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Abstract 

In this paper we establish some formulas in counting restricted 
functions f1s under each of the following conditions: 

(i) f(a) < 9(a), \la E S where 9 is any. non-negative real-valued 
continuous function. 

(ii) 91 (a) < f(a) < 92(a), \la E S where 91 and 92 are any two 
non-negative real-valued continuous functions. 
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1 Introduction 

Consider a mapping f from Nm to Nn where Nk = {l, 2, ... , k }. According to 

Cantor's proposition on counting function (4], the number of possible function 

we can form from this mapping is equal to nm. However, if we restrict our 

domain to Si C Nm with I Sil = i, • then there are n i possible restricted 

functions we can form. When W is the set of all f1si overall Si C Nm with 

ISil = i, 

n 

Thus, with Wm= LJ wi,m, 

i=O 

This means that the total number of restricted functions f1s overall S 

Nm is equal to (1 + n)m. 

2 The Condition f(a) < g(a) 

In this section, we will consider a .function f : Nm N, where N is the 

• ted 

set of natural numbers. We are going to count the number of restnc 

functions !1s such that f(a) < g(a): Va E S C Nm where g is any non~ 

negative real-valued continuous function. Note that an element a ES can be 

d r ( )1 is the 

mappe to any of the natural numbers 1, 2, ... , f g( a) l, where g a 
·f 

greatest integer that is less than or equal to a real number g(a). Hence, 
1 
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Si = j 1, j2, ... , Ji, then 
i 

l{/1s,}I = II f g(jt)l 
l=l 

with l{/180 }1 = 1. Thus, with \J!i,m = LJ {/is,}, 
S,<;,Nm 

i 

L II r g(jz)l 
l$j1 <h<···<ii$m l=l 

This result is embodied in the following proposition. 

Proposition 2.1 Let f be a function from Nm to N such that f(a) < 
g(a), Va E Nm where g is any nonnegative real-valued continuous function. 

Then the number of restricted functions f1s, overall Si C Nm such that ISil = 
i is given by 

i 

L II r g(jz)l 
1$ii <h<···<iz$m l=l 

where I\J!o,ml = 1, I\J!i,ml = 0 when i > m. 

For a quick computation of the first values of I\J!i,ml, we have the following 

recurrence relation. 

Proposition 2.2 The number I\J!i,ml satisfies the following recurrence re-

lation: 

Proof: Note that l'11i,m+il counts the number of restricted functions f1s, 
overall Si C Nm. This number can also be counted by considering the fol-

lowing cases: 
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Case 1. m + 1 ¢. Si. Counting the desired restricted functions 
under 

this case is equivalent to counting restricted functions f1si overall Si c Nm. 

Hence, there are I \JI i,m I such restricted functions. 

Case 2. m + 1 E Si. Counting the desired restricted functions under this 

case is equivalent to the following sequence of events: i) counting restricted 

functions fisi overall Si-t C Nm, which is equal to 

i-1 

L II r g(JL)l . 
..J 

l$j1 <h<···<i1$m l=l 

ii) insert m + 1 to every Si-t and map m + 1 to any of the natural numbers 

1, 2, ... , f g(m + l)l. By Multiplication Principle (MP), the number of such 

restricted functions f1si with Si = Si-1 U { m + 1 }° is equal to 

i-1 

fg(m+ l)l L II fg(jz)l = fg(m+ l)l I\Jli-1,ml. 

l$j1 <h<···<i1$m l=l 

Using Addition Principle (AP), we prove the proposition. 

We are now ready to prove the following proposition. 

m 

Proposition 2.3 Let '11m = LJ \Jli,m · Then 

i=O 

m 

l'11ml _: II(1 + r g(i)l) 

i=l 

with l'11ol = 1. 

Proof: We will prove this by induction on m. Form= 0, 

l'11ol = l'11o,ol = LJ {!1s0} = 1 • 

Soc;.Nm 
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For m = 1, with the help of Proposition 2.2, we have 

Ii11 1io,1I + Ii1,1I 

1 + 1 rg(l)l 
1 

IJ(1 + rg(i)l). 
i=l 

Suppose it is true for k > l, i.e., 

k k 

IikI = L 1ii,k1 = IJ(1 + rg(i)l). 
i=O i=l 

Then, by Proposition 2.2, we have 

k+l 

\\J!k+1I = ·L I\J!i,k+ll 

i=O 

k+l k+J 

L 1ii,k1 + r g(k + 1)1 L 1ii-l,k1 
i=O i=O 

k k 

L 1ii,k1 + r g(k + 1)1 L.1ii,k1 
i=O 

1ik1(1 + r g(k + 1)1) . 

Using the inductive hypothesis, we obtain 

k+l 

i=O 

1ik+11 = IJ(1 + rg(i)l). 
i=l 

Example 2.4 Given f a function on N5. If g(a) = 2a3 + 3, how many 

possible restricted functions f1s can be farmed overall S C N5 such that 

f(a) < g(a) for every a E N5 ? 

Solution: The values of r g(a)l, a, = 1, 2, ... , 5 are shown in the table 

below: 
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A 1 2 3 4 5 

f g(a)l 5 19 57 131 253 

Table 1 

Using Proposition 2.3, the number of restricted functions !1s that can be 

formed is 

l\Jlsl - (6)(20)(58)(132)(254) 

- 233,354,880 . 

Remark 2.5 1. When g(a) = n, n EN, we have 

m 

b. I\Jlml = fl (1 + n) = (1 + n)m = l'1'ml 
i=l 

2. When g(a) = a, a E Nm, we have 

i 

L rr, g(jl)1 = 
1$ji <h<···<ji~m l=I l$j1 <h<···<Ji$m l=I 

L 
m m 

b. I\Jlm/= fl(l+fg(i)l)= fl(l+i)=(l+m)!. 

i=l i=l 

3 The Condition g1(a) < J(a) < g2(a) 

In this section, we are going to count the number of restricted functions 

!1s : S -+ N such that g1(a) < J(a) < g
2
(a), a E S C Nm where 91 

It call 

and 92 are any two nonnegative real-valued continuous functions. 
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easily be seen that an element a S can be mapped to any of the natural 
numbers Lg1 (a) J , lg1 (a) J + 1 ... , f g2 (a) l where Lg1 (a) J is the least integer 
that is greater than or equal to real number g 1 (a). Hence, each a E Si can 
be paired to f g2 (a) l - Lg1 (a) J + 1 elements of N. Thus, if Si = {j 1, j 2, ... , j i}, 
then 

i 

lf1s.l = IT g(ji), 9i = I g2(jt)l - lg1 (Jt)J + 1 . 
l=l 

Thus, with \lli,m = LJ {!1s,}, 
Si~Nm 

t 

L IT g(jt) . 

This result is embodied in the following proposition: 

Proposition 3.1 Let. f be a function from Nm to N such that 91(a) < 
f(a) < g

2 (a), a E S C Nm where 91 and 92 are any two nonnegative real-
valued continuous functions. Then the number of restricted functions f I Si 

overall Si C Nm such that ISil = i is given by 

i 

L IT g(ji), ft = f g2(a)l - L91 (a)J + 1 
l~j1 <i2<···<ii~m l=l 

where l'11o,ml = 1, l\lli,ml = 0 when i > m. 

The next proposition is a recurrence relation of I\J!i,ml, which can be 
proven using the same argument as in the proof of Proposition 2.2. 

m 

Proposition 3.2 Let '11m = LJ \J!i,m· Then 
i=O 

m 

I\J!ml = IT (1 + g(i)) 
i=l 

with I\J!ol = l. 
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To illustrate these results, let us consider the following example. 

Example 3.3 Let 91(x) = ;!x
2
, 92(x) = 

2
lx, and f: Ns-+ N such that 

91 (a) < J (a) < 92 (a). How many possible restricted functions !is overall 

S c Ni5 can we form? How many of these restricted functions whose dom . 
-

is Si, i = 0, 1, 2, 3, 4, 57 

Solution: First, let us construct a table of values for g(a): 

a I 11 2 I 3 I 4 Isl 
92(a) 4.2 8.4 12.6 16.8 21 

91(a) 0.84 3.36 7.56 13.44 21 

r 92(a)l 4 8 12 16 21 

l91 (a)J 1 4 8 14 21 

g(a) 4 5 5 3 1 

Table 2 

Now, using Proposition 3.2, the total number of restricted functions !1s 

overall SC N5 is given by 

Ii s I = ( 1 + 4) ( 1 + s) ( 1 + s) ( 1 + 3) ( 1 + 1) = s ( 6) ( 6) ( 4) ( 2) = 1440 . 

On the other hand, using Proposition 3.1, the number of restricted functions 

f1si i = 0, 1, 2, ... , 5, can be computed as follows: 

i = 0, I\J!o,sl - 1 

i = 1, 1i1,sl - 4 + 5 + s + 3 + 1 = 1s 

i = 2, 1'112,sl - 4(5) + 4(5) + 4(3) + 4(1) + 5(5) + 5(3) + 5(1) + 5(3) 

+5(1) + 3(1) = 124 
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i = 3, I\J!3,sl 

i = 5, I\J!s,sl 

Note that 

5 
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4(5)(5) + 4(5)\3) + 4(5)(1) + 4(5)(3) + 4(5)(1) + 4(3)(1) 

+5(5)(3) + 5(5)(1) + 5(3)(1) + 5(3)(1) = 402 

4(5)(5)(3) + 4(5)(5)(1) + 4(5)(3)(1) + 4(5)(3)(1) + 5(5)(3) 

595 

4(5)(5) (3)(1) = 300 . 

L li,-51 = 1 + 18 + 124 + 402 + 595 + 300 = 1440 = j\J!5 I . 
i=O 

Remark 3.4 When g1(a) = l and g2(a) = g(a), Va EN, g(a) = f g(a)l 

and 

(a) I\J!i,ml = lwi,ml 

(b) I\J!ml = IWml• 

4 Recommendation 

The functions that we are counting here are functions of one variable which 

contain points on the x-y plane with positive integral coordinates. For pos-

sible future research, it is also interesting to consider a function whose ele-

ments are points with positive integral coordinates on an n-dimensional space 

where n > 3. The authors believe that the results obtained in this paper can 

be extended to a more general case by counting such restricted functions. 

Moreover, it is also worth considering those restricted functions on an n-

dimensional space, which are one-to-one and onto. There are already results 

1n [1] about counting one-to-one and onto functions of one variable. One 
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may try to apply the method used in [1] to count the number of . 
restrictaj 

one-to-one and onto functions on an n-dimensional space. 
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