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Abstract

Graph folding is a unary operation introduced by Gervacio [6] in
1992 which he later modified in 1999.

This operation induces in a very natural way a partitioning of
the vertex set of a graph into pairwise linked and independent: sets,
In this paper we give results involving the folding of regular graphs,
Here, too, we show that the famous Petersen graph folds only into the
complete graphs K3, Ky, and K. In addition, among others, we will

show that max{t| K; € F(G)} < l%‘l , where G is a connected
r-regular graph of order n.

Furthermore, this paper enumerates some relationships of folding
graphs to several graph invariants such as chromatic number, span,
independence nmunber, domination number, maximum degree, and di-
mension.
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1 Introduction

We shall ouly considey connected simple graphs here. 1.6, fimte graphs

Wwithout multiple edges and loops. Folding a graph simply means identifying
EWo non-adjacent vertices of a graph and this can be repeated iteratively any
number of times until there does got exist such pair of non-adjacent vertices.

A\ master’s thesig (12| and a doctoral dissertation [9) were completed and
successfully defended in 1995 and 2002, respectively. Furthermore, in Angust
2001 Gervacio presented a paper on this topic at a Seminar-Lecture serics at
University of Santo Thomas, Mauila, sponsored hy the Mathematical Society
of the Philippiues, National Capital Region Chapter.

In 1992, Gervacio [6] studied folding of graphs using a different construc-
tion. In that study, a folding of a connected graph G is defined as the simple
graph obtained from G by identifying as one vertex two non-adjacent vertices
and then reducing multiple edges formed to single edges. In contrast, this
present study defines folding similar to the definition mentioned above with
the added condition that two nou-adjacent vertices to be identified must have
a common neighbor.

Some of the results obtained from Gervacio's work [6] included the rela-
tionship of folding graphs with concepts of a perimeter and span of graphs.

Formulas for the span and perimeter of a connected graph were also derived.

In her master’s thesis, Vega [12] made further studies of folding graphe
using the definition used in [6]. Results obtained include, among others, tbe
determination of the mazimum-folding and minimum-folding of a graph G
which are denoled by mz f(G) and mnf(G), respectively. Here mzf{G) ©

defined as the k-folding of a graph G, where % is the largest non-negat/v®
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integer such that the resulting graph is a complete graph of minimum order
while mnf{G) is defined as the k-folding of G, where & is the smallest non-

negative integer for which the resulting complete graph is of maximum order.

As a matter of comparison, it should be stressed here that the folding
used in this study may also be referred to as restricted folding while that
in [6] and [12] is & non-restricted or free folding. Notice that in a restricted
folding we identify two distinct vertices of a graph whose distance is 2 while
in free folding we identify two distinct vertices whose distance is greater thau
or equal to 2.

Buckley and Harary [1] stated that Moon and Mosher proved that almost
all graphs have diameter 2. Hence, under this construction, we may then be
able to fold almost all graphs.

Observe further that a restricted folding is a free folding but not con-
versely. For instance, it will be shown that the cycle Cy of order 6 restrictly
folds uniquely into the complete graph K3; while the same graph can be
freely folded into K3. In fact, it was shown in [12] that mnf(Cs) = K.
However, mz f(G) = K3 also. Thus, for an arbitrary graph G' it is not al-
ways true that we can obtain mr f(G) using the folding used in this present

study (restricted, as we referred it here).

Tt should be noted that in the cases of folding the wheel, fan, biwheel
and bifan, the same minimum foldings were obtained using these two con-
structions of folding. This is expected because of the structures of these
graphs.

Recently, Gervacio |7, 8] made separate investigations related to this study

using restricted folding. Some of the resnlts of these works have relevance
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on this study. One result obtained is a characterization theorem for folding

: . -sets of the
graphs. Other important results are the partitioning the vertex-50ls © .

path and cycle into pairwise linked and independent Sets- These resuits

enable us to determine the exact orders of the maximum complete graphs

into which the wheel and the fan can be folded.

2 The Idea of Graph Folding, Preliminary
Concepts and Results

Unless stated otherwise, graphs will be denoted by capital letters such as
G, H, ete. The set of vertices of G and the set of cdges of G will be denoted
by V(G) and E(G), respectively. Basic graph-theoretic concepts are assumed
to be understood by the reader; otherwise, the readers may refer to the books
by Chartrand 2], Foulds[3], and Harary [10]. New concepts will be-defined
formally.

Definition 2.1 Let G be a connected graph and let z and y be non-
adjacent vertices with at least one common ncighbor. We define the zy-folding
of G (or simply the folding of G when no confusion can result), denoted by
f(G;z,y) (or, [(G;y.x)), to be the graph obtained from G by identifying

the vertices z and y and reducing multiple edges to single edges.

Notation: Let 2y, T2, ..., &, be vertices of a graph G. The notation {z;, 22"

means that xq,2g, . ..., ace identified,

Example 2.2 The graph & in Figure 1 has two vertices x and y with

common neighbors v and v. By identifying » and y and reducing the regultios
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double edges into simple edges, we get the graph f(G, z, ). Note that v and

z cannot be identified since they do not have a common neighbor.

r L 4 7 Z
— o— &
v Y u {z, v}
G f(c' &€y y)

Figure 1: Folding of a Graph G into MG, z,y).

Observe, further, that if a connected graph is not complete, then it always
has two non-adjacent vertices that have s common neighbor. Thus, any
connected non-complete graph can undergo a sequence of folding until we
obtain a complete graph, Obviously, no loops can oceur in any series of

folding by definition.

Notation: We shall denote by F(G) the set of all non-isomorphic complete
graphs obtainable from a connected graph G by a sequence of folding. That
1s,
F(G) = {Ky| G can be folded into K},
If F(C) has only one element, say K, then we shall simply write F(G) =
K, instead of F(G) = {K,}. For instance, it is obvious that F(K,) =
K, VYn.

Let us fold further the graph G in Figure 1 until we get a complete graph.,
(Please refer to Figure 2)
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4 {15} 6 4 {1,.3}{2(1 1 {15}{246) {133} {246)

Figure 2: Folding a graph into a complete graph.

The graph was folded into the complete graph K. It was shown in 9
that a connected graph G folds uniquely into K if and only if G is bipartite.
In view of this result. we have F(G) = K; since the graph G in Figure 1is
bipartite.

Let us observe that each of the two vertices of Kz was obtained by iden-
tifying some vertices of the original graph. One of the vertices of K, was
obtained by identifying the vertices 1, 3 aud 5 while the other vertex was ob-
tained by the vertices 2, 4, and 6. Observe that the sets {1,3,5} and {2,4, 6}
are both independent. and pairwise linked sets which partitions V(G) . This
ohservation is true for all graphs according to [9].

Indeed there are graphs G for which F{G) contains more than one com-

plete graph as can be seen in the following example.

Example 2.3 We show that F(Ws) = {K;, K,}.
Solution: By definition, Wy = Cg + K1 In general, W, is commonly
called the wheel of order 1 + 1 while C,, is called the eycle of order n. The

graph of Wy is shown in Figure 3.

We now fold this graph in two ways:
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Case 1. If we choose  and y to be vertices whose distance in Cy is 3, and
then continue folding, we eventually get K&,

Case 2. If in the first folding we choose two alternate vertices « and y in

Cs and then continue folding, we eventually get K.

Figure 3: The Whee! Wj

Example 2.4 We invite the interested reader to verify that F{[y) =
{ K3, K4, K5}, where £y is the fan of order 9.

We end this section by stating the following results which will prove

relevant later on.

Theorem 2.5 [9] If K, € F{G), then V(G) can be partitioned into p

independent sets Sy, Sa. ..., 5y which are patrunse linked.

Theorem 2.6 2] Let G be a graph of ordern and v € V{G). Ifdegg(v) =
ry then degg(v) =n—r—1, where (G is the cotnpletnent of G. Therefore, &

is regular if and only if G is vegular,

3 Folding Regular Graphs

This section deals on the folding of some regular graphs.
A graph G'is called regulor if all Lhe vertices of G are of equal degree. If

Vi € G, deg(x) = r, we say that C is an r-regular graph.
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very popular graph — the

First, let us find all the distinet foldings of a
graph is shown in Figure

Petersen Graph which we shall denote by 6. This
3 together with a labelling of its vertices. Note that G* is 3-regular.

Figure 4: The Petersen graph G*.

Theorem 3.1 The Petersen graph G* folds only into K3, K4, and Ks,
i.e., F(G.) = {K3. I\’4, 1(5}.

Proof: Shown in Figure 3 is the Petersen graph with a labelling of its
vertices. By a result in [9] mentioned earlier, K5 ¢ F(G*), since G* is not
bipartite.

A 3-partition of V(G"*) that folds G* into Kj is the following:

$ = {1,8,9}, 5 = {3,5.7}. 5y = {2.4.6,10}.

(Please refer to Figure 5.)

A 4-partition of V(G*) that folds G+ into K is the following:
S1={1,8,4}, 85 = {3.5.9}, Ss = {2,10}, 5, = {6, T}
A 5-partition of V(G"*) that folds Cs into K is the following:

S = {14}, 5 = {8.9}, 5 = {3,10}, 5, = (2,6}, 5s = {5. 7}
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5 Sa
Figure 5: Partitioning V(G*) that folds G* into K.

Therefore we succeeded in folding the Petersen graph into Ky, Ky and K.

We now claim that G* cannot be folded into K and, hence into complete
graphs of order n > 6. To see this, observe that each time we identify two
non-adjacent vertices, the number of edges decreases. Note that G* has 15
edges and K; has (§) = 15 edges also. Hence, we cannot fold it into Kj.

We now conclude that F(G*) = {Kj, Ky, Ks}. 0

Theorem 3.2 Let G be a k-reqular graph of diameter 2, where k > 3. If
G folds into K,, r > k + 2, then G necessarily folds into K,_,. In particular,
any 3- reqular graph of diameter 2 that folds into K., where r > 5, necessarily
folds into K, _,.

Proof: Let 8y, 53,..., S, be the independent and pairwise linked sets in-
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duce i
ced by g folding ¢ the k-regyla, graph @
T e V(G). Withoyt, loss

of diameter 2 into K. [

of Benerality, let 2 € 5,. Then deg(z) =k < r — 2
Thus z i adjaceny,

to gt MOst r — 2 vertices. But there are r — 1 sety
S?) Sa| LR S'. arld r — 1 > r - 2 2 k. ch(}e the[e ex.ists some set S"
L vk that = ig ot

adjacent to any vertex in .S;. We can transfe
T to S, Maintaining the, indep

endence of $;. Thus, every vertex in S\ can be

£ 82,83,...,5,. This leaves us with r — 1 setg
-+S; that are Pairwise linked and
Therefore @ cay

transferreq £0 some set. amon
8'2' 83.' X

independent.
low be folded into K,_,, U

Theorem 3.3 et G be a connected r-regular graph of order n. Then

1++15+4rn
maz{t| K, ¢ F(Q)} < l \/-2 J

Proof: The theorem is clearly true when G = Ky. So assume G

is an
r-regular graph, where r #n—1. Then, Vz € V (@

) deg(z) = r,
Let p = maz{l| K, F{G)}. By Theorem 25, V(G) ¢
into p- independent and pairwise linked sets S, S,
generality, assume

an be partitioned

ooe Sy Without loss of

k=S| <|8<... < |85l
Since deg(z) = r,

ts
VZz € 5) and ) is linked to all the other p — 1 st
S2,83,...,8,, then,

rk>p—1.

Furthermore, since the S!s partition V(@) then,

n = pk.

A2



June 2005 AN INTRODUCTION TO GRAPH ["'OLDING

From the last two inequalities above, we obtain

-1
n > P(?;k“)
by eliminating k. Thus
o= pPop
pP-p-nr <0

p 2 1+ drrn+41
= 2

p & |_1 + /14 drn
o [ERATESR]

Therefore

maz{t| K, € F(G)} < [}ﬂj

5 C

Theorem 3.4 Let G be o connected r-reqular graph of order n and such
that G is also connected. Then

maz{t|K, € F(G)} < [1 s A 4;‘("' gl ﬁj.

Proaf: This follows from Theorems 3.3 and 2.6. 0

4 Other Concepts and Initial Results

Here we introduce some relevant concepts as well as results obtained in
[9] and other related works.

Other concepts which are not explicitly defined here may be found in [10]
and [2].
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Let G be a graph,

The 181'gBSt of the vertex degrees of G is (,a]led the maxﬁfﬂﬂfﬂ degree of

G and is denoted by A(G) or simply A. A colering of G is an aSSIENTEN

of colors to its vertices (exactly one color for each vertex) 8O that no two
adjacent vertices in G have the same color. A coloring of €& which ass1gns ¢

colors Lo its vertices is called a ¢ — coloring.

The chromatic number of G is the minimum number, denoted by x(G),

for which & has a x- coloring. Equivalently, x(G) is the minimum number

n for which @ is an n-partite graph. Graph G I8 c-colorable if x(G) is less
than or equal to ¢. In other words, if there exists 8 ¢ coloring of a graph
G. then G is c-colorable. A clique in G is a maximal complete subgraph of
;. The maximum order of a clique is called the cligue number of G, and 1s
denoted by w(G)-

A set S of vertices in G is independent if no two vertices of S are adjacen
in G. The maximum cardinality of an independent set of vertices in G
is called the independence number of G and is denoted by a(G). S i3
dominating set if every vertex not in § is adjacent to a vertex in §. The
domination number ¥(G) is the minimum cardinality of a dominating set 10
G.

G is called a unit graph in the Euclidean space R* if there is a one-to-0L
mapping ¢: V(G) — RY such that |¢(z) — ¢(y)| = 1 whenever (z.y} € E(G}
The mapping ¢ is called a unit representation of G in R?. The dtmem‘!o“d

G, denoted by dim(G), is the smallest integer d such that G 15 a unit g0
in f¢,
Let G be a unit graph in RY. The span of G in R, denoted DY SP""“{GI'
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is the real number s such that for every ¢ > 0, the following conditions arc

satisfied:

1. There exists a unit representation of G in R which is contained in
some open ball of diameter 5 + £

2. No unit representation of (7 in RS 15 contained in any open ball of

diameter s.

Let § and T be two disjoint independent sets of vertices of a graph. We

say that § and T' are linked if there is a vertex in S that is adjacent Lo a
vertex in 7',

Remark 4.1 [9] if Ky € F(G),ie., if G can be folded into K,, then G
s p-partite.

Lemma 4.2 (2| For every graph G, HG) < alG).

Lemma 4.3 (3] If G is a graph of order v and ehromatic nwmber ().
Then

X(G)a(G) = n.

Lemma 4.4 [2] Let G be a connected graph unth mezimum degree A —
{G). Then |

LwG2x(@) <144

2 x{G) < A if and only if G is neither a complete graph nor an odd eycle.
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Part (2) is called Brook’s Theorem.
Lemma 4.5 5] or any qraph G,

dim{G) < 2x{G).

Theorem 4.6 [11] For any graph G with chromatic number x(G),

—

[2[x(G) -1
spanzyigi(v) = V’ b(©) 1]

x(G)

5 Relation of Folding with Some Graph In-
variants

Let A, € £(G). By Lemma 4.3, a(G)x(G) > n. Hence
p = n < a{G)x(G).

Therefore
p < a(G)x(G).

This establishes the following:

Remark 5.1 Let G be a graph of order n with independence numb€
«(G) and chromatic number x(G). If K; ¢ F(G), then

P < alG)x(G).
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Note that equality holds when ¢ = Ky; for then x(G) = n, o(G) = 1.
and n =p.

Theorem 5.2 Let G be a graph with chromatic number x(G). Then

min{r| K, € F(G)} > x(G).

Proof: Let p = min{r| K, € F(G)}. Then K, € F(G). Thus Gisa
p-partite graph by Remark 4.1, Let S, 5., ..., Sp be a p-partition of V(G).
By Theorem 2.5, these sets are pairwise linked sets. Then (3 is p-colorable
since each set S5; may receive one color different [rom the others. Note that
in getting the chromatic number x{G), we actually partitioned V{G) into
independent sets 5, 5, ... + Sx(cy which are nob necessarily mutually linked.

It follows that p > x(G). by definition of x(G).

Therefore

wmin{r| K. € F(G)} = x(G). 0O

Corollary 5.3 Let G be a graph with chromatic number x(G). Then

2
min{r| &, € F(G)} = [2 = l-‘»“P“mx(G)(G)‘F]’

where 2 # [spanyx(G))>.
Proof: Let p = min{r| K, € F{G)}. Using Theorem 4.6, we have the

following

spanay e (G) < \/ Q[X%(};]ﬁ—l]
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—

X(G) spanyye (G < 2x(C) - 2

2= x(G){2- spang ey (G)*}

2
x(G) > — .
2 - |spana,iey(G )]2

By Theorem 5.2,

2
p=min{r| K, € F{G)} = - 2-
) 2 — [sparnigyc)(G)]

Hence,

v=min{r| K, € MNG)} = [ : .l

T 2
2 - [spangx[C)(G)]
This completes the proof. O

Corollary 5.4 Lel G be a graph with cligue number w(G). Then

min{r| K, € F(G)} > w(G).

Proof: Let p = min{r| K, € F(G)}. By Theorem 5.2, p > x(G). B
Lemma 4.4, x{G) = w(G). Thus, p > w(@).
Thercfore

min{r| K, € F(G)} > w(G). O

Corollary 5.4 implies that K.c) is & subgraph of K.

18
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Theorem 5.5 Let G be a graph of order n with domination number ¥{C)
and independence number a(G). Then

rmin{r| K. € F(G)} > ‘T(G ]

Proof . By Lemma 4.2,

Thus

¥(G)

o) =t
Clearly

F(G) 0

alG) ©
Therefore

NG)
0< 2(C) = 1.

But min{r| K. € F(G)} = 2; thus,

min{r| K, € F(G)} > ; 28

G}

—=|. D
a(G)

min{r, K. € F(G)} > ’—
Theorem 5.6 Lel G be a graphk of order n with independence number
alG). Then

mn{r| K, € F(G) > {nC]]
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41, Gis p-pariiie,

Proof: Let p = mi - ey By Remnark
- A i i . te 51.52.--..51:' T
Fhus, V(C) can be partitioned into p independent 5¢ '

we have the following disjoint union,
VIG) = SiUSU...USs

Therefore
V(G| =n = |Si] +[Sel + .-+ 'Sl

Since |S;| < a(G), Ve, then
n < alG) +alG)+..-—olGh

a sum of p terms.

Hence n < p oG, ie., p> a(%)_ Since p is & positive integer, we obtain

>[5
'Therefore

min{r| K, € F(G}} > I‘ﬁ]

(]

Theorem 5.7 Let G be a graph of order n with mazimum degree A0
Then

maz{r| K, € F(G)} < ll T 12+ N }

(2]

Proof: Let G be a graph of order n and with maximum degree 3 b
. . t:

= maz{r| K, € F(G)}. By Theorem 2.5, V() can be partitioned ™
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g independent sets Sy, Sy, ..., S, which are pairwise linked. Without loss of

generality, assume that

k=[S <18 < <8,

We claim that kA > g — 1. Observe that the number of edges with one end
vertex in S is equal to

Y deglz).

€S
Since 5; is linked to all the other sets S2, 54, .., 8, then

D deglz) > g -1
zES
Because Vz € 5, deg(x) € A, then
Z deg(z) < kA.
€8,
It follows that
KA > qg—1.

This proves our claim.

Then we have the following inequalities

n > gk (1)
kA > g-1 (2)
From these two inequalities, we get
g-1I
S af2—=
2 (=)
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by eliminating k. Thus
nA > ¢ —q
g —q—nA < 0
— 1+ +/1 —;(1)(—nA)
i 1+ 1+ 4nA
- 2
2 ll + VanA + 1
S 2 |
Therefore
14+
maz{r| K, € F(G)} < l X 12+ 4nAJ. m|
Theorem 5.8 Let G be a graph. Then
min{r| K, € F(G)} > [d'"‘(a)].
2
Proof: By Theorem 5.2 and Lemma 4.5, we have
min{r| K, € F(G)} = x(G)
and
dim(G
¥y 2L
Hence
min{r| K, € F(G)} = -‘-h—";—(c-:-)-
Therefore
min{r| K, € F(G)} > [d"';(G)]_ O
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