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Abstract

A graph G is convex basic if the convex subsets of the vertex set
V(G) of G are all trivial. In this paper, shall give some character-
izations of convex basic graphs. Specifically, we shall relate convex
basic graphs with the concepts such as hull set and convexity number
of a graph. Convex basic graphs resulting from the sum, composi-
tion, and cartesian product of graphs are also characterized. As one
of our results, we show that for any positive integer p, the set of all
connected graphs with independence number p contains only a finite
number of convex basic graphs and an infinite number of non-convex
basic graphs.

Keywords: graph, convex basic, convex hull, hull number, convexity num-
ber

1 Introduction

Given a connected graph G, the distance dg(z,y) is defined as the length of a

shortest, path connecting vertices z and y of G. It is known that dg is a metric
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on the vertex set V(G) of G. Any z-y path of length de(z,y) is called an
T-y geodesic. A subset C of V(G) is conver if for every two vertices T,y € C,
the vertex set of every z-y geodesic is contained in C' The cardinality of a
maximum convex proper subset of V (G) is called the convexity number of G
and is denoted by con(G). For two vertices z and y of G, the closed interval
Iz, y], consists of z and y and all vertices lying on some I-y geodesic in G.
If S C V(G), then Ig(S) = UpyesI(z,y). Clearly, the set S is convex in G
if I(S) = S. The convez hull of a subset S of V(G), denoted by [S], is the
smallest convex set in G containing S. It can be formed from the sequence
{I%(S)}, where p is a non-negative integer, I&(S) = S, I&(S) = Is(S), and
I%(S) = Ig(I%7(S)) for p > 2. For some p, we must have I&(S) = I%(S) for
all ¢ > p. If p is the smallest nonnegative integer such that I%(S) =.I&(S)
for all ¢ > p, then I%(S) = [S]. A subset S of V(G) is a hull set in G if
[S] = V(G). The hull number h(G) of G is the cardinality of a minimum hull
set (a hull set of minimum cardinality) of G. These concepts were introduced

by Everett and Seidmann [5] and investigated further in (3], and [4].

2 Definitions and Results

S of
Let G be a connected graph of order [V(G)| =n>1. A convex subset

V(G) is trivial if it is one of the following sets:

2, {v} (ve V(G)), {u,v} (w € E(G)) and V(G))

eX
. vial conv®
For convenience, we denote by TC(G) the set containing all the t1V!

subsets of G. y
sic
i nvej a
Definition 2.1 A connected graph G of order n > 118 -
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every convex set in G is trivial.

The concept of convex basic graph is defined in [1]. Previous studies on
convex basic graphs had been focused mainly on planar graphs (i.e., graphs
that can be drawn in the plane with no crossing edges). Planar convex basic

graphs were characterized by Hebbare and Rao [7].

Example 2.2 Each of the graphs in Figure 1 is convex basic. The graphs

in Figure 2 are not convex basic.

AN I v

Figure 1 (Convex basic graphs)

] <1<

Figure 2 (Non-convex basic graphs)

Our first result uses the concept of hull set to characterize convex basic

graphs. In what follows, P(V(G)) denotes the family of all subsets of V(G).

Theorem 2.3 Let ¢ pe 4 connected graph of order n > 1. Then G is
Conver basic if and only if every set S € P(V(G’))\TC(G) is a hull set in G.
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®
Proof Suppose G ig convex basic and let S € P(V(G)\TC(G). They,
S i

S MOt a convex set iy G; hence I(S) # 5. Also, for any positive integ,
P with I3(5) 2 v(gy

I%(S) is not convex because G is convex basic, Thi
'mplies that 5] =

V(G), i.e., S is a hull set in G.

Conversely, assume that [S] = V/(G) for every S € P(V(G))\TC(G)_
Then I(S) # S for all § € P(V(G))\TC(G). This implies that none of y},
sets S is convex in . Therefore G is convex basic.

N

The following result is a quick consequence of Theorem 2.3.

Corollary 2.4 Let G be a connected graph of order n > 3. If G is conver
basic, then

Ho-{3 JEIRT

Proof: Suppose first that n > 3. Since the complete graph K, (n > 4)
is not convex basic, G # K,. Pick u,v € V(G) with wv ¢ E(G) and let
S = {u,v}. Then S ¢ TC(G); hence S is a hull set in G by Theorem 2.1.
Since singleton sets are convex sets, none of the singleton subsets of V(G) is
a hull set in G. Therefore S is a minimum hull set in G. This proves that
h(G) = 2.

Next, let n = 3. Since P; and K3 are the only two connected graphs of
order 3 up to isomorphism, G = P; or G = Ks. If G = P, then h(G) = 2'

0
If G = K3, then h(G) = 3. This completes the proof of the corollary:

2.4.
The following remark is immediate from the proof of Corollary
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Remark 2.5 Let G be a connected conver basic graph of order n > 3

Then W(G) = 3 if and only if G = K.
Remark 2.6 The converse of Corollary 2.4 is not valid.

To see this, consider the graph G in Figure 3. It is easy to see that the set
§ = {z,y} is the unique minimum hull set in G. Thus h(G) = 2. However,
this graph is not convex basic because the convex set C' = {a, b, c, d} is not

trivial.
a C

b d
Figure 3

Our next characterization of convex basic graphs involves the concept of
convexity number of a graph. This result also characterizes all graphs of

convexity number equal to two.

Theorem 2.7 Let G be a connected graph of order n 2 3. Then G 1s

convez basic if and only if con(G) = 2.

Proof: Suppose G is convex basic. If n = 3, then G = Ksor G = B
Hence, con(G) = 2. If n > 3, then any set S C V/(G) with 3 < |S| <n s not
‘convex in G. Pick u,v € V(G) with uv € E(G). Then C = {u,v} is convex
n G, Accordingly, con(G) = |C| = 2.

For the converse, assume that con(G) = 2. If n = 3, then G = K3 or

G=p,. .
Py; hence G is convex basic. So, suppose n > 3. Since con(G) = 2,
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5 (learly, every donhh\t““
G has no convex proper subsets S with |S| > 4

ox in G. Therefore G ;
subset {u,v} of V(G) with uv ¢ E(G) is not GaRRE £ e
convex basic graph. .

(4] obtained the fo]]

» ng ul O
Using Ramsey numbers, Chartrand and Zhang W

ing important result.

Theorem 2.8 For every graph G of order n 2 3, con(G) + con(G) = ¢
if and only if n = 3.

From this theorem and Theorem 2.7, the following result is immediate.

Corollary 2.9 If G is a graph of order n > 4 such that both G and G

are connected, then at least one of them is non-convex basic.

The girth g(G) of a graph G is the length of a shortest cycle, if any exists,
in G. Clearly, any graph G containing K3 as a proper subgraph is not convex

basic. From this observation, we obtain the following remark.

Remark 2.10 Every connected graph G with g(G) = 3 that is not 150-

morphic to K3 is non-convez basic.

Let
Suppose now that G is a connected graph with g(G) =t 2 B

tS~=
= [£1,%2; ..., T, 71] be a cycle in G of length t. Consider the 5¢

V(O
{161,2:2,1:3}. Since t > 4, dg(z1,23) = 2. If there exists an © e VI ”
then

ic.
such that z € I[z;, z3), that is, z is a vertex in an z1-Z3 geodest! 2k

G) =
set {z1,2,, 23,2} induces a cycle of length 4. This implies that 9

k.
remal
contrary to our assumption. Thus we have proved the following T
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Remark 2.11 If G is a connected graph with g(G) > 4, then G is non-

conves basic.

We shall now consider the sum, the composition and the Cartesian prod-
st of graphs. It is worth mentioning that it may happen that none of the
graphs G+, G[H], and G x H is convex basic even if the graphs G and H
are convex basic graphs. As an example, consider the convex basic graphs
¢ = C,and H = K. It can be verified that con(G+ H) = 5, con(G[H]) = 4,
and con(G x H) = 4 (see [2]). Thus none of the graphs G + H, G[H], and

G x H is convex basic by Theorem 2.7.

We can get more examples using the following result.

Lemma 2.12 Let G and H be non-trivial graphs. If G or H has at least

one non-trivial component, then G + H is non-convez basic.

Proof: Without loss of generality, assume that G has a non-trivial com-
ponent, say G*. Choose u,v € V(G*) and z € V(H) such that uv € E(G).
Then the set § = {u,v,z} induces a complete proper subgraph of G by
definition of G* + H. It follows that g(G + H) = 3. Therefore G + His-

1on-convex basic by Remark 2.10. z

Theorem 2.13 [t G and H be graphs. Then G + H is convez basic if
“nd only if either

@ 2<IVe+ H) <3 o
(b)

G . .
and H are non-trivial and all their components are trivial.
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Proof: Assume that G + H is convex basic. Suppose that (a) does not

hold. Then |V(G+ H)| > 4. I G or H is trivial, say G then H is non-trivig]
Consider the following cases:

Case 1. Suppose H is connected. Since V(G + H)| = 4, [V(H)| > 3. Let
w € E(H) and H* be the subgraph of H induced by 5 = {u,v}. Then
G + H* = K; is a complete proper subgraph of G + H. Tt follows that
C = V(G) U S is a non-trivial convex set in G + H. This contradicts oyr
assumption that G + H is convex basic.

Case 2. Suppose H is disconnected with components Hi, Hy,...H,. If a
component of H, say Hy, is non-trivial, then V(G + H k) is a non-trivial
convex subset of V(G + H). This is not possible because G + H is convex
basic. Therefore all the components of H are trivial. Further, since G + H
is not (isomorphic to) the path Ps, r > 3. Let H* be the disjoint union of
H, and H,. Then G + H* = Kj; hence V(G + H*) is a non-trivial convex

set G+ H. Again, this gives a contradiction to our assumption.

Therefore G and H are both non-trivial graphs. Moreover, the comp>
nents of G and H are all trivial by the contrapositive of Lemma 2.1 This

shows that condition (b) holds.

For the converse, suppose first that (a) holds. Then either G + H=k
or G+ H 2 Ky, or G+ H 2 P;. In any of these cases we find thet ¢+
is convex basic. Next, suppose that (b) holds. Let C = 51U S, be 2 con¥®
set in G + H, where card(C) > 3, S; C V(G), and S2 € V(H)- T
either card(S)) > 2 or card(S;) > 2. Without loss of generality: ”Sumi
that card(S;) > 2. Let z,y € S;. Then dgyu(z,y) = 2 This impli®® the

|

H
h € Ifz,y] for every h € V(H). By convexity of C, it follows that V( )
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hence 52 = V(H). Since |V (H)| > 2, we can use a similar argument to show
that 51 = V(G). Therefore

C=V(G)UV(H)=V(G+H),

Accordingly, G + H is a convex basic graph. 0

The following are consequences of Theorem 2.13.

Corollary 2.14 Let G and H be connected graphs. Then G+H 1s convez
basic if and only if either G+H>=K, orG+ H = K;.

Corollary 2.15 Ewvery complete bipartite graph K, , 15 convez basic ex-

cept K1, where n 2 3.

Proof: Clearly, Kmn = K,,+K,. Thus, by Theorem 2.13, K, , is convex
basic for any positive integers m and n except when m = 1 and n > 3 (or

m >3 and n = 1). This proves the corollary. O

Corollary 2.16 Let G be a connected graph of order n 2 4 which s
neither a complete graph nor a complete bipartite graph. If G is disconnected,

then G is non-convez basic.

Proof: Since G is non-complete, then not all components of G are trivial.

Let A, Hy,...,H, be the components of G. Clearly,
G=H+H+..+H.

Ift> ;
= 3, then K is a subgraph of G. Since K3 is convex, G is non-convex

basic, —
£t =2 then ¢ = H; + H,. Since G is not a complete bipartite
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graph, not both H; and H, can be complete graphs: Assume that Hy is ngy
complete. Then not all the components of H, are trivial. Therefore G jg

non-convex basic by Theorem 2.8. 4

Corollary 2.17 Let G be a connected graph of order n 2 6 and size m,

If (";") <m < (%), then G is non-convez basic.

Proof : Since m < (}), G is not a complete graph. Suppose that G is a
complete bipartite graph, say G = K4, where p+q = 7. Then m = pq and

("3 ) =m<(3)

p(n—p) > (n—1)2(n—2) '

SO

This implies that

This gives the quadratic inequality 2p* — 2np+ (n —1)(n —2) < 0. Now, the
graph of

f(p) =2p = 2np+ (n—1)(n —2)
is a parabola which is concave upward. The vertex occurs at p =3 and the

value of f at this value of p is

n2

—2——3n+2,

. 1d.
which is positive for all n > 6. Thus, the inequality f(p) <0 cannot ho

Therefore G is not a complete bipartite graph.

— . e G 18
Finally, we shall show that G is disconnected. To this end, supp%

connected. Then it has a spanning tree with n — 1 edges. It follows

size of G does not, exceed
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This is a contradiction. Therefore G is disconnected. By Corollary 2.16, G

is non-convex basic. ’

The clique number w(G) of a graph G is the cardinality of a largest clique

in G. We use this concept in our next result.

Theorem 2.18 Let G and H be connected graphs. If w(G) > 2 and

w(H) > 2, then the composition G[H] of G and H is non-conver basic.

Proof: Suppose w(G) > 2 and w(H) > 2. If G[H] is (isomorphic to) K,
then it is non-convex and we are done. So suppose that G[H] is not K.
Choose u,v € V(G) and z,y € V(H) such that uv € E(G) and zy € E(H).
Let S = {(u,z), (v,y), (v,z), (v,y)}. Then S induces a subgraph isomorphic
to Ky, by definition of G[H]. Hence, S is a convex set in G[H]. This means
that V(G[H]) contains a non-trivial convex set S. Accordingly, G[H] is non-

convex basic. OJ

Theorem 2.19 Let G and H be connected graphs. Then G[H] is convex
basic if and only if either G = K, and H is convez basic or H = K 1 and G

1S conver basic.

Proof: Suppose G[H] is convex basic. Then either G = K, or H = K
by the contrapositive of Theorem 2.18. If G = K 1, then G[H] is isomorphic
t ;
°H. Thus, f is convex basic by assumption. Similarly, G is convex basic

7 g
_ . Therefore, either ¢ = K 1 and H is convex basic or H = K, and
Gis convey basic,
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nd H is conveX basic or H = K,

Conversely, suppose that either G = K, a
) H or G. In eaqy

: ic to
and G is convex basic. Then G[H] is either (isomorphic
of these cases, G[H] is convex basic.

This completes the proof of the theorem-

We shall use the following result in [2].

Theorem 2.20 Let G and H be connected graphs. Then

con(G x H) = maz{|V (G)|con(H), |V (H)|con(G)}.

Theorem 2.21 Let G and H be connected graphs. Then G x H is conver
basic if and only if either G = K; and H is convez basic or H = K; andG

1s convezx basic.

Proof : If |V (G x H)| < 2, then G x H is convex basic and either Gx H =
K; or G x H = K,. Hence either G = K; and H = K; (convex basic) or
H = K; and G = K, (convex basic) or G = K; and H = K, (convex basic)-

Suppose |V(G x H)| > 3. Then G x H is convex basic if and only if
con(G x H) = 2 by Theorem 2.7. Now, con(G x H) = 2 implies that either
[V(G)|con(H) = 2 or |V(H)|con(G) = 2 and none of these two has valu®
more than two, by Theorem 2.20. If |G|con(H) = 2, then either IV(G)| =
and con(H) = 2 or |[V(G)| = 2 and con(H) = 1. Clearly, vG) =1 ood
con(H) = 2 if and only if G = K; and H is convex basic by Theoref® o

Thus
Now, |V(G)| = 2 and con(H) =1 if and only if G = K> and H = K o
asic
[V(G)|con(H) = 2 if and only if either G = K; and H 18 convex P e
£ el
G = K, and H = K. Similarly, |V(H)|con(G) — 9 if and only !
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and G is convex basic or H = Kj and G = K. Therefore, since K,

H= Ki

and Ko are convex basic, it follows that G x H is convex basic if and only if
ither G = K and H is convex basic or H = K; and G is convex basic. .

e

For any connected graph G, we denote by a(G) the (vertex) independence
qumber of G and by Ind(p) the set of all connected graphs with independence
umber p. We shall show that Ind(p) contains only a finite number of convex

basic graphs for every positive integer p. Our result is actually motivated by

the following theorem:

Theorem 2.22 Let G be a connected graph of order n > 6. If a(G) = 2,

then G is not convex basic.

Proof: Let S = {z,y} be an independent set. Observe that since a(G) =
9, dist(z,y) = 2 or dist(z,y) = 3. Consider the following cases:

Case 1. Suppose dist(z,y) = 2. Let T = {a1, as, ..., a;} be the set consisting
all the common neighbors of z and y. If ¢ > 3, then T' cannot be independent.
Without loss of generality, assume that a;a; € E(G). Then {ai, as, z} forms
a complete graph in G. Thus, G is non-convex basic. If ¢ = 1 then {z,y,a:}
is convex in G; hence, G is non-convex basic. If ¢ = 2, then there exists
b¢TUS. Since a(G) = 2, either zb € E(G) or yb € E(G) but not both.
Assume that zb € E(G). If ajay € E(G), then {a1, as,z} forms a complete
81aph in G. If g,q, ¢ E(G), then either a;b € E(G) or ab € E(G), say
b € E(G). Then {a1,b,z} forms a complete graph in G. This shows that

G is not convex basic.

Cas .
¢ 2. Suppose dist(z,y) = 3. Let P = [z, a1, as,y] be an z-y geodesic.
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Let b € V(G)\V(P). Since {z,y,b} cannot be independent, b is adjacent to
either & or y but not both. Assume that @b € F (G). Since {a1,b,y} canng
be independent, ba; € E(G). Thus {z, a1, b} induces the complete graph K,

Therefore G is non-convex basic. 0
Lemma 2.23 Ind(p) is an infinite set for eVery poSLAVE Wnteger p,

Proof: Ind(1) is the set of all complete graphs which is\infinite. It
p > 2. For every ¢ > 1, the graph Kg + K, is clearly connectéd and hag

independence number p. Thus Ind(p) is an infinite set. 0

We shall need the following result from Ramsey Theory to establish our
last result.

Theorem 2.24 For each integer p > 1, there ezists a number r(p)) such
that every graph of order n > r(p) either has a complete subgraph K, or an
independent subset S with |S| = p.

Theorem 2.25 For each integer p > 1, Ind(p) contains only a fiie

number of convez basic graphs and an infinite number of non-conver basic

graphs.

Proof: Ind(1) is the set of complete graphs. Only K, Kz and Ks ar

convex basic among the complete graphs. Let p > 2 and suppose ¢hat Ind(?)

convex basit

contains infinitely many convex basic graphs. Then there exist
e
), wher

graphs in Ind(p) with arbitrarily large orders. Let N =p+ r( »
. . T e
r(p+1) is the Ramsey number corresponding to p-+ 1 in Theorem™ 2.24

4 ndeﬂt
there exists a graph G € Ind(p) of order n > N. Let S be an indepe
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st in G with |S| = p and consider the graph H induced by V(G)\S. Since

the order of H is

n—-p2N-p=r(p+1),

either H contains a subgraph K, or an independent subset with p + 1 el-
ements by Theorem 2.22. Since a(G) = p, H cannot have an independent
subset of order p+ 1. Thus, H has a subgraph K,,;. But this subgraph is
a non-trivial convex subset of G. This contradicts our assumption that G
is convex basic. Therefore, Ind(p) contains only a finite number of convex
basic graphs. By Lemma 2.23, it follows that Ind(p) contains infinitely many

non-convex basic graphs. 0
Finally, we pose the following conjecture for the interested readers.

Conjecture. Let y(n) denote the number of convex basic graphs of order
n and let I'(n) denote the total number of non-isomorphic connected graphs

of order n. Then

. v(n) _
nlgglo I'(n) th
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