On the Geodetic Cover and Geodetic **Basis of the Corona of Graphs**

Gilbert B. Cagaanan Sergio R. Canoy, Jr.

Abstract

Any path of length $dist_G(u, v)$ is a *u-v geodesic* in G , where u and *^v*are vertices of a connected graph *G.* The set *I[u,* v] denotes the closed interval consisting of *u*, *v* and all vertices lying on some *u-v* geodesic. If $A \subseteq V(G)$, then $I[A]$ is the union of all sets $I[u, v]$ for all $u, v \in A$. If $I[A] = V(G)$, then *A* is a *geodetic cover*. A geodetic cover of minimum cardinality is called a geodetic basis.

The *corona* of graphs *G* and His the graph obtained by taking a copy of G of order *n* and *n* copies of H, and then joining the *ith* vertex of *G* to every vertex in the *ith* copy of *H.* In this paper, we give the order of the geodesic basis of the corona of two connected graphs.

Keywords: graph, corona, geodesic, geodetic cover, geodetic basis

LA GILBERT B. CAGAANAN holds a Ph.D. in Mathematics from MSU-Iligan Institute of Technology, Iligan City. He is a Professor of Mathematics in the Related Subjects ~epartment, School of Engineering Technology. **SERGIO R. CANOY, JR.** is a Pro fessor of Mathematics in the College of Science and Mathematics, MSU-IIT, Iligan City. the research was partly funded by the Department of Science and Technology-Philippine
Number 2008 Philippine ncil for Advanced Science and Technology Research and Development.

1 Preliminaries

et G be a connected simple graph and $u, v \in V(G)$. The distance $u_G(u, v)$
in G S_{tot} between u and v in G is the length of a shortest u - v path $P(u, v)$ in G . Such u -v path of length $d_G(u, v)$ is called a u -v *geodesic*. The couple $(V(G), d_G)$, where $V(G)$ is the vertex set of G, is a metric space. The symbol $I_G[u, v]$ is used to denote the set consisting of u, v and all vertices lying on some u -v geodesic in G . A subset C of $V(G)$ is *convex* if for every two vertices $u, v \in C$, $I_G[u, v] \subseteq C$. A *geodetic cover* of G is a subset A of $V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in A; that is, $I_G[A] = V(G)$, where $I_G[A] = \bigcup_{u,v \in A} I[u, v]$. A geodetic number $g(G)$ of G is the minimum order of its geodetic covers, and any cover of order $g(G)$ is called a *geodetic basis*. It can easily be verified that $A \subseteq I_G[A]$ and hat $I_G[A] = A$ if and only if A is convex. When no confusion arises, ∇ simply refer $I_G[A]$ as $I[A]$.

The concept of geodetic basis and geodetic number of a graph was investigated in $[1]$, $[2]$, $[3]$, $[4]$, $[5]$, $[6]$, $[7]$, $[8]$ and $[11]$. For other graph theoretic terms, which are assumed here, readers are advised to see (10].

The following result can be found in [2) but no proof is given.

Lemma 1.1 Let G be a connected graph. Then $g(G) = |V(G)|$ if a *only if G is a complete graph.*

Proof: Suppose *G* is a complete graph. If $S \subseteq V(G)$, then *S* induces δ complete subgraph of *G*. It follows that *S* is convex in *G* and hence $I[S]$ \leq S. This implies that $I[S] = V(G)$ if and only if $S = V(G)$. Therefore, $g(G) = |V(G)|$.

Conversely, suppose that $g(G) = |V(G)|$. Assume further that *G* is not complete. Then there exist $a, b \in V(G)$ such that $d(a, b) > 1$. Let c be a vertex in some *a-b* geodesic that is distinct from *a* and *b*. Set $S = V(G) \setminus \{c\}$. Clearly, *S* is not convex in G ; that is, $I[S] \neq S$. Also, because $c \in I[a, b]$, it follows that $c \in I[S]$. Thus, $I[S] = V(G)$; that is, S is a geodetic cover in G. Therefore, $g(G) \leq |S| = |V(G)| - 1$. This contradicts our assumption. Therefore, *G* is a complete graph. σ

2 Corona of Graphs

Definition 2.1 [2] The *corona* of two graphs *G* and *H,* denoted by *GoH,* is the graph obtained by taking a copy of G of order n and n copies of H, and then joining the *ith* vertex of *G* to every vertex in the *ith* copy of *H.*

Remark 2.2 If $H \cong K_1$, then the above definition is the same as that of [9].

We denote by $u + H_u$ a subgraph of $G \circ H$ obtained by joining the vertex *u* of *G* and all the vertices of a copy H_u of *H*. Thus, $u + H_u = \langle \{u\} \rangle + H_u$ is an induced subgraph of $G \circ H$.

Remark 2.3 Let *G* be a connected graph. Then the following holds in *GoH:*

- $U_{u \in V(G)}V(H_u) \cup V(G) = V(G \circ H);$
- ^{2.} $V(u+H_u) \cap V(v+H_v) = \emptyset$ and $E(u + H_u) \cap E(v + H_v) = \emptyset$ for all distinct vertices *u*, *v* in *G*;

3. If *G* is trivial, then $G \circ H \cong H + K_1$; and

4. If G is non-trivial, then every vertex of G is a cut vertex in $G \circ H$.

Theorem 2.4 [10] *Let G be a (non-trivial) connected graph.* Then i_{jk} *^acut vertex in G if and only if there exists a partition of V(G)\{v} into* subsets U and W such that for all $u \in U$ and $w \in W$, v is on every $u_{\mathcal{X}}$ *path.*

Theorem 2.5 *Let G be a non-trivial connected graph. If* $U, W \subseteq V(G)$ \} α *are partitions of* $V(G) \setminus \{v\}$ such that v is on every u -w path for all $u \in U$ $\{a, b, d\}$ *w* $\in W$, then $W \cup \{v\}$ and $U \cup \{v\}$ are convex sets in $V(G)$.

Proof: Since v is on every u-w path for all $u \in U$ and $w \in W$, *v* is in a $u-w$ geodesic for all $u \in U$ and $w \in W$.

Suppose $C = W \cup \{v\}$ is not convex. Then there exist $x, y \in C$ and $z \notin C$ such that *z* is in some *x-y* geodesic, say

$$
P(x,y) = [x_1, x_2, \ldots, x_r, z, y_1, y_2, \ldots, y_s] +
$$

where $x_1 = x, y_s = y$ and $r \ge 1, s \ge 1$.

Case 1. Suppose one of the vertices x and *y* is v, say, $x = v$. Since $z \in V$ $y \in W$ and $x \neq z$, the distinct subpaths $[x_1, x_2, \ldots, x_r, z]$ and $[z, y_1, y_2, \ldots]$ of $P(x, y)$ contain the vertex *v*. This is not possible because $P(x, y)$ is a ps E h·

Case 2. Suppose none of the vertices *x* and *y* is *v*. Then $x, y \in$ \mathbb{C} This implies that both paths $[x_1, x_2, \ldots, x_r, z]$ and $[z, y_1, y_2, \ldots, y_r]$ the vertex *v.* Again, this is impossible.

--

Therefore, $W \cup \{v\}$ is a convex set in $V(G)$. Similarly, $U \cup \{v\}$ is a convex set in *V(G).* O

Since $V(H_u)$ and $V(G \circ H)\backslash V(u + H_u)$ are partitions of $V(G \circ H)\backslash \{u\}$ and $\{u\}$ is a cut vertex of $V(G \circ H)$ for all $u \in V(G)$, we have the following consequence of Theorem 2.5.

Corollary 2.6 Let G be a non-trivial connected graph. Then $V(u + H_u)$ *and* $V(G \circ H) \setminus V(H_u)$ *are convex sets in* $V(G \circ H)$ *for every u* $\in V(G)$ *.*

Lemma 2. 7 *Let G be a non-trivial connected graph. If A and B are non-empty subsets of* $V(G)$ with $A \subseteq B$, then $I[A] \subseteq I[B]$.

Proof: Let $x \in I[A]$. Then there exist $u, v \in A$ such that $x \in I[u, v]$. Since $A \subseteq B$, there exist $u, v \in B$ such that $x \in I[u, v]$. Thus, $x \in I[B]$. Therefore, $I[A] \subseteq I[B]$. □

Theorem 2.8 Let G be a non-trivial connected graph. If $U, W \subseteq V(G) \setminus \{v\}$ are partitions of $V(G) \setminus \{v\}$ such that v is on every u-w path for all $u \in U$ $a_n d_n w \in W$ and if A is a geodetic cover in G, then $A \cap U \neq \emptyset$ and $A \cap W \neq \emptyset$.

Proof: Suppose *A* is a geodetic cover in *G* and suppose $A \cap U = \emptyset$. Then $A \subseteq V(G) \setminus U$. Thus, $I[A] \subseteq I[V(G) \setminus U]$ by Lemma 2.7. Since *A* is a geodetic cover in *G* and $V(G)\backslash U = W \cup \{v\}$ is convex by Theorem 2.5, we have

$$
I[A] = V(G) \subseteq I[V(G)\backslash U] = V(G)\backslash U.
$$

This is not possible because $U \neq \emptyset$. Therefore, $A \cap U \neq \emptyset$. Similarly, $A \cap W \neq \emptyset$. O

Corollary 2.9 *Let G be a nontrivial connected graph and S a geodetic cover of* $G \circ H$ *. Then* $S \cap V(H_u) \neq \emptyset$ *for all* $u \in V(G)$ *.*

Theorem 2.10 *Let G be a non-trivial connected graph and let A be ^a geodetic basis of G. If v is a cut vertex in* G *, then* $v \notin A$ *.*

Proof: Suppose A is a geodetic basis of *G.* Further, suppose *v* is a cut vertex in G and $v \in A$. By Theorem 2.4, there exists a partition of $V(G)\backslash \{v\}$ into subsets U and W such that v is on every $u-w$ path for all $u \in U$ and $w \in W$. This implies that *v* lies on a *u-w* geodesic in G for all $u \in U$ and $w \in W$. Let $B = A \setminus \{v\}$. Consider the following cases:

Case 1. Suppose $x = v$. Since A is a geodetic cover of G, $A \cap U \neq \emptyset$ and $A \cap W \neq \emptyset$ by Theorem 2.8. Pick $y \in A \cap U$ and $z \in A \cap W$. Then $x \in I[y, z] \setminus \{y, z\}$, where $y, z \in B$. Hence $x \in I[B]$.

Case 2. Suppose $x \in A \setminus \{v\} = B$. Since $B \subseteq I[B]$, it follows that $x \in I[B]$.

Case 3. Suppose $x \in V(G) \backslash A$. Then there exist $y, z \in A$ such that $x \in I[y, z]$, say $P(y, z) = [y, y_1, y_2, \ldots, y_r, z]$ is a y-z geodesic, where $x = y_k$ $(1 \leq k \leq r)$. If $y, z \in B$, then $x \in I[B]$. So, suppose without loss of generality, that $y = v$. Then either $x, z \in U$ or $x, z \in W$. Assume that $x, z \in U$. Pick $y^* \in A \cap W$ and let $P(y^*, x) = [y^*, x_1, x_2, \ldots, x_t, x]$ be a $y^* \in A \cap W$ geodesic. Then $y = v$ is a vertex in $P(y^*, x)$. It follows that

$$
P(y^*, z) = [y^*, x_1, x_2, \ldots, x_p = y = v, y_1, y_2, \ldots, y_r, z]
$$

is a y^* -z geodesic. Thus, $x \in I[y^*, z]$, where $y^*, z \in B$. Hence $x \in I[B]$.

Therefore, B is a geodetic cover of G , contrary to our assumption that A is a geodetic basis.

Accordingly, $v \notin A$.

Corollary 2.11 *Let G be a non-trivial connected graph and S a geudetic basis of* $G \circ H$ *. If* $v \in V(G)$, then $v \notin S$.

Lemma 2.12 *Let G be a non-trivial connected graph of order n. If* A_k *is a geodetic cover of* $u_k + H_{u_k}$, then $\bigcup_{k=1}^n A_k$ is a geodetic cover of $G \circ H$.

Proof: Let A_k be a geodetic cover of $u_k + H_{u_k}$, $S = \bigcup_{k=1}^n A_k$ and $x \in$ $V(G \circ H)$. Then $x \in V(u_k + H_{u_k}) = I_{u_k + H_{u_k}}[A_k]$ for some $u_k \in V(G)$. This implies that

$$
x \in I_{u_k + H_{u_k}}[A_k] \subseteq I_{G \circ H}[A_k] \subseteq I_{G \circ H}[\cup_{k=1}^n A_k] = I_{G \circ H}[S]
$$

by Lemma 2.7. Hence $V(G \circ H) \subseteq I_{G \circ H}[S]$. Therefore, S is a geodetic cover of $G \circ H$. o

Lemma 2.13 *Let G be a non-trivial connected graph of order n. If S is ^ageodetic basis of Go H, then*

$$
S = \bigcup_{i=1}^{n} [S \cap V(H_{u_i})] = \bigcup_{i=1}^{n} [S \cap V(u_i + H_{u_i})].
$$

Proof: First, note that $S \cap V(H_{u_i}) \neq \emptyset$ for all i by Corollary 2.9. Now, let *S* be a geodetic basis of *G* o *H.* Clearly,

$$
\bigcup_{i=1}^n [S \cap V(u_i + H_{u_i})] = S \bigcap \left[\bigcup_{i=1}^n V(u_i + H_{u_i}) \right] \subseteq S \; .
$$

Now, if $x \in S$, then $x \notin V(G)$ by Corollary 2.11. It follows from Definition 2.1 that $x \in \bigcup_{i=1}^n V(H_{u_i}) \subseteq \bigcup_{i=1}^n V(u_i + H_{u_i})$. This implies that $x \in \bigcup_{i=1}^n [S \cap$ $V(u_i + H_{u_i})$, showing that $S = \bigcup_{i=1}^{n} [S \cap V(u_i + H_{u_i})].$

o

-

THE MINDANAO FORUM

Next, let $y \in S$. Then $y \notin V(G) = \bigcup_{i=1}^{n} \{u_i\}$ by Corollary 2.11. Thus, $S \cap \{u_i\} = \emptyset$ for all $i = 1, ..., n$. Since $S = \bigcup_{i=1}^{n} S \cap V(u_i + H_{u_i})\big)$, it for that

$$
S = \bigcup_{i=1}^n [S \bigcap (\{u_i\} \bigcup V(H_{u_i}))] = \bigcup_{i=1}^n [(S \bigcap \{u_i\}) \bigcup (S \bigcap V(H_{u_i}))]
$$

 $\text{Therefore, } S = \bigcup_{i=1}^{n} [S \bigcap V(H_{u_i})].$ **i=l**

Lemma 2.14 [8] *Every geodetic cover of a graph contains its extreme vertices.*

If *H* is complete and $u \in V(G)$, then every element $v \in V(H_u)$ is an extreme vertex in $V(G \circ H)$. By Lemma 2.14, we have the following.

Corollary 2.15 *Let S be a geodetic cover of Go H. If H is complete, then* $V(H_u) \subseteq S$ *for all* $u \in V(G)$.

Lemma 2.16 *Let G be a non-trivial connected graph and S a geodetic basis of* $G \circ H$ *. If* H *is complete, then* $S = \bigcup_{u \in V(G)} V(H_u)$ *.*

Proof: Suppose *S* is a geodetic basis of $G \circ H$. This implies that

 $S = \left[\begin{array}{ccc} \end{array} \right] (S \cap V(H_u)) = \left[\begin{array}{ccc} \end{array} \right] V(H_u)$. **uEV(G) uEV(G)** *0*

by Lemma 2.13 and Corollary 2.15.

Theorem 2.17 *Let G be a connected graph of order n. Then*

$$
g(G \circ K_m) = \begin{cases} m+1 & \text{if } G \text{ is trivial,} \\ mn & \text{if } G \text{ is non-trivial.} \end{cases}
$$

JUNE 2005

1 proo • *Proof:* Suppose *G* is trivial. Then $G \circ K_m = K_m + K_1 = K_{m+1}$. Thus, $(g \circ K_m) = g(K_{m+1}) = m + 1$ by Lemma 1.1.

Suppose *G* is non-trivial and *S* is a geodetic basis of $G \circ K_m$. Since K_{m} , it follows that $S = \bigcup_{u \in V(G)} V(H_u)$ by Lemma 2.16. Therefore, m $g(G \circ K_m) = n|V(H_u)| = n|V(H)| = nm.$ u

Corollary 2.18 Let *n* and *m* be two positive integers, where $n \geq 2$. Then $g(K_n \circ K_m) = nm.$

Lemma 2.19 *Let G be a non-trivial connected graph of order n and H a* non-complete graph. If S is a geodetic basis of $G \circ H$, then $S = \bigcup_{i=1}^n A_i$, *where* A_i *is a geodetic basis of* $u_i + H_u$.

Proof: Let *S* be a geodetic basis of $G \circ H$. Put $A_i = S \cap V(H_{u_i})$. By Lemma 2.13,

$$
S=\bigcup_{i=1}^n [S\cap V(u_i+H_{u_i})].
$$

Thus,

$$
S = \bigcup_{i=1}^{n} [S \cap V(H_{u_i})]
$$

Lemma 2.16. Hence $S = \bigcup_{i=1}^{n} A_i$. Let $k \in \{1, 2, ..., n\}$ and $v \in V(u_k + 1)$ *Huk).*

Consider the following cases:

Case 1. Suppose $V(H_{u_k}) \subseteq S$. If $v \in V(H_{u_k})$, then the vertex *v* is in $S \cap V(H_{u_k}) = A_k \subseteq I_{u_k + H_{u_k}}[A_k]$. Now, let $v = u_k$. Since H_{u_k} is non-complete, there exist $x, y \in V(H_{u_k})$ such that $d_{G \circ H}(x, y) = 2$. Thus, $\{I_{u_k+H_{u_k}}[x,y] \subseteq I_{u_k+H_{u_k}}[A_k]$. Hence $A_k = S \cap V(u_k + H_{u_k})$ is a geodetic C

Case 2. Suppose there exists $w \in V(H_{m_k}) \setminus S$. Since S is a geodetic basis of $G \circ H$, there exist $x, y \in S$ such that $w \in I_{G \circ H}[x, y]$. It is not possible that both x and y are outside A_k because there is no path $x-y$ containing *w*. Now, suppose without loss of generality that $x \in A_k$ and $y \notin A_k$. Since $w \neq x$ and $wu_k, xu_k \in E(G \circ H)$, it follows that the existence of an $x \cdot y$ geodesic containing *w* is not possible. Thus, $x, y \in A_k$. Hence $d_{G \circ H}(x, y) = 2$ and $v = u_k \in I_{u_k+H_{u_k}}[x, y] \subseteq I_{u_k+H_{u_k}}[A_k]$. Now, if $v \in V(H_{u_k}) \setminus A_k$, then by following an earlier argument, we find that there exist $a, b \in A_k$ such that $v \in I_{u_k+H_{u_k}}[a, b]$. Therefore, $V(u_k + H_{u_k}) = I_{u_k+H_{u_k}}[A_k]$; that is, A_k is a geodetic cover of $u_k + H_{u_k}$.

Moreover, A_k is a geodetic basis of $u_k + H_{u_k}$ by Lemma 2.12 and the fact that S is a geodetic basis of $G \circ H$. U

Theorem 2.20 *Let G be a connected graph of order n* and H a *non-complete graph.* Then $g(G \circ H) = n \cdot g(H + K_1)$.

Proof: Suppose *G* is trivial. Then $G \circ H = H + K_1$. This implies that $g(G \circ H) = g(H + K_1).$

Suppose G is nontrivial and let S be a geodetic basis of $G \circ H$. Then \mathbb{W} Lemma 2.19, $S = \bigcup_{k=1}^{n} A_k$, where A_k is a geodetic basis of $u_k + H_{\nu_k}$. Thus,

$$
g(G \circ H) = |S| = \sum_{k=1}^{n} |A_k| = \sum_{k=1}^{n} g(u_k + H_{u_k}) = n g(H + K_1) \cdot \prod_{k=1}^{n} g(k)
$$

Corollary 2.21 *Let n and m be two positive integers. Let* G *be a nected graph of order n. Then*

1. $g(G \circ P_m) = ng(F_m)$ for $m \geq 3$; and

--

$$
g_{\alpha} g(G \circ C_m) = ng(W_m) \text{ for } m \geq 4.
$$

Observe that the graph $H' + K_m$ is non-complete if and only if H' is non-complete. This notion is used in the following results.

Lemma 2.22 *Let H be a non-complete graph. Then for all n,*

$$
g(H + K_1) = g(H + K_n).
$$
 (1)

Proof: Suppose *H* is non-complete. Clearly assertion (1) holds for $n = 1$. Suppose the assertion holds for $n \geq 2$; that is, $g(H + K_1) = g(H + K_r)$. Now,

$$
g(H + K_{n+1}) = g((H + K_1) + K_n) = g(G + K_n) ,
$$

where $G = H + K_1$ is non-complete.

Thus,

$$
g(H + K_{n+1}) = g(G + K_1) = g(H + K_2) = g(H + K_1) ,
$$

by the inductive hypothesis. Therefore, (1) holds for all *n*. Ω

Theorem 2.23 *Let G be a connected graph of order n and H a noncomplete graph. If* $H = H' + K_m$ for some graph H' , then $g(G \circ H) = ng(H)$.

Proof: Suppose *H* is a non-complete graph and for some graph *H',* assume that $H = H' + K_{m}$. By the non-completeness of H' and by Theorem 2.20, We have

$$
g(G \circ H) = ng(H + K_1) = ng((H' + K_m) + K_1) = ng(H' + K_{m+1}).
$$

 $THEMINDANAO~FORM$

This implies that

$$
g(G \circ H) = ng(H' + K_1) = ng(H' + K_m)
$$

by Lemma 2.22.

Therefore, $g(G \circ H) = ng(H)$.

The following result is a direct consequence of Theorem 2.23.

Corollary 2.24 *Let n and m be two positive integers. Let G be a connected graph of order n. Then*

1.
$$
g(G \circ F_m) = ng(F_m)
$$
 for $m \geq 3$ and

2. $g(G \circ W_m) = ng(W_m)$ *for* $m \geq 4$.

Definition 2.25 [5] Let G be a connected graph. A subset S of $V(G)$ is a *closure absorbing set* in *G* if for every $x \in V(G) \setminus S$, there exist $a_x, b_x \in$ $N(x) \cap S$ with $d_G(a_x, b_x) = 2$.

Corollary 2.26 [5) *Let G be a connected graph of order n and Km th^e complete graph of order m. If G is non-complete, then*

 $g(G + K_m) = min\{|S| : S \subseteq V(G) \text{ and is closure absolutely} \}.$

rd ,. . *of o e* **Theorem 2.27** *Let G and H be connected graphs, where G is n and H is non-complete. Then*

 $g(G \circ H) = n \cdot min\{|S| : S \subseteq V(H) \text{ and is closure absolutely}$

Proof: Suppose *G* and *H* are connected graphs. Then $g(G \circ H) =$ $ng(H + K_1)$ by Theorem 2.20. Thus, for all m , $g(G \circ H) = ng(H + K_m)$ by Lemma 2.22. Hence

 $g(G \circ H) = n \cdot min\{|S| : S \subseteq V(H)$ and is closure absorbing} by Corollary 2.26.

References

- [l] M. Atici, Graph operations and geodetic numbers. *Congressus Numerantium* **141** (1999) 95-110.
- [2] F. Buckley, and F. Harary, *Distance in Graphs.* Addison-Wesley, Redwood City, California, 1990.
- [3] G. B. Cagaanan, On geodesic convexity in graphs, Ph. D. Dissertation, MSU-IIT, 2004.
- [4] G. B. Cagaanan and S. R. Canoy Jr., On the geodetic covers and geodetic bases of the composition *G[Km], Ars Combinatoria* (In press)
- [5] S. R. Canoy Jr. and G. B. Cagaanan, On the geodesic and hull numbers of the sum of graphs. *Congressus Numerantium* **161(2003)** 97-104.
- S. R. Canoy, Jr., G. B. Cagaanan and S. V. Gervacio, Convexity, geod tic, and hull numbers of the join of graphs, *Utilitas Mathematica* (In Press)
- [?] G. Chartrand, F. Harary, and P. Zhang, Geodetic sets in graphs. *Dis-cuss M* • *ath. Graph Theory* 20(2000) 129-138.

U

- [8] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph. *Networks* **39** (2002) 1-6.
- (9] G. Chartrand and L. Lesniak, *Graphs €3 Digraphs,* 3rd ed., Chapman and Hall, New York, 1996.
- (10] F. Harary, *Graph Theory.* Addison-Wesley, Reading MA, 1969.
- [11] F. Harary, E. Loukakis and C. Tsourus, The geodetic number of a graph. . *Mathl. Comput. Modeling* **17** (1993) 89-95.