoffice.org/

[7] Microsoft Corp., 2005.
Available at:

http://msdn.microsoft.com/office/technologyi nfo/developing/overview/default.as
DX.

[8] MIMOS Open Source R&D Group (2004).
Available at:

http://opensource.mimos.my/?main=mimos/openoffice spellchecker

[9] Moshagen, S., Pieski, T. & Trosterud, T.
(2005). OpenSource Speller Technical Documentation.

Available at: http://www.divvun.no/doc/proof/Spelling/X-
spell/index.html#MySpell

[10] Naber, Daniel (2003). A Rule-Based Style and Grammar Checker.
Technische Fakultit,

Universitat Bielefeld.

Available at:

www.danielnaber.de/languagetool/download/style and grammar checker.pdf

[11] O'Neill, M.E. & Connelly, C.M. (2003). Spell Checking Using Hash Tables.
Available at:

http://www.cs.hmc.edu/courses/mostRecentlcs70/homework/cs70as39.pdf

[12] OSTG (Open Source Technology Group),

(2006).

Available at:
http://sourceforge.net/docman/display_doc.php?docid=29374&group id=143754

[13] PostgreSQL
Available at: http://www.postgresqgl.org/

[14) Scannel, Kevin. (2005). An Gramadéir.
Available at: http://borel.slu.edu/gramadoir/

174

The Mindanao Forum Vol. XX, No. 2 DIMALEN, et al December 2007

[15] SummerOfCode2006.
Available at: http://wiki.services.openoffice.org/wiki/SummerOfCode2006

[16] UNDP APDIP (2007). Fijian Spell Checker for OpenOffice.org.
Available at: http://www.apdip.net/news/fijianspellchecker/view

[17] Wikipedia (2006).
Available at: http://en.wikipedia.org/wiki/N-gram
6.0 ACKNOWLEDGEMENT
This research was funded by the Philippine Council for Advanced Science

and Technology Research and Development (or PCASTRD) under the
Department of Science and Technology (DOST), Philippines.

175

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

