Characterization of Semi-continuity in the Product Space

Sergio R. Canoy, Jr. Julius V. Benitez

Abstract

In this short note we revisit the concepts of semi-open set and semi-continuity and give some properties of semi-open sets in the Cartesian product with the Tychonoff topology. Further, we characterize semi-continuous functions from a topological space into the product space. The result we obtain runs parallel to the one we have for continuous functions in the product space. Other results involving semi-continuous functions in the product space will also be given.

Keywords: open-set, semi-open, semi-continuity, topology, product space

1 Introduction

N. Levine introduced the concepts such as semi-open set and semi-continuity

in topological spaces [3]. The class of all semi-open sets in a topological

SERGIO R. CANOY, JR., Professor, Department of Mathematics, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, Philippines, has a Ph.D. in Mathematics from the University of the Philippines, Diliman, Quezon City. JULIUS V. BENITEZ, Associate Professor, Department of Mathematics, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, Philippines, has an M.S. in Mathematics from MSU-IIT, Iligan City.

space includes all open sets. Although an arbitrary union of semi-open sets is semi-open, the class does not always form a topology on the underlying set.

On the other hand, the condition for semi-continuity is strictly weaker than the condition for continuity of a function. However, even for functions into the space R of real numbers with the standard topology, semi-continuity is not generally preserved under algebraic sum, and product of functions.

It is well known that a function f from an arbitrary space X into the Cartesian product Y of the family of spaces $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ with the Tychonoff topology is continuous if and only if each coordinate function $p_{\alpha} \circ f$ is continuous where p_{α} is the α th coordinate projection map. In this paper we give a necessary and sufficient condition for function f to be semi-continuous.

2 Definitions and Known Results

Definition 2.1 Let \mathcal{A} be an indexing set and $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of topological spaces. For each $\alpha \in \mathcal{A}$, let τ_{α} be the topology on Y_{α} . The **Tychonoff topology** on $\prod_{\alpha \in \mathcal{A}} Y_{\alpha}$ is the topology generated by a subbase consisting of all sets $\langle U_{\alpha} \rangle = p_{\alpha}^{-1}(U_{\alpha})$, where $p_{\alpha} : \prod_{\alpha \in \mathcal{A}} Y_{\alpha} \to Y_{\alpha}$ is defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}$, U_{α} ranges over all members of τ_{α} , and α ranges over all elements of \mathcal{A} .

We remark that for each open set U_{α} of Y_{α} ,

$$\langle U_{\alpha} \rangle = p_{\alpha}^{-1}(U_{\alpha}) = U_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta} .$$

Hence a basis for the Tychonoff topology consists of sets of the form $\langle B_{\alpha_1}, B_{\alpha_2}, ..., B_{\alpha_k} \rangle$, where B_{α_i} is open in Y_{α_i} for every $i \in K = \{1, 2, ..., k\}$.

The proofs of the following results can be found in [3].

Theorem 2.2 Let $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of topological spaces. The projection map $p_{\alpha} : \prod_{\alpha \in \mathcal{A}} Y_{\alpha} \to Y_{\alpha}$, defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}$ for each $\alpha \in \mathcal{A}$, is a continuous open surjection.

Theorem 2.3 Let $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of topological spaces and $A_{\alpha} \subset Y_{\alpha}$ for each $\alpha \in \mathcal{A}$. Then, in $\prod_{\alpha \in \mathcal{A}} Y_{\alpha}$ with the Tychonoff topology,

$$\prod_{\alpha\in\mathcal{A}}A_{\alpha}=\prod_{\alpha\in\mathcal{A}}\overline{A_{\alpha}},$$

where $\overline{A_{\alpha}}$ is the closure of A_{α} .

Theorem 2.4 Let X and Y be topological spaces. A function $f : X \to Y$ is continuous on X if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for every set $A \subseteq X$.

Definition 2.5 Let X be a topological space. A set $O \subseteq X$ is semi-open in X if there exists an open set G in X such that $G \subseteq O \subseteq \overline{G}$.

Definition 2.6 Let X and Y be topological spaces. A function $f: X \to Y$ is semi-continuous on X if the inverse image of every open set in Y is semi-open in X, i.e.,

G open in
$$Y = :f^{-1}(G)$$
 is semi-open in X.

In simple terms, we call an element of a basis of a topological space a *basic open set*. Similarly, an element of a subbasic will be referred to as a *subbasic open set*. In [1], the authors proved the following result.

Theorem 2.7 Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is semi-continuous on X if and only if the inverse image of every b_{anc} (subbasic) open set in Y is semi-open in X.

3 Results

Throughout this section, the Cartesian product $Y = \prod_{\alpha \in \mathcal{A}} Y_{\alpha}$ carries the Tychonoff topology. This topological space is referred to as the product space.

Lemma 3.1 If O is a non-empty semi-open set in the product space Y, then $p_{\alpha}(O) = Y_{\alpha}$ for all but at most finitely many α and $p_{\alpha}(O)$ is semi-open for every $\alpha \in A$.

Proof: There exists a non-empty open set G in Y such that $G \subseteq O \subseteq \overline{G}$. Thus,

$$p_{\alpha}(G) \subseteq p_{\alpha}(O) \subseteq p_{\alpha}(\overline{G})$$

for every $\alpha \in A$. By Theorem 2.4, we have

$$p_{\alpha}(G) \subseteq p_{\alpha}(O) \subseteq p_{\alpha}(G)$$

for every $\alpha \in \mathcal{A}$. Since G is a non-empty open set, G contains some basic open set $B = \langle B_{\alpha_1}, B_{\alpha_2}, ..., B_{\alpha_k} \rangle$. Since $p_{\alpha}(B) = Y_{\alpha}$ for all $\alpha \notin K = \{\alpha_1, \alpha_2, ..., \alpha_k\}$ and $p_{\alpha}(B) \subset p_{\alpha}(G)$, it follows that $p_{\alpha}(G) = Y_{\alpha}$ for all but at most finitely many α . Hence $p_{\alpha}(O) = Y_{\alpha}$ for all but at most finitely many α . Next, fix $\alpha \in \mathcal{A}$. Then either $p_{\alpha}(O) = Y_{\alpha}$ or $p_{\alpha}(O) \neq Y_{\alpha}$. If $p_{\alpha}(O) = Y_{\alpha}$, then $p_{\alpha}(O)$ is semi-open. So suppose that $p_{\alpha}(O) = O_{\alpha} \neq Y_{\alpha}$ and let $p_{\alpha}(G) = G_{\alpha}$. Then

$$G_{\alpha} \subseteq O_{\alpha} \subseteq \overline{G_{\alpha}}$$
.

Since the projection map p_{α} is open, $p_{\alpha}(G)$ is open in Y_{α} . Therefore $p_{\alpha}(O)$ is semi-open for all $\alpha \in \mathcal{A}$.

Remark 3.2 The converse of Lemma 3.1 is not true.

To see this, consider $Y_1 = \{1, 2, 3\}$ with the topology $\tau_1 = \{Y_1, \emptyset, \{2\}, \{1, 2\}, \{2, 3\}\}$ and $Y_2 = \{a, b, c, d\}$ with topology $\tau_2 = \{Y_2, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Let $O = \{(1, a), (2, d), (3, b)\}$. Then the family \mathcal{B} consisting of the sets $Y_1 \times Y_2, \emptyset, Y_1 \times \{a\}, Y_1 \times \{c\}, Y_1 \times \{a, c\}, \{2\} \times Y_2, \{1, 2\} \times Y_2, \{2, 3\} \times Y_2, \{(1, a), (2, a)\}, \{(1, c), (2, c)\}, \{(2, a)\}, \{(2, c)\}, \{(2, a), (2, c)\}, \{(2, a), (3, a)\}, \{(2, c), (3, c)\}, and \{(2, a), (2, c), (3, a), (3, c)\}$ is a basis for the Tychonoff topology on $Y_1 \times Y_2$. Since $p_1(O) = \{1, 2, 3\} = Y_1$ and Y_1 is open (hence, semi-open), $p_1(O)$ is semi-open. Now, $p_2(O) = \{a, b, d\}$. Clearly, $\{a\} \subseteq p_2(O)$. Since $\overline{\{a\}} = \{a, b, d\}$, we find that $\{a\}$ is an open set in Y_2 satisfying $\{a\} \subseteq p_2(O) = \overline{\{a\}}$. This implies that $p_2(O)$ is also semi-open. However, O is not semi-open because O does not contain a non-empty basic open set in $Y_1 \times Y_2$.

Theorem 3.3 Let $S = \{\alpha_1, \alpha_2, ..., \alpha_k\}$ be a finite subset of \mathcal{A} and $\emptyset \neq O_{\alpha_i} \subseteq Y_{\alpha_i}$ for each $\alpha_i \in S$. Then $\langle O_{\alpha_1}, O_{\alpha_2}, ..., O_{\alpha_k} \rangle$ is semi-open in Y if and only if each O_{α_i} is semi-open in Y_{α_i} .

Proof: Let $O = \langle O_{\alpha_1}, O_{\alpha_2}, ..., O_{\alpha_k} \rangle$ and suppose each O_{α_i} is a non-empty semi-open set in Y_{α_i} . Then there exists an open set G_{α_i} in Y_{α_i} such that $G_{\alpha_i} \subseteq O_{\alpha_i} \subseteq \overline{G_{\alpha_i}}$. Let $G = \langle G_{\alpha_1}, G_{\alpha_2}, ..., G_{\alpha_k} \rangle$. Then G is open in Y and $\overline{G} = \langle \overline{G_{\alpha_1}}, \overline{G_{\alpha_2}}, ..., \overline{G_{\alpha_k}} \rangle$ by Theorem 2.2. Thus, G is an open set in Y satisfying $G \subseteq O \subseteq \overline{G}$. This shows that O is semi-open in Y. Conversely, suppose O is a non-empty semi-open set in Y. By Lemma 3.1, $p_{\alpha_i}(O)$ is semi-open in Y_{α_i} for every $i \in \{1, 2, ..., k\}$. It follows that each O_{α_i} is semi-open in Y_{α_i} .

The proof of the theorem is complete.

We shall now characterize semi-continuous functions from an arbitrary topological space X into the product space Y.

Theorem 3.4 A function $f : X \to Y$ is semi-continuous on X if and only if each coordinate function $p_{\alpha} \circ f$ is semi-continuous on X.

Proof: Suppose f is semi-continuous on X. Let $\alpha \in \mathcal{A}$ and U_{α} be open in Y_{α} . Since p_{α} is continuous, $p_{\alpha}^{-1}(U_{\alpha})$ is open in Y. Hence,

$$f^{-1}(p_{\alpha}^{-1}(U_{\alpha})) = (p_{\alpha} \circ f)^{-1}(U_{\alpha})$$

is a semi-open set in X. Thus, $p_{\alpha} \circ f$ is semi-continuous for every $\alpha \in A$, by Definition 2.6.

Conversely, suppose each coordinate function $p_{\alpha} \circ f$ is semi-continuous. Let G_{α} be open in Y_{α} . Then $\langle G_{\alpha} \rangle$ is a subbasic open set in Y and

$$(p_{\alpha} \circ f)^{-1}(G_{\alpha}) = f^{-1}(p_{\alpha}^{-1}(G_{\alpha})) = f^{-1}(\langle G_{\alpha} \rangle)$$

is a semi-open set in X. Therefore, f is semi-continuous on X, by Theorem 2.7.

Corollary 3.5 Let X be a topological space, Y the product space and $f_{\alpha} : X \to Y_{\alpha}$ a function for each $\alpha \in \mathcal{A}$. Let $f : X \to Y$ be the function defined by $f(x) = \langle f_{\alpha}(x) \rangle$. Then f is semi-continuous on X if and only if f_{α} is semi-continuous for each $\alpha \in \mathcal{A}$.

D

Proof: For each $\alpha \in \mathcal{A}$ and each $x \in X$, we have

$$(p_{\alpha} \circ f)(x) = p_{\alpha}(f(x)) = p_{\alpha}(\langle f_{\alpha}(x) \rangle) = f_{\alpha}(x).$$

Thus $p_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in \mathcal{A}$. The result now follows from Theorem 3.4.

Theorem 3.6 Let X and Y be the product spaces of the families of spaces $\{X_{\alpha} : \alpha \in \mathcal{A}\}$ and $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$, respectively. For each $\alpha \in \mathcal{A}$, let $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a function. If each f_{α} is semi-continuous, then the function $f : X \to Y$, defined by $f(\langle x_{\alpha} \rangle) = \langle f_{\alpha}(x_{\alpha}) \rangle$, is semi-continuous on X.

Proof: Let $\langle V_{\alpha} \rangle$ be a subbasic open set in Y. Then

$$f^{-1}(\langle V_{\alpha} \rangle) = \langle f_{\alpha}^{-1}(V_{\alpha}) \rangle$$
.

Since f_{α} is semi-continuous, $f_{\alpha}^{-1}(V_{\alpha})$ is semi-open in X_{α} . Hence there exists an open set G_{α} in X_{α} such that

$$G_{\alpha} \subseteq f_{\alpha}^{-1}(V_{\alpha}) \subseteq \overline{G_{\alpha}}$$
.

Clearly $\langle G_{\alpha} \rangle$ is an open set (subbasic open) in X and

$$\langle G_{\alpha} \rangle \subseteq \langle f_{\alpha}^{-1}(V_{\alpha}) \rangle \subseteq \langle \overline{G_{\alpha}} \rangle$$
.

This implies that $\langle f_{\alpha}^{-1}(V_{\alpha}) \rangle$ is a semi-open set in Y. Thus, f is semicontinuous on X.

References

- Canoy, S.R., and Benitez, J., On semi-continuous functions, The Manile Journal of Science, 4 (2001) 22-25.
- [2] Dugundji, J., Topology, New Delhi Prentice Hall of India Private Ltd., 1975.
- [3] Levine, N., Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, 70(1963) 36-41.