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Abstract 

This study compares the performance of MM and Least Trimmed 
Squares (LTS) Robust Regression methods with the Ordinary and 
Modified Least Squares. The data of Hawkins-Bradu-Kass (1984) were 
used for the investigation. This is a much referenced data of 75 obser-
vations with one response variable and three independent variables. 
These data are known to be quite troublesome in terms of masking 
and swamping. Masking refers to bad data points being camouflaged 
because they are clustered; while swamping refers to good data points 
which appear to be outliers. In the study, it was shown empirically 
that LTS performs better than the other mentioned methods in terms 
of finite efficiency, goodness - of - fit and breakdown point. 

Keywords: Robust regression, M-estimates, Least Trimmed Squares, Effi-

ciency, Breakdown Point 

CAROLI NA B. BAGUIO is a Professor of Mathematics in the Department of 
Mathematics, College of Science and Mathematics, MSU-IIT, Iligan City, Philippines. 
She holds a Ph.D. in Applied Mathematics from the Mindanao Polytechnic State College, 
Cagayan de Oro City. 

65 



THE MINDANAO FORUM 
XIX No. 1 OL-

1 Introduction 

The least squares method of estimation has maintained its popularity until 

today. It was realized that outliers in the data, which do not appear to 

come from the normal distribution but may have arisen from a diS t ribution 

with long (heavy) tails or from gross errors, have unusually large influence 

on the least squares estimates. Consequently, robust methods of estimation 

have been developed to reduce the influence of outliers in the data, on the 

estimates. • 

Robust regression is an alternative procedure to ordinary least squares 

which can be used in the presence of outliers and the distribution of the error 

terms is non-normal. There are quite a number of these methods, however, 

this paper will only attempt to focus on the MM and Least Trimmed Square.s 

I Robust Regression Methods and compare the respective efficiencies in terms 

: of the residual errors, goodness-of-fit employing the multiple coefficient of 

determination and the breakdown point. The Least Median Squares(LMS) 

is not included in the study since it was found in the literature that this 

method perform poorly with respect to Ordinary Least Squares (OLS). 

-

This article differs from the work of Schumacker R.E., et al (2002) wherein 

they did comparison on 01S versus LTS and MM robust regression using 

moderately large set of data which is 500. The criteria for comparison also 

differ from this paper. 

Moreover, this study specifically deals with robustness study on the effect 

th • . H kins· 
on e est1mates of the coefficients of linear regression if data 1Il aw 

Bradu-Kass (1984) is used. These data can be easily shown to violate the as· 
t' f 1· d swanW 8timp ion ° norma ity and even linearity because of the masking an 
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ing of the observations. It is quite difficult to look for some realistic data 

which are masked and swamped. 

Obviously, this paper is different from a related unpublished dissertation 
by Anderson, C. of University of North Texas whic~ compares five robust 
regression methods with OLS in the criteria for comparison since efficiency, 
biasedness and test of null hypothesis were used in this dissertation. 

2 Objectives of the Paper 

1. To present the concept of robust regression estimator and the proce-
dures of the MM and LTS Robust Regression Methods. 

2. To compare the efficiency of the-two methods with the Ordinary Least 
Square&. (OLS) in~teras of finittteffic1ency or ~ual erroi, goodness-
of-fit and breakdown point. . 

3 Properties of Robust Regression Estimator 

Ryan(1997) stressed that a robust regression estimator should possess the 
following properties: 

1. To perform almost as well as the Ordinary Least Squares(OLS) when 
the latter is the appropriate choice. This means when the errors are 
normally distributed with data being free of mistakes and influential 
data points. 

2
• To perform much better than OLS when the conditions in (1) are not 

Hatisfied. 
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3• Not be overly d'ffi 1 _ d 1 cu t to compute or understan • 

Criteria for Assessing Regression Models 

1. Efficiency refers to the variance of the sampling distribution for the esti. 

mator. High efficiency estimators have small variance in the sampling 

distribution for the estimator. The efficiency of the selected robust 

technique is defined as the ratio of the mean-squared error of this tech-

nique divided by the OLS mean square error. There are two types 

of efficiency such as finite and asymptotic efficiency. Finite sample 

efficiency refers to the variance of the sampling distribution for the 

estimator as it is applied in small sample settings while Asymptotic 

efficiency refers to the way an estimator performs as the sample size 

gets larger. In this paper, the former is to be utilized in comparing two 

techniques. 

2. The Multiple Coefficient of Determination is usually employed to mea-

sure the goodness-of-fit of the model. The closer it is to 1 or 100% then 

the better is the fit of the model. 

3. High breakdown point. This refers to the smallest fraction of the 

anomalous data which render the estimator useless. The literature is 

recommending a breakdown point greater than 10%. High breakdown 

point is the largest percentage of data points that can be arbitrarilY 

changed and not unduly influence the e::;timator. For example the rne-
• t 

dian has 50% breakdown point while the mean has a breakdown poin 

of 1/n x 100%. 
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5 The Trimmed Mean 

One problem with the median, however, is that its value is determined by 

only 1 or 2 values in the data set-information is lost. The trimmed mean rep-

resents a compromise between the mean and the median (Huber, 1981). The 

trimmed mean is computed by putting the observations in order. Next, trim 

the numbers by removing the d largest and d smallest observations, and then 

compute the average of the remaining numbers. d can be between O and n/2. 

Trimming enough data gives the sample median. Rules of thumb are that 

20%-25% (d = .2 ·n) trimming works well in a wide range of settings(Wilcox, 

1997). Another approach to selecting the trimming amount is to calculate 

the mean for 0, .10, .20 and then use the trimming value that corresponds to 

the smallest standard error (Leger and Romano, 1990). While Baguio(1999) 

proposed an ad hoc procedure to trim the data adaptively using the length 

of the tails in the distribution. The breakdown point for the trimmed mean 

is the trimming percentage. 

6 M-Estimators 

Huber [(1973),(1981)] introduced a class of estimators known as M-estimators, 

with objective function of minimizing the sum of the symmetric function of 

the residuals r represented by I: p(r2) with a unique minimum at zero. The 

computation of the regression weights are done iteratively until a convergence 

criterion is met. There were several proposed function of the residuals dis-

cussed in the literature. The breakdown point of J\-1-estimator is 1/n x 100%. 
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7 Least Trimmed Squares (L'fS) 

. . the sum of the ordered 
The estimator of LTS is obtained by minimizmg d th 

llest to largest, an e value 
squared residuals ranging from 1 to h, from sma 

1 
( l 

/ 2] The symbo • means the 
of h is determined by h = [n/2] + [(p + l) • 

. . roportion a, the value of h 
"integer portion or' . In terms of the tnmmmg P 

1] as proposed by Rousseeuw and 
can also be computed as h = [n(l - a)+ 

. · the objective function is not 
Leroy (1987, p.134).The LTS is appealing smce 

. · b t n the residuals. If the exact 
based on the fit at any particular pomt u 0 

• · d 1 ding the good data points then number of bad data pomts are tnmme exc u 

this result to optimal estimator OLS applied to the good data points. 

8 MM Estimation and Regression 

MM estimation is a special type of M-estimator developed by Yohai (1987) 

where the function of the residuals is a bounded loss function scaled and fine 

tuned. MM- estimator involves three estimations. The first stage involves 

calculation of an estimator (S-estimation) with high breakdown point. Then 

a robust M-estimation is done on the second stage using the S-estimate for 

the initial values. The third stage is computing for the final M-estimates of 

the regression parameters. MM estimates are computed using the facility of 

S-Plus with several statistics for inference and diagnostics. 

Robust regression models are useful for fitting linear relationships whell 

the random variation in the data is not Gaussian (normal) or when the dats 

t • • 'fi t ti· essi00 
con a1n s1gn1 can ou 1ers. In such situations, standard linear regr 

• t . d returnS 
may return 1naccura e estimates. The robm;t MM regression metho 
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a model that is almost identical in structure to a standard linear regression 

del This allows the production of familiar plots and summaries with a 
mo • 

robust model. 

In Robust MM Regression, robust initial regression coefficients are used 

as starting values. The robust regression coefficients are found by minimizing 

a scale parameter, S, while X may be one of several bounded loss functions 

that serves the purpose of minimizing the empirical influence of troublesome 

residuals. x is an integral of x( u) in the formula 

n 

L x(Yi - xib)/coS = (n - p)/3 
i=l 

where x(u) = u6 
- 3u4 + 3u2, u < l, c = tuning constant = 1.548 and 

{3 = 0.50. 

9 Empirical Results 

In order to compare the efficiency of the MM and LTS Robust Regression 

methods, the data of Hawkins-Bradu-Kass (1984) is utilized. This is a much 

referenced data consisting of 75 observations which is known to be quite 

troublesome in terms of masking and swamping. Masking refers to bad data 

points being camouflaged because they are clustered while swamping refers 

to good data points which appear to be outliers. 

The facilities of Statistical Package for Social Science (SPSS) version 10 

ari<l S-PLUS 2000 for the construction of figures 1 to 6 and for the computa-

tions of the different estimates of the Robust Regression Models, respectively. 

These two robust methods were also compared to OLS and modified OLS 

Which a. , • • d • 
le ma.µpropriate rnetho<ls in order to fin<l ont the d1sa vantage lll 
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u~ing these methods: 
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Figure 1: Scatter plot of Y 1 versus X 1 
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Figure 2: Scatter plot of Yl versus X2 
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Figure 3: Scatter plot of Yl versus X3 
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Figure 4: Normal PP plot of Yl vs. Xl 
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Figure 5: Normal PP plot of Yl vs. X2 
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Figure 6: Normal PP plot of Yl vs. X3 
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Figures 1 to 6 give the graphical display of the Hawkins-Baradu-Kass 

data. It is evident that the there is the clumping and masking of data. The 

normal PP plots in figures 3 to 6 indicate the data deviate from normality 

due to the presence of outliers. The OLS method is inappropriate for this 

kind of data. Table 1 gives the comparative models and the various estimates 

inherent to the regression models. 

Method Inter- Xl X2 X3 Resi- Break- Effi- Coeff. of 
cepts dual down ciency Determi-

Error Point nation 
MM -0.18 .08 .04 -.052 .7894 1.33% 35.10% 2% 
LTS -1.10 .196 .21 .16 .6831 13.33% 30.4% 88.29% 
OLS -0.39 .24 -.33 .38 2.25 1.33% 60.20% 

Modified 

OLS 
(1st 10 

outliners -0.18 .081 .04 -.05 .56 13.33% 24.9% 4.3% 
disca,;ded) 

Table 1: Estimates of Regression Models using the MM,LTS, OLS and Mod-
ified O LS Methods 

The basis for comparing the performance of the mentioned Robust Regression 

are small residual error: coefficient of multiple determinations close to 1, 

efficiency close to 100% with a breakdown point of greater than 10%. 

It can be observed from the table that the Regression model using LTS 

gives sn1aller residual error of .6831 and relatively higher coefficient of deter-

mination which is 88.29% with a breakdown point of 13.33% and efficiency of 

30.4% compared to the MM method. However, comparing the four methods, 

the LTS performs better in terms of residual error, breakdown point, effi-

ciency and goodness-of-fit. It is apparent from the result that MM Regression 

rnethod yields high efficiency but poor l>reak<lowu point aud goodnesH-of-fit. 
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0 l 
. the OLS method has a 

n t 1e other hand, the model obtained usmg 

1 · • l lue of the coefficient of 
re atively lugher residual error of 2.25 although t 1e va 

d · • th MM method however 
eternunat1on R2 = 60.20% is quite higher than e ' 

both have the same breakdown point of 1.33% 

It can also be observed from the table that if the ten out liers which can be 

determined from the scatter plot are discarded, the resulting residual error is 

small but the fit is not quite good since the coefficient of variation explained 

by the model is only 4.3% although the breakdown point is 13.33% which is 

greater than 10%. 

10 Conclusion 

For data which are masked and swamped thereby violating the assumptions 

of normality, the LTS Robust method performs better than the OLS and MM 

Robust Regression methods. The basis of comparison is on the magnitudes of 

the residual error, the goodness of fit measured by the coefficient of multiple 

determination and the breakdown point greater than 10%. 

11 Recommendation 

There are still other Robust methods to be assessed like the S-estirnators 

t • d • h 1· ended 
men 10ne m t e 1terature. Hence, for a future study, it is recornrn 

that the efficiency of these methods in terms of its efficiency, goodness-of-fit 

and breakdown point be evaluated. 
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