.

On Topological Properties Involving Semi-Open Sets

Ricky F. Rulete Sergio R. Canoy, Jr.

Abstract

In this paper, the concept of *s*-connectedness will be introduced. Some results concerning the relationship between connectedness and *s*-connectedness will be given. In particular, it is shown that connectedness is weaker than *s*-connectedness. Characterizations of *s*connectedness are also obtained.

Keywords: topology, semi-open, semi-continuity, s-connectedness

1 Introduction

The concepts of semi-open sets and semi-continuity in a topological space were introduced by Norman Levine in 1963 [5]. Apparently, the family of all semi-open sets in a topological space X contains all the open sets. Even though an arbitrary union of semi-open sets is semi-open, the class does not always form a topology on the underlying set. In particular, the intersection of two semi-open sets need not be semi-open.

RICKY F. RULETE, Instructor of Mathematics, Department of Mathematics, University of Southeastern Philippines, Davao City, has an M.S. in Mathematics from the MSU-Iligan Institute of Technology, Iligan City. SERGIO R. CANOY, JR. is a Professor of Mathematics in the College of Science and Mathematics, MSU-IIT, Iligan City.

VOL. XIX NO. 1

THE MINDANAO FORUM

2 Definitions and Known Results

Definition 2.1. A space Y is *connected* if it is not the union of two non-empty disjoint open sets. Otherwise, Y is disconnected. A subset B of Y is connected if it is connected as a subspace of Y.

The proofs of the following results can be found in [2].

Theorem 2.2. The only connected subsets of \mathbb{R} having more than one point are \mathbb{R} and the intervals (open, closed, or half-open).

Theorem 2.3. The following three properties are equivalent:

(1) Y is connected.

(2) The only subsets of Y both open and closed are \emptyset and Y.

(3) No continuous f : Y → 2 is surjective, where 2 is the space X = {0,1} with the discrete topology.

Definition 2.4. Let X be a topological space. A subset O of X is semiopen if $O \subseteq cl(int(O))$. Equivalently, O is semi-open if there exists an open set G in X such that

$$G \subseteq O \subseteq cl(G)$$
.

The family of semi-open sets in X is denoted by SO(X).

Definition 2.5. Let X and Y be topological spaces. A function $f: X \xrightarrow{\sim} Y$ is *semi-continuous* on X if $f^{-1}(O)$ is semi-open in X for every open set O in Y.

Definition 2.6. Let X and Y be topological spaces. A function $f: X \to Y$ is *semi-continuous at* p in X if for every semi-open subset V of Y with $f(p) \in V$, there exists a semi-open set U in X such that $p \in U$ and $f(U) \subseteq V$.

In [1], the authors proved the following:

Theorem 2.7. f is semi-continuous if and only if it is semi-continuous at every element p of X.

3 Results

F.

This section presents the results on semi-continuity and s-connectedness. See below some characterizations involving these concepts.

Lemma 3.1. Let X be an infinite set with the cofinite topology \mathscr{T}_X . Then $SO(X) = \mathscr{T}_X$.

Proof. Since open sets are semi-open sets, $\mathscr{T}_X \subseteq SO(X)$. So it remains to show that $SO(X) \subseteq \mathscr{T}_X$. To this end, let $G \in SO(X) \setminus \mathscr{T}_X$. Then there exists $A \in \mathscr{T}_X \setminus \{\emptyset\}$ such that $A \subseteq G \subseteq cl(A)$; hence, $G^c \subseteq A^c$. Since A^c is finite, it follows that G^c is finite. Therefore $G \in \mathscr{T}_X$. Accordingly, $SO(X) = \mathscr{T}_X$. \Box

Theorem 3.2. Let X be an infinite set with the cofinite topology and Y an arbitrary space. Then the following statements are equivalent:

(a) $f: X \to Y$ is semi-continuous;

(b) If O is open subset of Y, then $f^{-1}(O^c) = X$ or $f^{-1}(O^c)$ is finite.

(c) $f: X \to Y$ is continuous.

Proof. (a):(b) Let O be an open subset of Y. Then by semi-continuity of f, $f^{-1}(O) \in SO(X)$; hence, $f^{-1}(O) \in \mathscr{T}_X$ by Lemma 3.1. This implies that

$$(f^{-1}(O))^c = f^{-1}(O^c)$$

is X or $f^{-1}(O^c)$ is finite. Hence, (b) holds.

(b):(c) Let O be an open set in Y. Then $f^{-1}(O) = \emptyset$ or $(f^{-1}(O))^c$ is finite, by assumption. Therefore $f^{-1}(O)$ is open in X; hence, f is continuous.

(c):(a) This is immediate from Lemma 3.1.

Lemma 3.3. Let (X, \mathcal{T}) be a topological space and Y an open subset of X. Then

$$SO(Y) = \{G \in SO(X) : G \subseteq Y\} = T$$
.

Proof. Suppose $O \in SO(X)$ and $O \subseteq Y$. Then there exists an open set G in X such that $G \subseteq O \subseteq cl(G)$. Since $O \subseteq Y$, it follows that $G \subseteq Y$; hence, $G = G \cap Y \in \mathscr{T}_Y$. Therefore,

$$G = G \cap Y \subseteq O = O \cap Y \subseteq Y \cap cl(G)$$

i.e.,

$$G \subseteq O \subseteq Y \cap cl(G) = cl_Y(G)$$
.

This implies that $O \in SO(Y)$; hence

$$T = \{G \in SO(X) : G \subseteq Y\} \subseteq SO(Y) .$$

Next, let $O^* \in SO(Y)$. Then $O^* \subseteq Y$ and there exists $G^* \in \mathcal{T}_Y$ such that

$$G^* \subseteq O^* \subseteq cl_Y(G^*)$$
.

It follows that there exists $G \in \mathscr{T}$ such that

$$G \cap Y \subseteq O^* \subseteq Y \cap cl(G^*) \subseteq cl(G^*) = cl(G \cap Y) .$$

Let $H = G \cap Y$. Since $Y \in \mathcal{T}, H \in \mathcal{T}$ and

$$H \subseteq O^* \subseteq cl(H)$$
.

This shows that $O^* \in SO(X)$. Thus $SO(X) \subseteq T$.

Theorem 3.4. Let $f : X \to Y$ be a function and $X = X_1 \cup X_2$, where X_1 and X_2 are open subsets of X. If $f|_{X_1}$ and $f|_{X_2}$ are semi-continuous, then f is semi-continuous.

Proof. Let $p \in X$ and let V be a semi-open subset of Y with $f(p) \in V$. Then $p \in X_1$ or $p \in X_2$. Without loss of generality, assume that $p \in X_1$. By semi-continuity of $f|_{X_1}$, there exists $U \in SO(X_1)$ with $p \in U$ such that $f(U) \subseteq V$. Consequently, by Lemma 3.3, there exists $U \in SO(X)$ with $p \in U$ such that $f(U) \subseteq V$. Therefore f is semi-continuous at p. Since p was arbitrarily chosen, it follows from Theorem 2.7 that f is semi-continuous on X.

Theorem 3.5. Let $X = X_1 \cup X_2$ and $f : X \to Y$. If $f|_{X_1}$ and $f|_{X_2}$ are semi-continuous at $p \in X_1 \cap X_2$, then f is semi-continuous at p.

Proof. Let U be a semi-open set in Y containing f(p). Since $f|_{X_1}$ and $f|_{X_2}$ are semi-continuous at $p \in X_1 \cap X_2$, there exist semi-open sets O_1 and O_2 in X_1 and X_2 , respectively, such that $p \in O_1 \cap O_2$ and

$$f(O_1) \subseteq U$$
, $f(O_2) \subseteq U$.

It follows that there exists semi-open set $O = O_1 \cup O_2$ in X such that $p \in O$ and

$$f(O) = f(O_1 \cup O_2) = f(O_1) \cup f(O_2) \subseteq U$$
.

This shows that f is semi-continuous at p.

Theorem 3.6. If X is s-connected topological space, then X is connected.

Proof. Suppose that X is an s-connected topological space. Then X is not the union of two non-empty disjoint semi-open sets. Since $\mathscr{T} \subseteq SO(X)$, X is not the union of two non-empty disjoint open sets. Thus X is connected. \Box

Remark 3.7. The converse of Theorem 3.6 is not true.

Consider the real line \mathbb{R} with the usual topology. \mathbb{R} is a connected space since \mathbb{R} and \emptyset are the only subsets of \mathbb{R} which are both open and closed. Now, the interval $[a, +\infty)$ is semi-open in \mathbb{R} since there exists an open set $(a, +\infty)$ in \mathbb{R} such that

$$(a, +\infty) \subseteq [a, +\infty) \subseteq cl((a, +\infty)) = [a, +\infty)$$
.

If follows that

$$\mathbb{R} = (-\infty, a) \cup [a, +\infty)$$

is the union of two non-empty disjoint semi-open sets, i.e., \mathbb{R} is not sconnected. Thus, \mathbb{R} is a connected topological space that is not s-connected

Corollary 3.8. The only s-connected subsets of \mathbb{R} having more than o^{at} point are \mathbb{R} and the intervals (open, closed, or half-open).

Proof. This follows from Theorem 3.6 and Theorem 2.2.

D

Theorem 3.9. The cofinite topology on X is s-connected.

Proof. Suppose X is not s-connected, say $X = A \cup B$, where A and B are disjoint non-empty semi-open sets. Then A and B are open sets by Lemma 3.1; hence, X is disconnected. This contradicts the fact that cofinite topology on X is connected.

Lemma 3.10. Let X be any space and χ_A the characteristic function of $A \subseteq X$. Then χ_A is semi-continuous if and only if A is both semi-open and semi-closed.

Proof. Suppose A is both semi-open and semi-closed. Let O be an open set in $\{0, 1\}$. Then

$$\chi_{A}^{-1}(O) = \begin{cases} \emptyset & \text{if } O = \emptyset \\ X & \text{if } O = \{0, 1\} \\ A & \text{if } O = \{1\} \\ A^{c} & \text{if } O = \{0\}. \end{cases}$$

Hence, $\chi_A^{-1}(O)$ is semi-open. Therefore, χ_A is semi-continuous.

Next, suppose that χ_A is semi-continuous. Let $O_1 = \{1\}$ and $O_2 = \{0\}$. Then O_1 and O_2 are open in $\{0, 1\}$. Hence

$$\chi_A^{-1}(O_1) = A$$
 and $\chi_A^{-1}(O_2) = A^c$

are semi-open in X. Thus, A is both semi-open and semi-closed.

Theorem 3.11. The following three properties are equivalent.

Y is s-connected.

(ii) The only subsets of Y both semi-open and semi-closed are \varnothing and Y.

(iii) No semi-continuous $f : Y \rightarrow 2$ is surjective, where 2 is the space $X = \{0, 1\}$ with the discrete topology.

Proof. (i):(ii) If G is both semi-open and semi-closed, where G is a nonempty proper subset of Y, then $G \cup G^c$ is a decomposition of Y; hence Y is not s-connected.

(ii):(iii) If $f: Y \to 2$ were a semi-continuous surjection, then

$$f^{-1}(\{0\}) \neq \emptyset, Y$$

(not Y for otherwise, $\exists y \in Y$ with $y \mapsto 1$ and $y \mapsto 0$ which is a contradiction). Since $\{0\}$ is open and closed in 2, $f^{-1}(\{0\})$ is both semi-open and semi-closed in Y, a contradiction to (*ii*).

(*iii*):(*i*) If $Y = A \cup B$, where A and B are disjoint non-empty semi-open sets, then A and B are also semi-closed. Consider the characteristic function of $A \subseteq Y$

$$\chi_A: A \to (\{0,1\}, \mathscr{D})$$
.

By Lemma 3.10, χ_A is semi-continuous. This is a contradiction to (iii).

Theorem 3.12. The semi-continuous image of an s-connected set is connected. That is, if X is s-connected and $f : X \to Y$ is semi-continuous, then f(X) is connected.

Proof. Suppose X is s-connected and $f: X \to Y$ is semi-continuous. If f(X) were not connected, there would be, by Theorem 2.3, a continuous surjection $g: f(X) \to 2$. It follows that $g \circ f: X \to 2$ is semi-continuous on X. Let $z \in \{0, 1\}$. Then $\exists y \in f(X)$ such that g(y) = z. Also, $\exists x \in X$ such that f(x) = y. Thus

$$g(f(x)) = (g \circ f)(x) = z .$$

This shows that $g \circ f$ is surjective, a contradiction to the fact that X is s-connected.

Theorem 3.13. Each semi-continuous real-valued function on an s-connected space X takes all values between any two that it assumes.

Proof. Let $f : X \to \mathbb{R}$ be a semi-continuous function. Then f(X) is a connected subset of \mathbb{R} by Theorem 3.12. By Theorem 2.2, f(X) is an interval. Thus if f(x) = a and f(x') = b, where a < b, then $[a, b] \subseteq f(X)$. This implies that if $c \in [a, b]$, then $\exists z \in X$ such that f(z) = c.

Theorem 3.14. A discrete space having more than one point is never sconnected and that a space having the indiscrete topology is always s-connected.

Proof. Suppose |X| > 1 and let $x \in X$. If $\mathscr{T} = \mathscr{D}$, then $\{x\}$ and $X \setminus \{x\}$ are disjoint non-empty open sets in \mathscr{D} such that

$$X = \{x\} \cup (X \setminus \{x\})$$

Since every open set is semi-open, X is a union of disjoint non-empty semiopen sets. Thus X is not s-connected.

If $(X, \mathscr{T}), X \neq \emptyset$ and $\mathscr{T} = \mathscr{I}$, then \emptyset and X are the only subsets of X that are both open and closed. This implies that \emptyset and X are the only subsets of X that are both semi-open and semi-closed. Thus, by Theorem 3.11, X is s-connected.

Theorem 3.15. Let \mathscr{T} and \mathscr{T}_1 be topologies on X. If (X, \mathscr{T}) is sconnected and $\mathscr{T}_1 \subseteq \mathscr{T}$, then (X, \mathscr{T}_1) is s-connected. *Proof.* Let (X, \mathscr{T}) be s-connected. By Theorem 3.11, the only subsets of χ that are both semi-open and semi-closed are \varnothing and X. Since $\mathscr{T}_1 \subseteq \mathscr{T}$, the only subsets of X with respect to \mathscr{T}_1 that are both semi-open and semi-closed are \varnothing and X. By Theorem 3.11, (X, \mathscr{T}_1) is s-connected.

References

- Canoy, S.R., and Benitez, J.V., On Semi-Continuous Functions, The Manila Journal of Science, 4 (2001) 22-25.
- [2] Dugundji, J., Topology, New Delhi Prentice Hall of India Private Limited, 1975.
- [3] Levine, N., Semi-open Sets and Semi-Continuity in Topological Spaces. American Mathematical Monthly, 70 (1963) 36-41.