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Abstract 

The orthogonality and inverse relations of s(n, k) and S(n, k) in-

dicate that the numbers F0 .~(n, k) and (;) may satisfy certain 
{3,-y 

orthogonality and inverse relations. With the aid of the horizontal 

generating function for F0 ,
7

(n, k) and the definition of /;) , the 
. \ ~'Y 

orthogonality and inverse relations of F0 ,in, k) and (;) will be 
{3,-y 

es tab lished. 
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1 Introduction 

Tl 1
. . . . 1." "d factorial. denoted by F (n k) 

1e unit of the differences of the genera 1ze • 
0
,, , , 

l~~(Jjt + ,la)nJ t=O 

F0 ....,(n, k) = lim klJJk 
' I [J-+0 • 

was evaluated completely in [4). The limit gives the explicit formula 
n-k 

Fo,-y(n,k)= L 11(,-jqa), 

OSj1<12<··•<jn-kSn-l q=l 

and, consequently, obtains the following properties; the triangular recurrence 

relation 

F
0
,,(n + 1, k) = F0 ,,(n, k - l) + (, - na)Fa,,(n, k) , 

the horizontal generating function 
n 

L Fo,,(n, k)tk = (t + ,la)n , 

k=O 

and the vertical generating function 

(1 + at) 110 [log(l + at) 1l0] k = k! L F0 ,,(n, k) :, . 
n~O 

Based on these properties, it can easily be seen that F0 ,,(n, k) is a generaliza-

tion of the Stirling number of the first kind s(n, k) (see (1], (2], [5] for further 

discussion of s(n, k)). In particular, s(n, k) = F1,0(n, k). On the other haD<l, 

the (r, ~)-Stirling number, denoted by (~) , was defined in [3] by roeeJJli 

of the following linear transformation: /3,, 

tn = t (~) (t - r)/l,k 

k=O /3,1 . t" on of 

where (t - r)13,k = (t - rl,B)k. This number is a certain generaliza 
1 

Stirling number of the second kind S ( n, k). That is, S ( n, k) "' (;) ,,o • for 

8 

detailed discussion of the (r, ,B)-Stirling number, one may see (
3

]· 
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2 J.Vlain Results 

t the horizontal generating function for Fo.,-r ( n, k) and the definition Note tha 

(
n) can be written as 

of k 
/3,'Y 

n 

(t - rl/3)m = L F13,-r(m, k)tk 
k=O 

tk = t (!) /3,r (t - rl/J)n , 

respectively. Hence, substituting (2) in (1) yields 

Thus, 

(t - rl,B)m 

(t - rl,B)m 

t; F13,-r(m, k) [t (!) {3,r (t - rl/J)n] 

t; F13,-,(m, k) [t (~) {3,r (t - rl/J)n] 

t [t F13,-r(m, k) (!\J (t - r!/J)n • 

t F/3,~r(m; k) (!) {3,r = Om,n = { ~'. : ,j, 

This result is embodied in the following theorem. 

Theorem 2.1 The following orthogonality relations hold: 
m 

F/3,-,(m, k) (~) {3,r = t (7) {3,r F13,-r(k, n) = Omn 
Where 8 . 

mn is the Kronecker delta. 

119 

(1) 

(2) 



\ 

_vo_1_ .. _X_l_X_N_o '• l 
THE 1\\NO~NAO Fo • RUM 

P J T 
J. ,.-ivcn t\bove. We roo : he proof for the fir~t l'C\utditY i~ t\lrct1 ) l"' / 

11
) are left to show the second equality. :-; oh' t \nit th<' t1cfi11ition of \ I;, B,1 Cl\ll be 

written as 

tm == t (17~) lf - r\3)k • 
k • " 

k=O .;. 
With the aid of the horizontal geuernting function for Fa.1' we obtain 

This precisely gives the second equality. 
0 

Remark 2,2 Let M
1 

and M, be two n x n matrices whose entries ore 
the numbers f 0., {i, j) and (~) • More precisely, 

13.r 

Fa.-r(Oi O) 0 

f'.s.-r(l, O) Fr,,-r(l, 1) 
M1 == 

Fr,,-r(n, 0) F13,-r(n1 1) 

(~\ .. 0 

M2 == (~) ~-' (~t, 

0 

0 

F13,-r(n1 n) 

0 

0 

(~t, \it, (:t, 
T 

· 
d M, gi,.i hen, usmg Theorem 2.1, the product of the matrices M1 an 
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I 
. an n x n identity matrix. This implies that M 2 = M 1-

1 
and where n 1s 

1l,r-1 that is M1 and M2 are orthogonal matrices. 
M1 ;::;::: lVJ.2 ' ' 

The next theorem gives the inverse relation of F0 .~(n, k) and /~) . . 
\ {3,r 

Theorem 2.3 With n E N (set of natural numbers), the following in-

verse relations hold: 

Proof: ( = : ) Using the hypothesis, we have 

n 

L F{3,-r(n, k)fk 
k=O 

By Theorem 2.1, we obtain 

n n 

L F/3,-r(n, k)fk = L 6n;9j = 9n • 
k=O j=O 

( <=) Similarly, using the hypothesis, 

t (~\/k = t (~tr {tFff,-r(k,j)f;} 

t {t (~) ~.rFff,-r(k,j)} /; 

n 

Lc5n,fj = fn · D 
j=O 
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Remark 2 4 Wh rf''ieorems 2.1 and 2. 3 will reduee 
• • en /3 = 1 and r = 0, .1' 

to the orthogonality and inverse relations of the ordinary Stirling numbers of 

the first and second hnds, wh1·c1i are given as follows: 

m m 

L ls(m, k)IS(k, n) = L S(m, k)ls(k, n)I = 8mn ' 

k=n k=n 

n n 

fn = L S(n, k)gk <.= :gn = ls(n, k)lfk • 

k=O k=O 

where 

ls(n,k)I = (-ir-ks(n,k) 

is the signless Stirling number of the first kind. 

Remark 2.5 Note that when /3 = 0 and r = l, equation (2) will give 

and1 
with t being replaced by t + r, equation ( 1) will give 

where (;) is a binomial coefficient. Then Theorem 2.1 and 2. 3 will reduC£ 

to the fallowing orthogonality and inverse relations 
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The preceding inverse relation is the well-known fl transform, which is 

used by G.H. Hardy to introduce Hausdorff summability method. This in-

verse relation is also useful in simplifying solution of some combinatorial prob-

lems. A simple example is the solution of derangement problem ( also known 

as le probl'eme des rencontres). The problem is to find the number Dn of per-

mutations (a1, a2, ... , an) of 1, 2, 3, ... , n such that ai =I= i, \:/i = l, 2, ... , n. It 

can easily be seen that 

Hence, by making use of the inverse relation (the 6 transform) with fn = n! 

and 9k = Dk, we obtain 

which further gives Dn n!e- 1
, for a very large value of n. Note that this 

problem is solved in [1] using the principie of inclusion and exclusion. 
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