Characterization of Semi-continuity in the Product Space

Sergio R. Canoy, Jr. Julius V. Benitez

Abstract

In this short note we revisit the concepts of semi-open set and semi-continuity and give some properties of semi-open sets in the Cartesian product with the Tychonoff topology. Further, we characterize semi-continuous functions from a topological space into the product space. The result we obtain runs parallel to the one we have for continuous functions in the product space. Other results involving semi-continuous functions in the product space will also be given.

Keywords: open-set, semi-open, semi-continuity, topology, product space

1 Introduction

N. Levine introduced the concepts such as semi-open set and semi-continuity

in topological spaces [3]. The class of all semi-open sets in a topological

fl:i **SERGIO R. CANOY, JR.,** Professor, Department of Mathematics, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, Philippines, has a Ph.D. in Mathematics from the University of the Philippines, Diliman, Quezon City. **JULIUS V. BENITEZ,** Associate Professor, Department of Mathematics, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, Philippines, has an M.S. in Mathematics from MSU-IIT, Iligan City.

space includes all open sets. Although an arbitrary union of semi-open sets is semi-open, the class does not always form a topology on the underlying set.

On the other hand, the condition for semi-continuity is strictly weaker than the condition for continuity of a function. However, even for functions into the space R of real numbers with the standard topology, semi-continuity is not generally preserved under algebraic sum, and product of functions.

It is well known that a function *f* from an arbitrary space *X* into the Cartesian product *Y* of the family of spaces ${Y_\alpha : \alpha \in A}$ with the Tychonoff topology is continuous if and only if each coordinate function $p_0 \circ f$ is continuous where p_{α} is the α th coordinate projection map. In this paper we give a necessary and sufficient condition for function *f* to be semi-continuous.

²Definitions and Known Results

Definition 2.1 Let *A* be an indexing set and $\{Y_{\alpha} : \alpha \in A\}$ be a family of topological spaces. For each $\alpha \in \mathcal{A}$, let τ_{α} be the topology on Y_{α} . The **Tychonoff topology** on $\Pi_{\alpha \in \mathcal{A}} Y_{\alpha}$ is the topology generated by a subbase consisting of all sets $(U_{\alpha}) = p_{\alpha}^{-1}(U_{\alpha})$, where $p_{\alpha} : \Pi_{\alpha \in A} Y_{\alpha} \to Y_{\alpha}$ is defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}, U_{\alpha}$ ranges over all members of τ_{α} , and α ranges over all elements of **A.**

We remark that for each open set U_n of Y_n ,

$$
\langle U_{\alpha}\rangle = p_{\alpha}^{-1}(U_{\alpha}) = U_{\alpha}\times \prod_{\beta\neq\alpha} Y_{\beta} .
$$

Hence a basis for the Tychonoff topology consists of sets of the form $\langle B_{\alpha_1}, B_{\alpha_2}, ..., B_{\alpha_k} \rangle$, where B_{α_i} is open in Y_{α_i} for every $i \in K = \{1, 2, ..., k\}.$

The proofs of the following results can be found in [3].

Theorem 2.2 Let ${Y_a : \alpha \in A}$ be a family of topological spaces. The $projection map p_{\alpha}: \Pi_{\alpha \in A} Y_{\alpha} \to Y_{\alpha}$, defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}$ for each $\alpha \in A$, *is a continuous open surjection.*

Theorem 2.3 Let ${Y_a : \alpha \in \mathcal{A}}$ be a family of topological spaces and $A_{\alpha} \subset Y_{\alpha}$ *for each* $\alpha \in \mathcal{A}$. Then, in $\Pi_{\alpha \in \mathcal{A}} Y_{\alpha}$ with the Tychonoff topology,

$$
\overline{\prod_{\alpha\in\mathcal{A}}A_{\alpha}}=\prod_{\alpha\in\mathcal{A}}\overline{A_{\alpha}}\ ,
$$

where $\overline{A_{\alpha}}$ is the closure of A_{α} .

Theorem 2.4 *Let* X *and* Y *be topological spaces. A function* $f: X \rightarrow Y$ *is continuous on X if and only if* $f(\overline{A}) \subseteq \overline{f(A)}$ for every set $A \subseteq X$.

Definition 2.5 Let X be a topological space. A set $O \subseteq X$ is semi-open in X if there exists an open set G in X such that $G \subseteq O \subseteq \overline{G}$.

Definition 2.6 Let *X* and *Y* be topological spaces. A function $f: X \rightarrow$ Y is semi-continuous on X if the inverse image of every open set in Y is semi-open in X , i.e.,

G open in
$$
Y = f^{-1}(G)
$$
 is semi-open in X.

In simple terms, we call an element of a basis of a topological space a *basic open set.* Similarly, an element of a subbase will be referred to *as* ^a *subbasic open set.* In [1], the authors proved the following result.

1.1.1. Theorem 2.7 *Let* X and Y be topological spaces. A function $f : X \rightarrow Y$ α' is semi-continuous on X if and only if the inverse image of every b_{data} $(subbasic)$ *open set in Y is semi-open in X.*

3 Results

Throughout this section, the Cartesian product $Y = \prod_{\alpha \in \mathcal{A}} Y_{\alpha}$ carries the Tychonoff topology. This topological space is referred to as the product space.

Lemma 3.1 *If O is a non-empty semi-open set in the product space Y. then* $p_{\alpha}(O) = Y_{\alpha}$ *for all but at most finitely many* α *and* $p_{\alpha}(O)$ *is semi-open for every* $\alpha \in \mathcal{A}$.

Proof: There exists a non-empty open set *G* in *Y* such that $G \subseteq O \subseteq \overline{G}$ 'fhus,

$$
p_{\alpha}(G) \subseteq p_{\alpha}(O) \subseteq p_{\alpha}(\overline{G})
$$

for every $\alpha \in \mathcal{A}$. By Theorem 2.4, we have

$$
p_{\alpha}(G) \subseteq p_{\alpha}(O) \subseteq p_{\alpha}(G)
$$

for every $\alpha \in \mathcal{A}$. Since *G* is a non-empty open set, *G* contains some basic open $\mathbb{R}^n \cup B = \langle B_{\alpha_1}, B_{\alpha_2}, ..., B_{\alpha_k} \rangle$. Since $p_{\alpha}(B) = Y_{\alpha}$ for all $\alpha \notin K = \{ \alpha_1, \alpha_2, ..., \alpha_k \}$ and $p_{\alpha}(B) \subset p_{\alpha}(G)$, it follows that $p_{\alpha}(G) = Y_{\alpha}$ for all but at most finitely many α . Hence $p_{\alpha}(O) = Y_{\alpha}$ for all but at most finitely many α . Next, fix $\mathbb{1}^d \in \mathcal{A}$. Then either $p_0(O) = Y_o$ or $p_0(O) \neq Y_o$. If $p_0(O) = Y_o$, then $p_o(O)$. is semi-open. So suppose that $p_n(O) = O_n \neq Y_n$ and let $p_n(O) = G_n$. Then

$$
G_{\alpha} \subseteq O_{\alpha} \subseteq \overline{G_{\alpha}}
$$
.

ince the projection map p_{α} is open, $p_{\alpha}(G)$ is open in Y_{α} . Therefore $p_{\alpha}(G)$ is semi-open for all $\alpha \in \mathcal{A}$.

Remark 3.2 *The converse of Lemma* 3.1 *is not true.*

To see this, consider $Y_1 = \{1, 2, 3\}$ with the topology $\tau_1 = \{Y_1, \emptyset, \{2\}, \{1, 2\}, \{\}$ ${2,3}$ and $Y_2 = {a,b,c,d}$ with topology $\tau_2 = {Y_2, \emptyset, {a}, {c}, {a,c}}$. Let $O = \{(1, a), (2, d), (3, b)\}.$ Then the family B consisting of the sets $Y_1 \times Y_2$, \emptyset , $Y_1 \times \{a\}, Y_1 \times \{c\}, Y_1 \times \{a, c\}, \{2\} \times Y_2, \{1, 2\} \times Y_2, \{2, 3\} \times Y_2, \{(1, a), (2, a)\},$ $\{(1, c), (2, c)\}, \{(2, a)\}, \{(2, c)\}, \{(2, a), (2, c)\}, \{(2, a), (3, a)\}, \{(2, c), (3, c)\},$ and $\{(2, a), (2, c), (3, a), (3, c)\}$ is a basis for the Tychonoff topology on $Y_1 \times Y_2$. $\mathrm{Sine}\: p_1(O) = \{1,2,3\} = Y_1 \text{ and } Y_1 \text{ is open (hence, semi-open), } p_1(O) \text{ is semifolds }$ pen. Now, $p_2(O) = \{a, b, d\}$. Clearly, $\{a\} \subseteq p_2(O)$. Since $\overline{\{a\}} = \{a, b, d\}$ we find that $\{a\}$ is an open set in Y_2 satisfying $\{a\} \subseteq p_2(O) = \overline{\{a\}}$. This implies that $p_2(O)$ is also semi-open. However, O is not semi-open because O does not contain a non-empty basic open set in $Y_1 \times Y_2$.

Theorem 3.3 Let $S = {\alpha_1, \alpha_2, ..., \alpha_k}$ be a finite subset of A and $\emptyset \neq \emptyset$ $O_{\alpha_i} \subseteq Y_{\alpha_i}$ for each $\alpha_i \in S$. Then $\langle O_{\alpha_1}, O_{\alpha_2}, ..., O_{\alpha_k} \rangle$ is semi-open in Y if and $\frac{dy}{dx}$ *if each* O_{α} *is semi-open in* Y_{α} *.*

Proof: Let $O = \langle O_{\alpha_1}, O_{\alpha_2}, ..., O_{\alpha_k} \rangle$ and suppose each O_{α_i} is a non-empt emi-open set in Y_{α} . Then there exists an open set G_{α} in Y_{α} , such that $G_{\alpha i} \subseteq O_{\alpha i} \subseteq \overline{G_{\alpha i}}$. Let $G = \langle G_{\alpha i}, G_{\alpha i},...,G_{\alpha k} \rangle$. Then G is open in Y nd $\overline{G} = \langle \overline{G_{\alpha_1}}, \overline{G_{\alpha_2}}, ..., \overline{G_{\alpha_k}} \rangle$ by Theorem 2.2. Thus, G is an open set in Y satisfying $G \subseteq O \subseteq \overline{G}$. This shows that O is semi-open in Y.

Conversely, suppose O is a non-empty semi-open set in *Y*. By Lern_{na} 3.1, $p_{\alpha_i}(O)$ is semi-open in Y_{α_i} for every $i \in \{1, 2, ..., k\}$. It follows that each O_{α_i} is semi-open in Y_{α_i} .

The proof of the theorem is complete. \Box

We shall now characterize semi-continuous functions from an arbitrary topological space X into the product space Y .

Theorem 3.4 A function $f: X \to Y$ is semi-continuous on X if and *only if each coordinate function* $p_0 \circ f$ *is semi-continuous on* X .

Proof: Suppose *f* is semi-continuous on *X*. Let $\alpha \in A$ and U_{α} be open in Y_{α} . Since p_{α} is continuous, $p_{\alpha}^{-1}(U_{\alpha})$ is open in *Y*. Hence,

$$
f^{-1}(p_{\alpha}^{-1}(U_{\alpha})) = (p_{\alpha} \circ f)^{-1}(U_{\alpha})
$$

is a semi-open set in X. Thus, $p_{\alpha} \circ f$ is semi-continuous for every $\alpha \in A$, by Definition 2.6.

Conversely, suppose each coordinate function $p_{\alpha} \circ f$ is semi-continuous. Let G_{α} be open in Y_{α} . Then $\langle G_{\alpha} \rangle$ is a subbasic open set in *Y* and

$$
(p_{\alpha} \circ f)^{-1}(G_{\alpha}) = f^{-1}(p_{\alpha}^{-1}(G_{\alpha}) = f^{-1}(\langle G_{\alpha} \rangle))
$$

is a semi-open set in X . Therefore, f is semi-continuous on X , by Theorem $2.7.$

Corollary 3.5 *Let* X *be a topological space.* Y *the product space* q^{nd} $f_{\alpha}: X \to Y_{\alpha}$ *a function for each* $\alpha \in \mathcal{A}$. Let $f: X \to Y$ be the function *defined by* $f(x) = \langle f_{\alpha}(x) \rangle$. *Then f* is semi-continuous on X if and only if $\int_{a}^{f_{\alpha}} f(x) dx$ is semi-continuous for each $\alpha \in \mathcal{A}$.

Proof: For each $\alpha \in A$ and each $x \in X$, we have

$$
(p_{\alpha} \circ f)(x) = p_{\alpha}(f(x)) = p_{\alpha}(\langle f_{\alpha}(x) \rangle) = f_{\alpha}(x).
$$

Thus $p_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in \mathcal{A}$. The result now follows from Theorem 3.4. □

Theorem 3.6 *Let X and Y be the product spaces of the families of spaces* $\{X_{\alpha} : \alpha \in \mathcal{A}\}\$ and $\{Y_{\alpha} : \alpha \in \mathcal{A}\}\$, respectively. For each $\alpha \in \mathcal{A}\$, let $f_{\alpha} : X_{\alpha} \to$ Y_{α} be a function. If each f_{α} is semi-continuous, then the function $f: X \to Y$, *defined by* $f(\langle x_{\alpha} \rangle) = \langle f_{\alpha}(x_{\alpha}) \rangle$, *is semi-continuous on X.*

Proof: Let (V_α) be a subbasic open set in *Y*. Then

$$
f^{-1}(\langle V_{\alpha}\rangle)=\langle f_{\alpha}^{-1}(V_{\alpha})\rangle.
$$

ince f_{α} is semi-continuous, $f_{\alpha}^{-1}(V_{\alpha})$ is semi-open in X_{α} . Hence there exist an open set G_α in X_α such that

$$
G_{\alpha} \subseteq f_{\alpha}^{-1}(V_{\alpha}) \subseteq \overline{G_{\alpha}}.
$$

learly $\langle G_{\alpha} \rangle$ is an open set (subbasic open) in *X* and

$$
\langle G_{\alpha} \rangle \subseteq \langle f_{\alpha}^{-1}(V_{\alpha}) \rangle \subseteq \langle \overline{G_{\alpha}} \rangle .
$$

This implies that $(f_{\alpha}^{-1}(V_{\alpha}))$ is a semi-open set in *Y*. Thus, *f* is sem continuous on *X.* o

References

- [1] Canoy, S.R., and Benitez, J., On semi-continuous functions, *The Manila Journal of Science,* 4 (2001) 22-25.
- [2] Dugundji,· J., *Topology,* New Delhi Prentice Hall of India Private Ltd., 1975.
- [3) Levine, N., Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, 70(1963) 36-41.