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Abstract 
A graph G is convex basic if the convex subsets of the vertex set 

V ( G) of G are all trivial. In this paper, shall give some character-
izations of convex basic graphs. Specifically, we shall relate convex 
basic graphs with the concepts such as hull set and convexity number 
of a graph. Convex basic graphs resulting from the sum, composi-
tion, and cartesian product of graphs are also characterized. As one 
of our results, we show that for any positive integer p, the set of all 
connected graphs with independence number p contains only a finite 
number of convex basic graphs and an infinite number of non-convex 
basic graphs. 

Keywords: graph, convex basic, convex hull, hull number, convex.ity nun1-

ber 

1 Introduction 

Given a connected graph G, the distance dc(x, y) is defined a~ thl' length of a 

shortest path connecting vertices x and y of G. It is known that de is a n1etric 
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on the vertex set V ( G) of G. Any x-y path of length de ( x' y) is called an 

x-y geodesic. A subset C of V(G) is convex if for every two vertices x, YE C, 

the vertex set of every x-y geodesic is contained in C. The cardinality of a 

maximum convex proper subset of V(G) is called the convexity number of G 

and is denoted by con( G). For two vertices x and y of G, the closed interval 

I[i, y), consists of x and y and all vertices lying on some x-y geodesic in G. 

If S C V(G), then lc(S) = Ux,yesl(x, y). Clearly, the set S is convex in G 

if Ic(S) = S. The convex hull of a subset S of V(G), denoted by {S], is the 

smallest convex set in G containing S. It can be formed from the sequence 

{Pa(S)}, where pis a non-negative integer, I&(S) = S, Ib(S) = Ic(S), and 

Pa(S) = Ic(If-1(S)) for p > 2. For some p, we must have I'b(S) = Pa(S) for 

all q > p. If p is the smallest nonnegative integer such that I'b(S) = .Pc;(S) 

for all q > p, then Pa(S) = (S]. A subset S of V(G) is a hull set in G if 

[S] = V(G). The hull number h(G) of G is the cardinality of a minimum hull 

set ( a hull set of minimum cardinality) of G. These concepts were introduced 

by Everett and Seidmann [5] and investigated further in [31, and (4). 

2 Definitions and Results 
f I 

Let G be a connected graph ·of order IV ( G) I = n > 1. A convex subset S 0 

V(G) is trivial if it is one of the following sets: 

0, {v} (v E V(G)), {u,v} (uv E E(G)) and V(G)) 

B . . al conve--< 
or convenience, we denote by TC( G) the set containing all the tnvi 

subsets of G. 
basic if 

Definition 2.1 A connected graph G of order n > 1 is convex 
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Convex set in G is trivial. every 

A NOTE ON CONVEX BASIC GRAPHS 

The concept of convex basic graph is defined in [l]. Previous studies on 
convex basic graphs had been focused mainly on planar graphs (i.e., graphs 
that can be drawn in the plane with no crossing edges). Planar convex basic 
graphs were characterized by Hebba~e and Rao [7]. 

Example 2.2 Each of the graphs in Figure 1 is convex basic. The graphs 
in Figure 2 are not convex basic. 

0--0---0 

Figure 1 ( Convex basic graphs) 

Figure 2 (Non-convex basic graphs) 

Our first result uses the concept of hull set to characterize convex basic 
graphs. In what follows, P(V(G)) denotes the family of all subsets of V(G). 

Theorem 2.3 Let G be a connected graph of order n > 1. Then G is 
convex basic if and only if every set SE P(V(G))\TC(G) is a hull set in G. 
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Proof: Suppose G is convex basic and let S E P(V(G))\TC(G). Then S is not a ·t· · convex set in G; hence Ia(S) =f S. Also, for any pos1 ive integer 
p with J~;(S) # V(G), J'&(S) is not convex because G is convex basic. This 
implies that {S1 = V(G), i.e., Sis a hull set in G. 

Conversely, assume that [S] = V(G) for every S E P(V(G))\TC(G). 
Then la(S) # S for- all SE P(V(G))\TC(G). This implies that none of the 
sets S is convex in G. Therefore G is convex basic. 0 

The following result is a quick consequence of Theorem 2.3. 

Corollary 2.4 Let G be a connected graph of order n > 3. If G is convex 
basic, then 

h( G) = { 2, i! G = P3 or n > 3 
3, if G = K3. 

Proof: Suppose first that n > 3. Since the complete graph Kn (n 4) 
is not convex basic, G-=/= Kn. Pick 'l.L,V E V(G) with uv <I. E(G) and let 
S = { u, v }. Then S <I. TC(G); hence Sis a hull set in G by Theorem 2.1. 
Since singleton sets are convex sets, none of the singleton subsets of V(G) is 
a hull set in G. Therefore S is a minimum hull set in G. This proves that 

h(G) = 2. 

Next, let n = 3. Since P3 and K3 are the only two connected graphs of 
order 3 up to isomorphism, G = P3 or G = K3. If G = P3, then h(G):::: 2• 

0 If G = K3 , then h(G) = 3. This completes the proof of the corollary. 

The following remark is immediate from the proof of Corollary 2•
4
• 
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Remark 2.5 Let G be a connected convex basic graph of order n > 3. 

Then h(G) = 3 if and only if G = K3 • 

Remark 2.6 The converse of Corollary 2.4 is not valid. 

To see this, consider the graph Gin Figure 3·. It is easy to see that the set 

s = {x, y} is the unique minimum hull set in G. Thus h(G) = 2. However, 

this graph is not convex basic because the convex set C = { a, b, c, d} is not 

trivial. a C 

X y 

b d 
Figure 3 

Our next characterization of convex basic graphs involves the concept of 

convexity number of a graph. This result also characterizes all graphs of 

convexity number equal to two. 

Theorem 2. 7 Let G be a connected graph of order n > 3. Then G is 

convex basic if and only if con( G) = 2. 

Proof: Suppose G is convex basic. If n = 3, then G = Ka or G = P3. 
Hence, con(G) = 2. If n > 3, then any set SC V(G) with 3 < ISi < n is not 

convex in G • Pick u, v E V ( G) with uv E E( G). Then C = { u, v} is convex 

in G. Accordingly, con( G) = ICI = 2. 

For the converse, assume that con( G) = 2. If n = 3, then G = K3 or 

G :::: P3; hence G is convex basic. So, suppose n > 3. Since con( G) = 2, 
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. •J. Clciu·l)·. evC'ry rloubl0to 
G has no convex proper subsets S with ISi > ..,. n 

t nvcx i11 C. Therefore G i~ 
subset { u, v} of V(G) with uv (/; E(G) is no· co • ' n 

convex basic graph. 

· d d Zl1ano- in [4] obtained the foll Using Ramsey nun1bers, Chartra.n an b ow. 

ing in1portant result. 

Theorem 2.8 For every graph G of order n > 3, con(G) + con(G) == 4 

if and only if n = 3. 

From this theorem and Theoren1 2.7, the following result is immediate. 

Corollary 2.9 If G is a graph of order n > 4 such that both G and G 

are connected, then at least one of them is non-convex basic. 

The girth g( G) of a graph G is the length of a shortest cycle, if any exist5, 

in G. Clearly, any graph G containing K3 as a proper subgraph is not convex 

basic. From this observatio_n, we obtain the following remark. 

Remark 2.10 Every connected graph G with g( G) = 3 that is not iso· 

morphic to K3 is non-convex basic. 

Suppose now that G is a connected graph with g( G) = t > 4• Let 

Ct = [x1, X2; ... , Xt, x1] be a cycle in G of length t. Consider the set S :::= 

. V(G)\5 
{x1,x2,x3}. Since t > 4, d0 (x1,x3 ) = 2. If there exists an x E 

0 . then th· 
such that x E I[x1, x3], that is x is a vertex in an x1-X3 geodesic, , 

' ) < -11 

set {xi, X2, x3, x} induces a cycle of length 4. This implies that g(G k~ 
. ren1a.r • 

contrary to our assumption. Thus we have proved the following 
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Remark 2.11 If G is a connected graph with g(G) > 4, then G is non-

convex basic. 

We shall now consider the sum, the composition and the Cartesian prod-

uct of graphs. It is worth mentioning that it may happen that none of the 

hs G + H G[H], and G x His convex basic even if the graphs G and H grap ' 
are convex basic graphs. As an example, consider the convex basic graphs 

G == c4 and H = K2 . It can be verified that con(G+H) = 5, con(G[H]) = 4, 

and con(G x H) = 4 (see [2]). Thus none of the graphs G + H, G[H], and 

G x H is convex basic by Theorem. 2. 7. 

We can get more examples using the following result. 

Lemma 2.12 Let G and H be non-trivial graphs. If G or H has at least 

one non-trivial component, then G + H is non-convex basic. 

Proof: Without loss of generality, assume that G has a non-trivial com-

ponent, say G*. Choose u, v E V(G*) and x E V(H) such that uv E E(G). 

Then the set S = { u, v, x} induces a complete proper subgraph of G by 

definition of G* + H. It follows that g( G + H) = 3. Therefore G + H is · 
non-convex basic by Remark 2.10. D 

Theorem 2.13 Let G and H be graphs. Then G + H is convex basic if 
and only if either 

(a) 2 < IV ( G + H) I < 3' or 

(b) G and H .. 
are non-trivial and all their components are trivial. 
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Proof: Assume that G + H is convex basic. Suppose that (a) does not 

hold. Then IV(G+H)I > 4. If G or His trivial, say G, then His non-trivial. 

Consider the following cases: 

Case 1. Suppose His connected. Since IV(G + H)I > 4, IV(H)I > 3. Let 

uv E E(H) and H* be the subgraph of H induced by S = { u, v }. Then 

G + H* rv K 3 is a complete proper subgraph of G + H. It follows that 

C = V(G) US is a non-trivial convex set in G + H. This contradicts our 

assumption that G + H is convex basic. 

Case 2. Suppose H is disconnected with components H1, H2, ... Hr. If a 

component of H, say Hk, is non-trivial, then V( G + Hk) is a non-trivial 

convex subset of V ( G + H). This is not possible because G + H is convex 

basic. Therefore all the components of H are trivial. Further, since G + H 

is not (isomorphic to) the path P3, r > 3. Let H* be the disjoint union of 

H1 and H2. Then G + H* rv K 3; hence V(G + H*) is a non-trivial convex 

set G + H. Again, this gives a contradiction to our assumption. 

Therefore G and H are both non-trivial graphs. Moreover, the compo-

nents of G and H are all trivial by the contrapositive of Lemma 2.1. This 

shows that condition (b) holds. 

For the converse, suppose first that (a) holds. Then either G + H K2, 

or G + H rv K3, or G + H rv P3. In any of these cases we find that G + H 
• . b . S b conveX 
18 convex as1c. Next, suppose that (b) holds. Let .C = S1 U 2 ea 

. H) Then 
set 1n G + H, where card(C) > 3, S1 c V(G), and S2 C V( • e 
• h 1· t assUJll 

ett er card(S1) > 2 or card(S2) > 2. Without loss of genera 1 y, t 
res tha 

that card(S1) > 2. Let x, y E S1. Then dc+H(x, y) = 2. This irnP I c· 
h E J[x, Y] for every h E V(H). By convexity of C, it follows th11t V(Hl C ' 
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hence 32 = V ( H). Since IV ( H) I > 2, we can use a similar argument to show 

that 31 = V ( GJ. Therefore 

C = V(G) U V(H) = V(G + H) _. 

Accordingly, G + H is a convex basic graph. 

The following are consequences of Theorem 2.13. 

Corollary 2.14 Let G and H be connected graphs. Then G+H is convex 

basic if and only if either G + H rv K2 or G + H rv K3 . 

Corollary 2.15 Every complete bipartite graph Km,n is convex basic ex-

cept K1,n, where n > 3. 

Proof: Clearly, Km,n = Km +Kn. Thus, by Theorem 2.13, Km,n is convex 

basic for any positive integers m and n except when m = 1 and n > 3 ( or 

m > 3 and n = l). This proves the corollary. 

Corollary 2.16 Let G be a connected graph_ of order n > 4 which is 

neither a complete graph nor a complete bipartite graph. If G is disconnected, 

then G is non-convex basic. 

Proof: Since G· is non-complete, then not all components of G are trivial. 

LetHH Hb -1, 2, ... , t e the components of G. Clearly, 

If t > 3 th - ' en K3 is a subgraph of G. 
basic If • t == 2 th G - -' en = H1 + H2. 

Since K3 is convex, G is non-convex 

Since G is not a complete bipartite 
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graph, not both H1 and H2 can be complete graphs. Assume that H1 is not 

complete. Then not all the components of H1 are trivial. Therefore G is 

non-convex basic by Theorem 2.8. 0 

Corollary 2.17 Let G be a connected graph of order n > 6 and size rn. 

If (n;1) < m < (;), then G is non-convex basic. 

Proof: Since m < (;), G is not a complete graph. Suppose that G i.s a 

complete bipartite graph, say G = I<p,q, where p + q = n. Then m = pq and 

so 

This implies that 

( ) (n- l)(n- 2) 
pn-p > 2 

This gives the quadratic inequality 2p2 - 2np+ (n - l)(n - 2) < 0. Now, the 

graph of 

f(p) = 2p2 
- 2np + (n - l)(n - 2) 

is a parabola which is concave upward. The vertex occurs at p = % and the 

value of f at this value of p is 
n2 
--3n+2 2 ' 

which is positive for ·all n > 6. Thus, the inequality f (p) < 0 cannot hold. 

Therefore G is not a complete bipartite graph. 
--G is 

F• 11 - . d ppose 
1na y, we shall show that G is disconnected. To this en , SU 

. . s that the 
connected. Then 1t has a spanning tree with n - 1 edges. It follow 

size of G does not exceed 

(
n) (n - l)(n - 2) 
2 - (n - 1) < 2 
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This is a contradiction. Therefore G is disconnected. By Corollary 2.16, G 
is non-convex basic. 

The clique number w( G) of a graph G is the cardinality of a largest clique 
in G. We use this concept in our next result. 

Theorem 2.18 Let G and H be connected graphs. If w( G) > 2 and 
w(H) > 2, then the composition G[H] of G and H is non-convex basic. 

Proof: Suppose w(G) > 2 and w(H) > 2. If G[H] is (isomorphic to) K4 , 

then it is non-convex and we are done. So suppose that G[H] is not K4 . 

Choose u, v E V(G) and x, y E V(H) such that uv E E(G) and xy E E(H). 
Let S = {(u, x), (u, y), (v, x), (v, y)}. Then S induces a subgraph isomorphic 
to K4 , by definition of G[H]. Hence, Sis a convex set in G(H]. This means 
that V( G[H]) contains a non-trivial convex set S. Accordingly, G[H] is non-
convex basic. 

Theorem 2.19 Let G and H be connected graphs. Then G[H] is convex 
basic if and only if either G = K1 and H is convex basic or H = K1 and G 
is convex basic. 

Proof: Suppose G(H] is convex basic. Then either G = K 1 or H = K1 

by the contrapositive of Theorem 2.18. If G = K1 , then G[ H] is isomorphic 
to H. Thus, His convex basic by assumption. Similarly, G is convex basic 
if H === I< Th . . . 1• erefore, either G = K1 and His convex basic or H = K1 and 
G is convex basic. 
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d H is convex basic or H ::::: k 
Conversely, suppose that either G = I<1 an 1 

(. phic to) H or G. In each 
and G is convex basic. Then G [ H] is either isomor 

of these cases, G[H] is convex basic. 

This completes the proof of the theorem. 0 

We shall use the following result in [2] • 

Theorem 2.20 Let G and H be connected graphs. Then 

con(G x H) = max{IV(G)lcon(H), IV(H)lcon(G)}. 

Theorem 2.21 Let G and H be connected graphs. Then G x H is convex 

basic if and only if either G = K 1 and H is convex basic or H = K1 and G 

is convex basic. 

Proof: If IV(G x H)I < 2, then G x His convex basic and either G x H = 

K1 or G x H = K2. Hence either G = Ki and H = Ki (convex basic) or 

H = K1 and G = K2 (convex basic) or G = Ki and H = K 2 (convex basic). 

Suppose IV ( G x H) I > 3. Then G x H is convex basic if and only if 

con(G x H) = 2 by Theorem 2.7. Now, con(G x H) = 2 implies that either 

IV(G)lcon(H) = 2 or IV(H)lcon(G) = 2 and none of these two has value 

more than two, by Theorem 2.20. If IGlcon(H) == 2, then either IV(G)I:::: 1 

and con(H) = 2 or IV(G)I = 2 and con(H} = 1. Clearly, jV(G)I == 1 and 

con(H) = 2 if and only if G = K 1 and H is convex basic by Theorem 2•
7
• 

K fbUS, 
Now, IV(G)I = 2 and con(H) = 1 if and only if G = K 2 and H === 1• 

basic or 
IV(G)lcon(H) = 2 if and only if either G = Ki and H is convex r 

·f eithe 
G = K2 and H = K1. Similarly, IV(H)lcon(G) = 2 if and only 

1 
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H === K1 and G is convex basic or H = K2 and G = K1. Therefore, since K1 

K re convex basic, it follows that G x H is convex basic if and only if 
and 2 a 
either G == Ki and His convex basic or H = K 1 and G is convex basic. 

For any connected graph G, we denote by a(G) the (vertex) independence 

number of G and by Ind(p) the set of all connected graphs with independence 

number p. We shall show that lnd(p) contains only a finite number of convex 

basic graphs for every positive integer p. Our result is actually motivated by 

the following theorem: 

Theorem 2.22 Let.G be a connected graph of order n > 6. If a(G) = 2, 

then G is not convex basic. 

Proof: Let S = { x, y} be an independent set. Observe that since a( G) = 

2, dist(x, y) = 2 or dist(x, y) = 3. Consider the following cases: 

Case 1. Suppose dist(x, y) = 2. Let T = {a1, a2, ... , at} be the set consisting 

all the common neighbors of x and y. If t > 3, then T cannot be independent. 

Without loss of generality, assume that a1 a2 E E ( G). Then { a1, a2, x} forms 

a complete graph in G. Thus, G is non-convex basic. If t = l then { x, y, a1} 

is convex in G; hence, G is non-convex basic. If t -= 2, then there exists 

b ~TU S. Since a(G) = 2,_ either xb E E(G) or yb E E(G) but not both. 

Assume that xb E E( G). If a1 a2 E E( G), then { a1, a2, x} forms a complete 

graph in G. If a1a2 E(G), then either a1b E E(G) or a2b E E(G), say 

aib E E(G). Then {a1, b, x} forms a complete graph in G. This shows that 

G is not convex basic. 

Case 2 S 
• uppose dist(x, y) = 3. Let P = [x, a1, a2 , y] be an x-y geodesic. 
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Let b E V(G)\V(P). Since {x,y,b} cannot be independent, bis adjacent to 

either x or Y but not both. Assmne that xb E E( G) • Since { ai' b, Y} cannot 

be independent, bai E E( G). Thus { x, a1 , b} induces the complete graph Ka. 

Therefore G is non-convex basic. 0 

Lemma 2.23 Jnd(p) is an infinite set for every positive integer p. 

Proof: Jnd(l) is the set of all complete graphs which is infinite. Let 

p > 2. For every q > l, the graph Kq + KP is clearly connected and has 

independence number p. Thus I nd(p) is an infinite set. D 

We shall need the following result from Ramsey Theory to establish our 

last result. 

Theorem 2.24 For each integer p > I, _there exists a number r(p)) such 

that every graph of order n > r(p) either has a complete subgraph KP or an 

independent subset S with ISi = p. 

Theorem 2.25 For each integer p > I, lnd(p) contains only a finite 

number of convex basic graphs and an infinite number of non-convex basic 

graphs. 

Proof: Ind(l) is the set of complete graphs. Only K1 , K2 and K3 are 

convex basic among the complete graphs. Let p > 2 and suppose that Io<l(P) 

t · · fi • 1 • t onvex basic 
con a1ns 1n n1te y many convex basic graphs. Then there ex1s c 

. graphs 1n Ind(p) with arbitrarily large orders. Let N = p + r(p + 1 ' 
. 2 24. Thell 

r(p + l) 1s the Ramsey number corresponding to p + l in Theorem • 
. dependent 

there exists a graph G E Ind (p) of order n > N. Let S be an in 
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set in G with ISi = p and consider the graph H induced by V(G)\S. Since 

the order of H is 

n - p > N - p = r(p + l) , 

either H contains a subgraph Kp+l or an independent subset with p + l el-

ements by Theorem 2.22. Since a(G) = p, H cannot have an independent 

subset of order p + l. Thus, H has a subgraph Kp+l · But this subgraph is 

a non-trivial convex subset of G. This contradicts our assumption that G 

is convex basic. Therefore, I nd(p) contains only a finite number of convex 

basic graphs. By Lemma 2.23, it follows that Ind(p) contains infinitely many 

non-convex basic graphs. 

Finally, we pose the following conjecture for the interested readers. 

Conjecture. Let ,( n) de~ote the number of convex basic graphs of order 

n and let r(n) denote the total number of non-isomorphic connected graphs 

of order n. Then 
. ,(n) 

hm r( ) = 0. n-+oo n 
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