The Mindanao Forum, Vol XV, No. 1 (June 2000)

The Effect of γ-Al₂O₃ Substitution on the Crystallinity of Synthesized Tobermorite from Ultrafine Geothermal Silica

MA. OPHELIA D. JARLIGO EPHRAIM E. IBARRA HERMAN D. MENDOZA

Abstract

The industrially important cation exchanger tobermorite was synthesized hydrothermally using ultrafine geothermal silica and reagrent grade CaO in an autoclave for 8 hours at 180°C. The γ -Al₂O₃ was used to substitute 0, 5, 10 and 15% of the silica component in the tobermorite precursors to determine its effect on the crystallinity of the synthesized products. The products of synthesis were then characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Results showed that at 0 to 10% substitution of γ -Al₂O₃, the crystallinity of the synthesized products was 0%. At 15% substitution, the crystallinity of the synthesized tobermorite was found to increase from 0 to 17.882%. This was observed only after conversion of precursors to C-S-H phases.

Introduction

T obermorite, a group of calcium silica hydrate (C-S-H) minerals, includes a variety of phases with different degrees of crystallinity and variation in composition. Of these, tobermorite with nominal composition 5CaO•6SiO₂•5H₂O is highly crystalline, rare and occurs naturally as

MA. OPHELIA D. JARLIGO, the head researcher, is an MS Degree holder in Materials Science and Engineering, and presently an Instructor from the Ceramics, Chemical and Metallurgical Engineering Department of the College of Engineering, MSU-Iligan Institute of Technology, Tibanga, Iligan City. EPHRAIM E. IBARRA, faculty, Chemical and Metallurgical Enginnering Department, MSU-Iligan City, HERMAN D. MENDOZA, faculty, Metallurgical and Materials Eng'g Department, UP, Diliman, Quezon City

Vol. XV. No. 1

a platy hydrous silicate mineral in calcium silicate rocks. This is referred to the thickness of elementary t a platy hydrous structure intervention of a central sheet of orbits layers inas the 1.15-init to certain a_{y} is structure. The basic layer consists of a central sheet of calcium and a_{xy} . gen ions sandwiched by rows of $SiO_2(OH)_2$ tetrahedra that are linked into

Tobermorite itself has a range of Ca/Si from 0.8 to 1.0.² Extra Ca fits in the void spaces between silica chains. Al³⁺ ions were found to substitute for the tetrahedral Si atoms in Si-O-Si bridges between chains in tobermorite. This results to formation of cavities which gives potential for ion exchange activities to occur.^{3,4} As cation exchanger, applications of tobermorite include water purification, removal of environmental pollutants, analytical and preparative chemistry, nuclear waste treatment, hydrometallurgy, biotechnology, pharmaceuticals and even in food processing.56

Though naturally rare, tobermorite can be easily synthesized hydrothermally in an autoclave, and the product, being a highly crystalline solid, gives a very strong and highly reproducible XRD pattern.² Tobermorite precursors are a mixture of common raw materials such as silica, lime, and asgillaceous minerals. The choice of precursors, including particle size and degree of crystallization affect the kinetics and the final phases formed.7

Tobermorites were synthesized using quartz samples (particle sizes from sedimentation below 10µm, containing 99.9% SiO₂), colloidal silica, by-product silica (amorphous, 94.4% SiO2, 10-15µm and converted to cristobalite at 1300°C giving particles <20µm) and silica glass (<10µm, 99.94% SiO₂) at 105-180°C and Ca/(Si+Al) of 0.8 - 1.0 in stirred and unstirred mixtures.8,9,10 The reactions proceed through the sequence,

$Ca(OH)_2 + SiO_2 + \gamma - Al_2O_3 \rightarrow Al - CSH \rightarrow Al - tobermorite.$

The presence of Al substituting for the Si can accelerate the crystallization of Tobermorite. However, this addition retards the formation of CSH. since γ -alumina decreases the solubility of quartz in the process. Substitution of Al for Si in the tobermorite structure allows 15% replacement before any anomalous behaviors on thermal treatment could occur.11.12

It has been established that for synthesis to proceed to formation of tobermorite, silica component should contain around 95% SiO₂ and particle size of ≤ 10 microsoft size is size of < 10 microns. Producing silica with such specific particle size is very difficult and very difficult and expensive using existing technologies of size reduction

processes. Ultrafine geothermal silica however, is generated locally from the disposal of geothermal effluent. This geothermal silica is presently produced in voluminous amounts at Bacon-Manito geothermal field at Botong, Sorsogon. The silica content is around 98.7% and particle size < 5 microns.¹³ Utilizing this waste as a raw material for the development of useful and environment friendly materials seem to be the best alternative to consider. In other words, tobermorite can answer this need.

In the present study, the effect of γ -Al₂O₃ substitution on the crystallinity of synthesized tobermorite from ultrafine geothermal silica will be investigated.

Experimental Procedure

2.1 Characterization and Preparation of Starting Materials

The ultrafine geothermal silica was precipitated from the geothermal effluent. It was then characterized using the Energy Dispersive System (EDS) accessory of the SEM to determine its elemental composition, and XRD to determine its crystallinity. The CaO and γ -alumina used were reagent grade.

The starting materials were individually powdered using mortar and pestle, then proportioned to have Ca/Si+Al ratio of 0.8. Autoclavable vials were used to contain the mixtures. Deionized water was then added to achieve a water to solid ratio equal to 2.0. This was followed by mechanical shaking for 1 minute. The autoclavable vials were then sealed and mixtures were allowed to stand for 12 hours.

2.2 Hydrothermal Treatment

June 2000

The vials were then unsealed and placed in the autoclave filled with deionized water to one-fourth its total volume. The autoclave was then properly sealed and switched on to start heating. The 180°C setting temperature was achieved after 12 minutes, establishing saturated steam pressure condition. All reactions were done without stirring for 8 hours.

The experimental set-up is shown in Figure 1. After heat treatment,

the autoclave was cooled and the reaction products were filtered using filter paper, washed with deionized water and then dried with ethanol and diethyl ether. Three replicate runs were made.

- A. Discharge valve
- Manometer
- Safety valve
- Sample holder
- Heater
- Control box

Figure 1. The Experimental Set-up in the Autoclave.

2.2 **Product Examination**

The products of synthesis were first examined using X-ray diffraction. The XRD patterns and corresponding tabulated values for 20, d-spacing and relative intensities were generated by a computer with PC-APD diffraction software. With a PC Identify Computer Software, the phases formed were then identified. The results were, however, verified using the Hanawalt method where the computer generated XRD data were matched with the Joint Committee of Powder Diffraction Standard (JCPDS) powder diffraction data.

The corresponding relative intensities of the peaks in the matched patterns were then noted to determine the amount of the phases formed. The data obtained were used in determining the extent of crystallinity according to the method by Alexanderson (1979) ¹⁴ where:

ALL DE CONTRACTOR

June 2000

JARLIGO, IBARRA, MENDOZA

For simplicity, crystalline tobermorite was referred to the $5CaO \cdot 6SiO_2 \cdot 5H_2O$ tobermorite, while the poorly crystalline tobermorite phases were considered to belong to the C-S-H phases. The poorly crystalline tobermorite phases were however noted to determine the extent of tobermorite conversion from C-S-H. Morphology of the products was examined using a Scanning Electron Microscope.

III. Results and Discussion

3.1 Raw Materials Characterization

SEM-EDS results confirmed that the ultrafine geothermal silica is basically of Si (Figure 2). The generated d-values and relative intensities of the X-ray diffraction peaks compared with the JCPDS data revealed that the geothermal colloidal silica is amorphous (Figure 3). Two low intensity peaks were attributed to minor crystalline impurities present.

Figure 2. EDS Pattern for Geothermal Colloidal Silica

Vol. XV. No. 1

Figure 3. XRD Pattern of the Geothermal Colloidal Silica

3.2 XRD Analysis of the Synthesized Products

The XRD results (Figure 4) showed, that crystalline tobermorite phase was only detected in the synthesized product with 15% substitution of γ -Al₂O₃ (D pattern). The characteristic strong intensity lines and corresponding d-spacing matched with the tobermorite XRD pattern for this mixture. The % crystallinity of the synthesized product was determined using equation (1). The average % crystallinity was found to be 17.882%. The other mixtures with 0, 5, and 10% substitution of γ -Al₂O₃ did not reveal any crystalline tobermorite. Other phases detected however, were poorly crystalline tobermorite and the 3CaO•2SiO₂•3H₂O (C-S-H) phase (Table 1); both denoted as C in the XRD pattern.

Figure 4. XRD Pattern of the Synthesized Products

%γ-Al ₂ O ₃	% Phases Formed		
	C-S-H Phases		
	3CaO•2SiO ₂ •3H ₂ O	Poorly Crystalline Tobermorite	Crystalline Tobermorite
0	0.00	100.00	0
5	7.349	92.651	0
10	4.721	95.279	0
15	2.494	79.624	17.882

Table 1. Mean quantities of phases formed in the synthesized products.

It is evident that at 8 hours of autoclaving, all of the precursors were converted to C-S-H before any crystallization of tobermorite occurred, since there was no traceable unreacted colloidal silica and γ -Al₂O₃ left. The reaction process for this mixture is shown in Figure 5.

Figure 5. The Synthesis Reaction

Since the colloidal silica was amorphous, at 0 to $10\% \gamma$ -Al₂O₃ substitution, the mixtures did not convert to crystalline tobermorite perhaps due to the absence of crystalline nuclei around which the 5CaO•6SiO₂•5H₂O tobermorite could condense. The amount of γ -Al₂O₃ added was perhaps insufficient for the formation of crystallization nuclei and the 15% substitution was able to promote their formation.

3.3 SEM Results

Figures 6 is the scanning electron micrograph of the raw mix without the addition of γ -alumina. The spherical geothermal colloidal silica can be easily distinguished from the cloud-like GaO. The spherical and cloud-like structures of precursors have been converted to platy tobermorite in Figure 7. Poorly crystalline tobermorite (clusters of fibers) grow at surroundings of the tobermorite plates.

Figure 6. Scanning Electron Micrograph of the Raw Mix

Figure 7. Scanning Electron Micrograph of the Synthesized Product. (3600x)

IV. Conclusion

This study therefore concludes that 0 to 10% substitution of γ -Al₂O₃ has no effect on the crystallization of tobermorite. At 15% substitution, the crystallinity of synthesized tobermorite from ultrafine geothermal silica was found to increase. This was observed upon conversion of tobermorite precursors to C-S-H phases.

Acknowledgement

The researchers would like to acknowledge Quennie Lynn T. Gargar. Ma. Victoria Josefa M. Venezuela, Dr. Alberto V. Amorsolo and Dr. Manolo G. Mena for the help with the XRD & SEM analyses, and for the completion of the manuscript.

References

- 1. H.D. Megaw and C.H. Kelsey, "Crystal Structure of Tobermorite", Nature, 177, (1956).
- 2. G.L. Kalousek, "Crystal Chemistry of Hydrous Calcium Silicates: I. Substitution of Aluminum in the lattice of Tobermorite," *Journal of American Ceramic Society, 40 (1957).*
- 3. S. Komarneni, and M. Tsuji, "Selective Cation Exchange in Substituted Tobermorites," *Journal of American Ceramic Society* 72 [9],(1989).
- S. Komarneni, D.M. Roy, et.al, "²⁷Al and ²⁹Si Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Al-substituted Tobermorite," Journal of Materials Science, 20 (1985).
- 5. R.P Townsend, "Fundamentals of Ion Exchange: Ion Exchange Processes and Applications", Royal Soceity of Chemistry, Cambridge (1993).
- 6. S. Komarneni, D.M. Roy and R. Roy,"Al-substituted Tobermorite shows Cation Exchange," *Cement and Concrete Research* [12], (1982).
- C.F. Chan, M. Sakiyama and T. Mitsuda, "Kinetics of the CaO-Quartz-H₂O Reaction at 120 to 180°C in Suspension," Cement and Concrete Research [8],(1978).
- 8. C.F. Chan, and T. Mitsuda, "Formation of 11Å Tobermorite from Mixtures of Lime and Colloidal Silica with Quartz" Cement and Concrete Research [8],(1978).
- 9. S.A.S. El-Hemaly, T. Mitsuda, et.al., "Synthesis of Normal and Anomalous Tobermorites," Cement and Concrete Research [7],(1977).
- S. Komarneni, E. Breval, D.M. Roy and Roy, "Synthesis and Characterization of a 12.6 °A Calcium Silicate Hydrate," *Cement and Concrete Research* [7], (1986).

- T. Mitsuda and H.F. Taylor,"Influence of Aluminum on the Conversion of Calcium Silicate Hydrate Gels into 11°A Tobermorite at 90°C and 120°C," Cement and Concrete Research [5],(1975).
- M. Sakiyama and T. Mitsuda, "Hydrothermal Reaction Between C-S-H and Kaolinite for the Formation of Tobermorite at °C, "Cement and Concrete Research [7], (1977).
- A. Baltazar, Jr. "Characteristics of the Silica Slurry at the Booting Sector of the Bacon-Manito Geothermal Production Field", 16th Annual PNOC-EDC Geothermal Conference Proceedings, March (1995).
- J. Alexanderson. "Relations between structure and Mechanical Properties of Autoclaved aerated Concrete," Cem. Concr.Res.9, (1979).