Counting Restricted Functions on a Formation of Points Having Positive Integral Coordinates

Roberto B. Corcino Marcelo M. Alquiza Jose Marlon Caumeran

Abstract

In this paper we establish some formulas in counting restricted functions $f_{|S}$ under each of the following conditions:

- (i) $f(a) \leq g(a), \forall a \in S$ where g is any non-negative real-valued continuous function.
- (ii) $g_1(a) \leq f(a) \leq g_2(a), \forall a \in S$ where g_1 and g_2 are any two non-negative real-valued continuous functions.

Keywords: counting, restricted functions, positive integral, recurrence re-

lation, continuous

CORCINO is an Associate Professor of Mathematics in the Department of Mathematics, Mindanao State University, Marawi City. He holds a Ph.D. in Mathematics from the University of the Philippines. MARCELO M. ALQUIZA is a retired Professor of Mathematics in the Department of Mathematics, Mindanao State University, Marawi City. JOSE MARLON CAUMERAN is a faculty member of the Philippine Science High School, Lanao del Norte. He is currently pursuing a Ph.D. in Mathematics Education at Mindanao Polytechnic State College, Cagayan de Oro City.

1 Introduction

Consider a mapping f from N_m to N_n where $N_k = \{1, 2, \ldots, k\}$. According to Cantor's proposition on counting function [4], the number of possible function we can form from this mapping is equal to n^m . However, if we restrict our domain to $S_i \subseteq N_m$ with $|S_i| = i$, then there are n^i possible restricted functions we can form. When Ψ is the set of all $f_{|S_i|}$ overall $S_i \subseteq N_m$ with |Si| = i.

$$\Psi_{i,m} = \left| \bigcup_{S_i \subseteq N_m} \{f_{|S_i}\} \right| = \binom{m}{i} n^i .$$

Thus, with $\Psi_m = \bigcup_{i=0}^n \Psi_{i,m}$.

$$|\Psi_m| = \sum_{i=0}^m |\Psi_{i,m}| = \sum_{i=0}^m \binom{m}{i} n^i = (1+n)^m .$$

This means that the total number of restricted functions $f_{|S}$ overall $S \subseteq N_m$ is equal to $(1+n)^m$.

2 The Condition $f(a) \leq g(a)$

In this section, we will consider a function $f : N_m \to \mathbb{N}$, where \mathbb{N} is the set of natural numbers. We are going to count the number of restricted functions $f_{|S|}$ such that $f(a) \leq g(a), \forall a \in S \subseteq N_m$ where g is any nonnegative real-valued continuous function. Note that an element $a \in S$ can be mapped to any of the natural numbers $1, 2, \ldots, \lceil g(a) \rceil$, where $\lceil g(a) \rceil$ is the greatest integer that is less than or equal to a real number g(a). Hence, if $S_i = j_1, j_2, \ldots, j_i$, then

$$\left|\{f_{|S_i}\}\right| = \prod_{l=1}^{i} \left\lceil g(j_l) \right\rceil$$

with $|\{f_{|S_0}\}| = 1$. Thus, with $\hat{\Psi}_{i,m} = \bigcup_{S_i \subseteq N_{mi}} \{f_{|S_i}\},\$

$$|\hat{\Psi}_{i,m}| = \sum_{1 \le j_1 < j_2 < \dots < j_l \le m} \prod_{l=1}^{j} \lceil g(j_l) \rceil$$
.

This result is embodied in the following proposition.

Proposition 2.1 Let f be a function from N_m to \mathbb{N} such that $f(a) \leq g(a), \forall a \in N_m$ where g is any nonnegative real-valued continuous function. Then the number of restricted functions $f_{|S_i|}$ overall $S_i \subseteq N_m$ such that $|S_i| = i$ is given by

$$|\hat{\Psi}_{i,m}| = \sum_{1 \le j_1 < j_2 < \dots < j_l \le m} \prod_{l=1}^{i} [g(j_l)]$$
.

where $|\hat{\Psi}_{0,m}| = 1$, $|\hat{\Psi}_{i,m}| = 0$ when i > m.

For a quick computation of the first values of $|\hat{\Psi}_{i,m}|$, we have the following recurrence relation.

Proposition 2.2 The number $|\Psi_{i,m}|$ satisfies the following recurrence relation:

$$|\hat{\Psi}_{i,m+1}| = |\hat{\Psi}_{i,m}| + \lceil g(m+1) \rceil |\hat{\Psi}_{i-1,m}|$$

Proof: Note that $|\Psi_{i,m+1}|$ counts the number of restricted functions $f_{|S_i|}$ overall $S_i \subseteq N_m$. This number can also be counted by considering the following cases:

Ø

Case 1. $m + 1 \notin S_i$. Counting the desired restricted functions u_{uder} this case is equivalent to counting restricted functions $f_{|S_i|}$ overall $S_i \subseteq N_m$. Hence, there are $|\hat{\Psi}_{i,m}|$ such restricted functions.

Case 2. $m + 1 \in S_i$. Counting the desired restricted functions under this case is equivalent to the following sequence of events: *i*) counting restricted functions $f_{|S_i|}$ overall $S_{i-1} \subseteq N_m$, which is equal to

$$\sum_{1 \leq j_1 < j_2 < \cdots < j_l \leq m} \prod_{l=1}^{i-1} \left[g(j_l) \right] \; .$$

ii) insert m + 1 to every S_{i-1} and map m + 1 to any of the natural numbers $1, 2, \ldots, \lceil g(m+1) \rceil$. By Multiplication Principle (MP), the number of such restricted functions $f_{|S_i|}$ with $S_i = S_{i-1} \cup \{m+1\}$ is equal to

$$\left\lceil g(m+1)\right\rceil \sum_{1 \le j_1 < j_2 < \dots < j_l \le m} \prod_{l=1}^{i-1} \left\lceil g(j_l) \right\rceil = \left\lceil g(m+1) \right\rceil \left| \hat{\Psi}_{i-1,m} \right| \,.$$

Using Addition Principle (AP), we prove the proposition.

We are now ready to prove the following proposition.

Proposition 2.3 Let
$$\hat{\Psi}_m = \bigcup_{i=0}^m \hat{\Psi}_{i,m}$$
. Then
 $|\hat{\Psi}_m| \doteq \prod_{i=1}^m (1 + \lceil g(i) \rceil)$

with $|\Psi_0| = 1$.

Proof: We will prove this by induction on m. For m = 0,

$$|\hat{\Psi}_0| = |\hat{\Psi}_{0,0}| = \left| \bigcup_{S_0 \subseteq N_m} \{f_{|S_0}\} \right| = 1$$
.

For m = 1, with the help of Proposition 2.2, we have

$$\begin{aligned} |\Psi_1| &= |\Psi_{0,1}| + |\Psi_{1,1}| \\ &= 1 + 1 \lceil g(1) \rceil \\ &= \prod_{i=1}^{1} (1 + \lceil g(i) \rceil) . \end{aligned}$$

Suppose it is true for k > 1, i.e.,

$$|\hat{\Psi}_k| = \sum_{i=0}^k |\hat{\Psi}_{i,k}| = \prod_{i=1}^k (1 + \lceil g(i) \rceil) .$$

Then, by Proposition 2.2, we have

$$\begin{split} |\hat{\Psi}_{k+1}| &= \sum_{i=0}^{k+1} |\hat{\Psi}_{i,k+1}| \\ &= \sum_{i=0}^{k+1} |\hat{\Psi}_{i,k}| + \left\lceil g(k+1) \right\rceil \sum_{i=0}^{k+1} |\hat{\Psi}_{i-1,k}| \\ &= \sum_{i=0}^{k} |\hat{\Psi}_{i,k}| + \left\lceil g(k+1) \right\rceil \sum_{i=0}^{k} |\hat{\Psi}_{i,k}| \\ &= |\hat{\Psi}_{k}| (1 + \left\lceil g(k+1) \right\rceil) \;. \end{split}$$

Using the inductive hypothesis, we obtain

$$|\hat{\Psi}_{k+1}| = \prod_{i=1}^{k+1} (1 + \lceil g(i) \rceil) . \qquad \Box$$

Example 2.4 Given f a function on N_5 . If $g(a) = 2a^3 + 3$, how many possible restricted functions $f_{|S|}$ can be formed overall $S \subseteq N_5$ such that $f(a) \leq g(a)$ for every $a \in N_5$?

Solution: The values of [g(a)], a = 1, 2, ..., 5 are shown in the table below:

A	1	2	3	4	5
$\left[g(\alpha)\right]$	5	19	57	131	253

100	(A		£	1.1
4 U C	n	ы		. 1
- # C	~		ute.	-
-	~	· · ·	e	

Using Proposition 2.3, the number of restricted functions $f_{|S|}$ that can be formed is

$$|\hat{\Psi}_5| = (6)(20)(58)(132)(254)$$

= 233,354,880.

Remark 2.5 1. When g(a) = n, $n \in \mathbb{N}$, we have

a.
$$|\hat{\Psi}_{i,m}| = \sum_{1 \le j_1 < j_2 < \dots < j_i \le m} \binom{m}{i} n^i = |\hat{\Psi}_{i,m}|$$

b. $|\hat{\Psi}_m| = \prod_{i=1}^m (1+n) = (1+n)^m = |\Psi_m|$

2. When g(a) = a, $a \in \mathbb{N}_m$, we have

$$\begin{aligned} a. \quad |\hat{\Psi}_{i,m}| &= \sum_{1 \le j_1 < j_2 < \cdots < j_i \le m} \prod_{l=1}^i \lceil g(j_l) \rceil = \sum_{1 \le j_1 < j_2 < \cdots < j_i \le m} \prod_{l=1}^i j_l \\ b. \quad |\hat{\Psi}_m| &= \prod_{i=1}^m (1 + \lceil g(i) \rceil) = \prod_{i=1}^m (1 + i) = (1 + m)! \end{aligned}$$

3 The Condition $g_1(a) \le f(a) \le g_2(a)$

In this section, we are going to count the number of restricted functions $f_{|S} : S \to \mathbb{N}$ such that $g_1(a) \leq f(a) \leq g_2(a), a \in S \subseteq N_m$ where \mathfrak{K} and g_2 are any two nonnegative real-valued continuous functions. It can

easily be seen that an element a S can be mapped to any of the natural numbers $\lfloor g_1(a) \rfloor$, $\lfloor g_1(a) \rfloor + 1 \dots, \lceil g_2(a) \rceil$ where $\lfloor g_1(a) \rfloor$ is the least integer that is greater than or equal to real number g1(a). Hence, each $a \in S_i$ can be paired to $\lceil g_2(a) \rceil - \lfloor g_1(a) \rfloor + 1$ elements of \mathbb{N} . Thus, if $S_i = \{j_1, j_2, \dots, j_i\}$, then

$$|f_{|S_i|} = \prod_{l=1}^{i} \tilde{g}(j_l), \tilde{g}_i = \lceil g_2(j_l) \rceil - \lfloor g_1(j_l) \rfloor + 1 .$$

$$m = \lfloor \rfloor \{f_{|S_i}\},$$

Thus, with $\tilde{\Psi}_{i,m} = \bigcup_{S_i \subseteq N_m} \{f_{|S_i}\}$

$$\tilde{\Psi}_{i,m}| = \sum_{1 \leq j_1 < j_2 < \cdots < j_l \leq m} \prod_{l=1}^i \tilde{g}(j_l) \; .$$

This result is embodied in the following proposition:

Proposition 3.1 Let f be a function from N_m to \mathbb{N} such that $g_1(a) \leq f(a) \leq g_2(a)$, $a \in S \subseteq N_m$ where g_1 and g_2 are any two nonnegative realvalued continuous functions. Then the number of restricted functions $f|S_i$ overall $S_i \subseteq N_m$ such that $|S_i| = i$ is given by

$$|\tilde{\Psi}_{i,m}| = \sum_{1 \le j_1 < j_2 < \dots < j_l \le m} \prod_{l=1}^{i} \tilde{g}(j_l), \tilde{j}_l = \lceil g_2(a) \rceil - \lfloor g_1(a) \rfloor + 1$$

where $|\tilde{\Psi}_{0,m}| = 1$, $|\bar{\Psi}_{i,m}| = 0$ when i > m.

The next proposition is a recurrence relation of $|\tilde{\Psi}_{i,m}|$, which can be proven using the same argument as in the proof of Proposition 2.2.

Proposition 3.2 Let
$$\tilde{\Psi}_m = \bigcup_{i=0}^m \tilde{\Psi}_{i,m}$$
. Then
 $|\tilde{\Psi}_m| = \prod_{i=1}^m (1 + \tilde{g}(i))$

with $|\Psi_0| = 1$.

To illustrate these results, let us consider the following example.

Example 3.3 Let $g_1(x) = \frac{21}{25}x^2$, $g_2(x) = \frac{21}{5}x$, and $f: N_5 \to \mathbb{N}$ such that $g_1(a) \leq f(a) \leq g_2(a)$. How many possible restricted functions $f_{|S|}$ overall $S \subseteq N_5$ can we form? How many of these restricted functions whose domain is S_i , i = 0, 1, 2, 3, 4, 5?

Solution: First, let us construct a table of values for $\tilde{g}(a)$:

a	1	2	3	4	5
$g_2(a)$	4.2	8.4	12.6	16.8	21
$g_1(a)$	0.84	3.36	7.56	13.44	21
$[g_2(a)]$	4	8	12	16	21
$\lfloor g_1(a) \rfloor$	1	4	8	14	21
$\tilde{g}(a)$	4	5	5	3	1

-	1.1	6.4		1
1	0	hd	n.	-7
	. CR1	UJ	U	- 24

Now, using Proposition 3.2, the total number of restricted functions f_S overall $S \subseteq N_3$ is given by

$$|\tilde{\Psi}_5| = (1+4)(1+5)(1+5)(1+3)(1+1) = 5(6)(6)(4)(2) = 1440$$

On the other hand, using Proposition 3.1, the number of restricted functions $f_{|S|}$, i = 0, 1, 2, ..., 5, can be computed as follows:

$$\begin{split} i &= 0, \ |\tilde{\Psi}_{0,5}| &= 1 \\ i &= 1, \ |\tilde{\Psi}_{1,5}| &= 4 + 5 + 5 + 3 + 1 = 18 \\ i &= 2, \ |\tilde{\Psi}_{2,5}| &= 4(5) + 4(5) + 4(3) + 4(1) + 5(5) + 5(3) + 5(1) + 5(3) \\ &+ 5(1) + 3(1) = 124 \end{split}$$

$$\begin{split} i &= 3, \ |\Psi_{3,5}| &= 4(5)(5) + 4(5)(3) + 4(5)(1) + 4(5)(3) + 4(5)(1) + 4(3)(1) \\ &+ 5(5)(3) + 5(5)(1) + 5(3)(1) + 5(3)(1) = 402 \\ i &= 4, \ |\tilde{\Psi}_{4,5}| &= 4(5)(5)(3) + 4(5)(5)(1) + 4(5)(3)(1) + 4(5)(3)(1) + 5(5)(3) \\ &= 595 \\ i &= 5, \ |\tilde{\Psi}_{5,5}| &= 4(5)(5)(3)(1) = 300 \; . \end{split}$$

Note that

$$\sum_{i=0}^{5} |\tilde{i,5}| = 1 + 18 + 124 + 402 + 595 + 300 = 1440 = |\tilde{\Psi}_5| .$$

Remark 3.4 When $g_1(a) = 1$ and $g_2(a) = g(a)$, $\forall a \in \mathbb{N}$, $\tilde{g}(a) = \lceil g(a) \rceil$ and

- (a) $|\tilde{\Psi}_{i,m}| = |\Psi_{i,m}|$
- (b) $|\tilde{\Psi}_m| = |\Psi_m|$.

4 Recommendation

The functions that we are counting here are functions of one variable which contain points on the x-y plane with positive integral coordinates. For possible future research, it is also interesting to consider a function whose elements are points with positive integral coordinates on an n-dimensional space where $n \ge 3$. The authors believe that the results obtained in this paper can be extended to a more general case by counting such restricted functions. Moreover, it is also worth considering those restricted functions on an ndimensional space, which are one-to-one and onto. There are already results in [1] about counting one-to-one and onto functions of one variable. One may try to apply the method used in [1] to count the number of restricted one-to-one and onto functions on an n-dimensional space.

References

- Chen, C-C., and Koh, K-M., Principle and Techniques in Combinatorics, World Scientific Publishing Co. Pte. Ltd., 1992.
- [2] Smith, D., Eggen, M., and St.Andre, R., A Transition to Advanced Mathematics, Brooks/Cole Publishing Company, California, 1983.
- [3] Webber, G.C., Algebraic Structures for Teachers, Hougton Mifflin Co. United States of America, 1973.
- [4] Zehna, P.W. and Johnson, R.L., Elements of Set Theory, Allyn and Bacon, Inc., United States of America, 1972.