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Abstract

This study compares the performance of MM and Least Trimmed
Squares (LTS) Robust Regression methods with the Ordinary and
Modified Least Squares. The data of Hawkins-Bradu-Kass (1984) were
used for the investigation. This is a much referenced data of 75 obser-
vations with one response variable and three independent variables.
These data are known to be quite troublesome in terms of masking
and swamping. Masking refers to bad data points being camouflaged
because they are clustered; while swamping refers to good data points
which appear to be outliers. In the study, it was shown empirically
that LTS performs better than the other mentioned methods in terms
of finite efficiency. goodness - of - fit and breakdown point,
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1 Introduction

The least squares method of estimation has maintained its popularity unti|
today. It was realized that outliers in the data, which do not appear to
come from the normal distribution but may have arisen from & distribution
with long (heavy) tails or from gross errors, have unusually large influence
on the least squares estimates. Consequently, robust methods of estimation
have been developed to reduce the influence of outliers in the data, on the
estimates. y
Robust regression is an alternative procedure to ordinary least squares
which can be used in the presence of outliers and the distribution of the error
terms is non-normal. There are quite a number of these methods, however,
this paper will only attempt to focus on the MM and Least Trimmed Squares
Robust Regression Methods and compare the respective efficiencies in terms
of the residual errors, goodness-of-fit employing the multiple coefficient of
determination and the breakdown point. The Least Median Squares(LMS)
is not included in the study since it was found in the literature that this
method perform poorly with respect to Ordinary Least Squares (OLS).
This article differs from the work of Schumacker R.E., et al (2002) wherei®
they did comparison on OLS versus LTS and MM robust regression usios

moderately large set of data which is 500. The criteria for comparison 85
differ from this paper.

. ol
Moreover, this study specifically deals with robustness study on the effe

I ' . qns
on the estimates of the coefficients of linear regression if data 1 Hawk

Bradu-Kass (1984) is used. These data can be easily shown to violate the =

. . -4 .w‘p-
sumption of normality and even linearity because of the masking and sV
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ing of the observations. It is quite difficult to look for some realistic data
which are masked and swamped.

Obviously, this paper is different from a related unpublished dissertation
by Anderson, C. of University of North Texas which compares five robust
regression methods with OLS in the criteria for comparison since efficiency,

biasedness and test of null hypothesis were used in this dissertation.

2 Objectives of the Paper

1. To present the concept of robust regression estimator and the proce-

dures of the MM and LTS Robust Regression Methods,

2. 'To compare the efficiency of the two methods with the Ordinary Least

Squares (OLS) in‘terms of finité officiency or fesidual errof, goodness-
of-fit and breakdown point.

3 Properties of Robust Regression Estimator

Ryan(1997) stressed that a robust regression estimator should possess the

following Properties:

1. To perform ahmost, as well as the Ordinary Least Squares(OLS) when
the latter jg the appropriate choice. This means when the errors are

formally distributed with data being free of mistakes and influential
data points,

2. T
? Perform much better than OLS when the conditions in (1) are not
Satisfed.
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Criteria for Assessing Regression Models

Efticiency refors to the variance of the sampling distribution for the e
mator. High efficiency estimators have small variance in Lhe sanxplhlg
distribution for the estimator. The efficiency of the selected robys
technique is defined as the ratio of the mean-squared error of this tec.
nigue divided by the OLS nean square error. There are two types
of elficiency such as finite and asymptotic efficiency. Finte somple
eificiency refers to the variance of the sampling distribution for {ie
estimator as it is applied in small sarple settings while Asymploti;
efficiency refers to the way an estimator performs as the sample size

gets larger. In this paper, the former is to be ntilized in comparing La

techniques.

. The Multiple Coefticient of Detersnination is usaally emplayed to mea-

sure the goodness-of-fit of the model. The closer it is to 1 or 100%; then

tie betler 1s the fit of the modeal.

- High breakdown poiut. This refers to the smallest fraction of 2

anomalous data which render the estimator nseless. The literature
recommending a breakdown point geeater than 10%. High beakde®
point is the lurgest percentage of data points that can be arbitrat?
changed aud not imduly influence the estimator. For example the 4
dian has 50% breakdown point while the mean has a breakdown P
of 1/n x 100%.
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5 The Trimmed Mean

One problem with the median, however, is that its value is determined hy
only 1 or 2 values in the data set-information is lost. The trimmed mean rep-
resents a compromise between the mean and the median (Huber, 1981). The
trimmed mnean is computed by putting the observations in order, Next, tritm
the numbers by removing the d largest and 4 smallest ohservations, and then
compute the average of the remaining numbers, d can be between 0 and n/2.
Trimming enough data gives the sample median. Rnles of thumb are that
20%-25% (d = .2 1) brituming works well in a wide range of settings(Wilcox,
1997). Another approach to selecting the trimming amount is to caleulato
the mean for 0,.10,.20 and then use the Lrimmning valie that corresponds to
the smallest standard error {Leger and Romano, 1890). While Baguio{1999)
proposed an ad hoc procedure to trim the data adaptively using the length
of the tails in the distribution. The breakdown point for the trimmed mean

is the trimming percentage.

6 AM-Estimators

Huber [{ 1973),(1981)] introduced a class of estimators known as M-cstimators,
with objective function of minimizing the sum of the symmetric funection of
the residuals r represented by 5 p(r?) with a unique minimum at zero. The
fomputation of the regression weights are done iteratively until a convergence
eriterion iy med, There were several proposed function of the residuals dis-

cusied in Lhe literature. The breakdown point, of M-estimator is 1/n x 100%,
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7 Least Trimmed Squares (LTS)

o m of the ordere
The estimator of LTS is obtained by minimizns the su d

squared residuals ranging from 1 Lo &, o smallest Lo largest, and the valy,
of h is determined by h = [n/2] + [(p + 1)/2].

“integer portion of*. In terms of the {rimming P
can also be computed as k = [n{l — ) +1] 8 proposed by Rousseeuw ayd
Leroy (1987, p.134). The LTS is appealing since the objective function is n
based on the fit ar any particular point but on the residualis. Tf the exaet

number of bad data points are trimmed excluding the good data points theg

The symbol [-] means tp,

roportion @, the value of

this result to optimal estimator OLS applied to the good dala points.

8 MM Estimation and Regression

MM estimation is a special type of M-estimator developed by Yohai (1987)
where the function of the residuals is a bounded loss function scaled aud fine
tuned. MM- estimator involves three estimations. The first stage imvolves
calculation of an estimator (S-estimation] with high breakdown point. Then
A robust M-estimation is done on the second stage nsing the S-estimate for
the initial values. The third stage is computing for the final M-estimates of
the regression parameters. MM estimates are computed using the facility o

S-Plus with several statistics for inference and diagnostics.

Robust: regression models are useful for fitting lincar relationships #1¢
the random variation in the data is not Gaussian (normal) or when the da
contain blglllﬁ(.ant Ollt]lers. ln Bllg‘h situations. staudard linear r?gés’

nav ] 1 N “lnﬁ
pray return inaccurate estimales, The robust MM\ regression method 1€t

70



5 COMPARATIVE PERFORMANCE OF MM AND LEAST...

a model that is almost identical in strncture Lo a standard linear regression

odel. This allows the production of familiar plots and summaries with a
robust model.

In Robust MM Regression, robust initial regression coeflicients are used
a3 starting values. The robust regression coeflicients are found by minimizing
a seale parameter, S, while x may be vne of several bounded loss functions
thal serves the purpose of minimizing the empirical influence of troublesome

residuals. y is an integral of x(u) in the formula

ZX(%‘ —zib)egS = (n - p)3
=1

where y(u) = u® — 3u' + 3u® u £ 1, ¢ = luning constant = 1.548 and
d = 0.50.

9 Empirical Results

[n order to compare the efficiency of the MM and LTS Robust Regression
methods, the data of Hawkins-Bradu-Kass (1984) is ntilized. This is a much
referenced data consisting of 75 observations which is kuown to be quite
tronblesome in terms of masking and swamping. Masking refers to bad data
points being camouflaged because they are clustered while swamping refers
% good data points which appear to be ontliers.

The facilities of Statistical Package for Social Seience (SPSS) version 10
“d S-PLUS 2000 for the construction of figures 1 Lo 6 and for the computa-
Hons of the different estimates of the Robust Regression Models, respectively.
Thes %0 robust methods were also compared to OLS and modified OLS

Wi At .8 v ' 1t
1l acg iuappropriate methods in order Lo find ont the disadvantage i
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using these methods:
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Figure 1: Scatter plot of Y1 versus X1
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Figure 2: Scatter plot of Y1 versus X2
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Figure 3: Scatter plot of Y1 versus X3
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Figure 4; Normal PP plot of Y1 vs. X1
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Figure 5: Normal PP plot of ¥'1 vs. X2
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Figure 6: Normal PP plal, of Y1 vs. X3
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Figures 1 to G give the graphical display of the Hawkins-Baradu-Kass

data. It is evident that the there is the clumping and masking of data. The
normal PP plots in figures 3 to 6 indicate the data deviate from normality
due to the presence of outliers, The OLS method is inappropriate for this
kind of data. Table | gives the comparative models and the various estimates

inherent to the regression models.

Method | Inter- | X1 | X2 [ X3 | Resi- | Break- | Effi- | Coeff. of
cepts dual | down | ciency | Determi-
Error | Point nation
MM 018 | .O8 | M | 052 | 780 | 1.33% | 35.10% 2%
LTS -1.10 | 196 | .2 A6 | 6831 [ 13.33% | 304% 8R.297%
OLS 039 | 24 | —33| 38 2,25 | 1.33% 60.20%
Modifed ' ¥ ~7
OLS
(1st 10
outliners | —0.18 | .081 | .04 | —.05 56 13.33% | 24.9% 4.39%
discarded)

Table 1: Estimates of Regression Models using the MM,LTS, OLS and Mod-
ified OLS Methods

The basis for comparing the performance of the mentioned Robust Regression
are small residual error. coefficient of multiple determinations close to 1.
efficiency close to 100% with a breakdown point of greater than 10%.

It can be obgerved from the table that the Regression model using LTS
gives smaller residual error of .6831 and relatively higher coefficient of deter-
mination which is 88.29% with a breakdown point of 13.33% and efficiency of
30.4% compared to the MM method. However, comparing the four methods,
the LTS performs better in terms of residual error, breakdown point, effi-
ciency and goodness-of-fit. It is apparent from the result that MM Regression

method yields high efficiency but poor breakdown point and gooduess-of-fit.
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e OLS method has 4
On the other hand, the model obtained UsiE the

¢ value of the coefficient, of

relatively higher residual error of 2.25 although tlt ey
ANT metnod nowcye
determination R? — 60.20% is quite higher than the NN r,

both have the same breakdown point of 1.33%

It can also be observed from the table that if the ten outliers which can be

determined from the scatter plot are discarded, the resulting residual ervor iy
small but the fit is not quite good since the coelficient ol va1'1a.t.1f)11 explained
by the model is only 4.3% although the breakdown point is 13.33% whichis

greater than 10%.

10 Conclusion

For data which are masked and swamped thereby violating the assumptions
of normality, the LTS Robust method performs better than the OLS aud MM
Robust Regression methods. The basis of comparison is on the magnitudes of
the residual error, the goodness of fit measured by the coeflicient of multiple

determination and the breakdown point greater than 10%.

11 Recommendation

s ’ 1 <43 )]tﬂ[s
There are still other Robust methods to be assessed like the S-estift

a1l
% > i ¢ e 2 mend‘
mentioned in the literature. Hence, for a future study, it is recom®

fit

; i e : pas-0v
that the efliciency of these methods in terms of its efficiency, goodn

and breakdown point be evaluated,
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