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Abstract 
Let G be a connected graph, u and v be vertices of G and J(u, vl the closed interval consisting of u, v and all vertices lying on some u-v geodesic. If S C V(G), then J(S] is the union of all sets J(u, v] for all u, v E S. A subset S of V ( G) is called a geodetic set in G if J(S] = V(G). The minimum cardinality of a geodetic set in G is called the geodetic number of G. The convex hull ( S] of a subset S of V ( G) is defined as the smallest convex set in G containing S. The minimum cardinality among the subsets S of V(G) with (S] = V(G) is called the hull number of G. In this paper, we give the geodetic number and the hull number of some graphs. 
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1 Preliminaries 
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V(G 
• . An x-y pa.th, denoted bv 

) 1s the vertex set of G is a n1etric space. J 

' d • A subset S of V(G) • 

P(x, Y), of length dc(x, y) is called an x-y geo eSLC. 
18 

. 
tex set of every x-y geodes· 

convex 1f for every two vertices x, y E S, the ver ., 
1c 

· · • . d y of G the symbol I[x y] • 

1s contained 1n S. For every two vertices x an ' ' Is 

eel 
. . f d all vertices lying on some x 

us to denote the set cons1st1ng o x, Y an -y 

geodesic. A subset S of V(G) is called a geodetic set in G if I[S] = V(G), 

where I[S] = Ux,yEsl[x, y]. The geodetic n'l.lmber of a connected graph G is 

defined as the cardinality of a minimum geodetic set. It can easily be verified 

that S c I[S] and that I[S] = S if and only if S is convex. Convexity in 

graphs was discussed in [16]. This concept was investigated in (2], [3], (7], 

[11] and [12]. Some related results on the concept of geodetic number of a 

graph were obtained in [1], [5], [8], [9], and [15]. 

The convex hull of a subset S of V ( G), denoted by [ S], is the smallest 

convex set in G containing S. It can be formed from the sequence {JP[S]}, 

where p is a non-negative integer, J0 [S] = S, 11 [8] = I[S], and JP(S] = 

I[JP-1 [8]] for p > 2. For some P,. we must have Iq[S] = JP[S] for all q > P· 

Further, if pis the smallest non-negative integer such that Iq[S] = JP[S] for 

all q > p, then JP[ S] = [S]. 

A subset S of V ( G) is a hull set in G if [ S] = V ( G). A hull set of minimum 

cardinality is called a minimum hull set in G. The hull number h(G) of G is 

th di li • · · 
• t oduced 

e car na ty of a m1n1mum hull set in G. These concepts were in r 

by Everett and Seidmann [13] and were investigated in [4], [5], [6] and [IO]. 

v 
d are-ad~ 

ror other graph theoretic terms which are assumed here, rea ers 

vised to refer to [14]. 

The following two lemmas were stated in (2). 
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Lemma 1.1 (2) Let G be a connected grap_h. Then g(G) = IV(G)l if and 
only if G is a complete graph. 

Lemma 1.2 [2) Let G be a connected graph. Then h(G) = IV(G)I if and 
only if G is a complete graph. 

Proof: Suppose G is a complete graph. If S C V ( G), then S induces 
a complete subgraph of G. It follows that S is convex in G and hence, 
S = [ S]. This means that (S] = V ( G) if and only if S = V ( G). Therefore, 
h(G) = IV(G)\. 

Conversely, suppose h( G) = IV ( G) 1- Assume further that G is not com-
plete. Then there exist vertices a, b E V(G) such that da(a, b) = 2. Let c be a 
vertex in some a-b geodesic that is distinct from a and b. Set S = V ( G) \ { c}. 
Clearly, S is not convex in G. Also, because c is in some a-b geodesic, it 
follows that c E I[S] C [S). Thus, [S] = V(G). 

Therefore h( G) < I SJ = IV ( G) I - 1. This contradicts our assumption 
that h(G) = \V(G)I. Therefore G is a complete graph. 

A vertex v in a connected graph G is an extreme vertex if the set of 
neighbors N(v) of v induces a complete subgraph of G. In what follows, 
Ex(G) denotes the set of extreme vertices in G. 

Theorem 1.3 Let G be a connected graph. If x E Ex( G), then 
V(G)\{x} is a convex set. 

Proof: Let x E Ex(G) and let a,b EC= V(G)\{x}. If a and bare 
neighbors of x, then dc(a, b) = 1 and so, the vertex set of every a-b geodesic 
is contained in C. 

127 



O~Ru~rv~1 ______________ v_o_L_. _X_l_X_N_o..:.~ 

S 
• hbor of x Clearly, the vertev 

uppose now that none of a and b is a neig • "' 

set of every a-b geodesic is contained in C if dc(a, b) < 
3

• So, suppose 

da(a, b) > 4. Suppose further that x is in some a-b geodesic Pr+2(a, b) ::::: 

[a, Xi, ... , Xr, b] (r > 3). Then there exists k E {l, 2, • • • 'r -
2

} SUCh that 

Xk+i = x. This implies that Xk and Xk+2 are neighbors of x. Since x E Ex(G), 

XkXk+2 E E(G). Thus, [a, xi, ... , Xk, Xk+2, .. •, Xr, b] is a path connecting a 

and b. This contradicts the fact that Pr+2(a, b) is an a-b geodesic. Therefore 

x cannot ·be a vertex in any a-b geodesic. 

If one of a and b is a neighbor of x, then a slightly similar argument 

as above can be used to prove that the vertex set of every a-b geodesic is 

contained in C. 

Therefore, V ( G) \ { x} is a convex set. 

2 Kr-gluing of Complete Graphs 

Definition 2.1 Let Kpi, Kp2
, ••• and KPn be complete graphs, each con-

taining a complete subgraph Kr (r > 1). The graph G obtained from the 

union of these n complete graphs by identifying the Kr's ( one from each 

complete graph) in an arbitrary way is called the Kr-gl~in9 of Kp1 , KP2, • • • 

and KPn· 

Remark 2.2 Let p, q and r be positive integers such that 1 < r < P q. 

If G is the Kr-gluing of KP and Kq, then 

Ex(G) _ { V(G) if r = p, 

- V(G)\V(Kr) if r < p. 
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Theorem 2.3 Let p, q and r be positive integers such that I < r < p < q. 

If G is the Kr-gluing of KP and Kq, then 

{ 
q if p = r, 

g( G) = q + p - 2r if p > r. 

Proof: Consider the following cases: 

Case l. Suppose p = r. Then G = Kq. Thus, g(G) = g(Kq) = q by 

Lemma 1.1. 

Case 2. Let p > r and x E V(G). If x E Ex(G), then x E I[Ex(G)]. If 

x Ex(G), then x E V(G)\Ex(G) = V(Kr). Let u E [V(Kq)\V(Kr)] and 

v E [V(Kv)\V(Kr)]. Note that da(u,v) = 2. Thus, [u,x,v] is au-v geodesic; 

that is, x E J(u, v]. Since u, v E Ex(G), we have x E J[Ex(G)). Hence, 

I[Ex(G)] = V(G). 

Therefore, by definition, g(G) = IEx(G)I = q + p - 2r. 

Theorem 2.4 Let p, q and r be positive integers such that 1 < r < p < q. 

If G is the Kr-gluing of KP and Kq, then 

h(G) _ { q if p = r, and 
- q + p - 2r if p > r. 

Proof: One can follow the proof of Theorem 2.3. 

The following result is an extension of Theorem 2.3 .. 

Theorem 2.5 Let p1,p2 , . ... ,Pn and r be positive integers such that 1 < 

r < P1 < P2 < · · · < Pn· If G is the Kr-gluing of Kp1 , Kv2 , ••• , and KPn' then 

g(G) === "n 
L.Ji===l Pi - nr. 

129 



~T~H~E~M~IN~D~A~N~A~O~F~O~R~U~M~ ____________ v_o_L_. _X_I_X_N--.::0..:_2 

Proof: As in the proof of Theorem 2.3 (Case 2), we can show 
th

at 80 ::::: 

• • um geodetic set f 
[V(Kp

1
)\V(I<r)] u ... u [V(Kp

0
)\V(Kr)] is a minim 

O 
G. 

Therefore, by definition, the result now follows. 0 

3 Graphs Obtained by Deletion of Edges 

Definition 3.1 Let Kn be the complete graph of order n > 3 and n a 

family of complete proper su~graphs of Kn· We say that n is an independent 

set (family) if no two distinct subgraphs in n have a common vertex. 

Definition 3.2 Let Kn be the complete graph of order n > 3 and nan 

independent family of complete proper subgraphs of Kn, each of order at 

least 2. The graph G obtained from Kn by deleting the edges inn, denoted 

by Kn \E(O), is the graph of order n such that xy E E( G) if and only if xy 

' is not an edge in any subgraph inn. 

' 
Theorem 3.3 Let Kn be complete graph of order n > 3 and n be an 

independent family of complete proper subgraphs of Kn, each of order at least 

2. If G = Kn \E(O) and k = min{p: KP E O}, then 

2, if k = 2 

g(G) = 3, if k = 3 

4, if k f= 2, 3 and 1n1 > 2. 

P, ifO={KP}. 

Proof: Consider the ff. cases: 
Since 

Case 1. Suppose k = 2 and let V(K
2

) = {a b} Then d( a, b) ==== 

2
• . 

' • 'fhlS 

x E /(a, b} for all x </. V(K2), it follows that V( G), V(K2) /[a, b]. 

implies that V(K ) • · . . . G Th g(G) :;::; 
2
• 

2 is a m1n1mum geodetic set 1n . us, 
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Case 2. Suppose k = 3. Let V(K3) = {x, y, z}. Clearly, V(G) c V(K3) c 
J[V(K3)]; hence V(K3) is a geodetic set in G. If g(G) = 2, then there exists 

5 :::: {a,b} such that d(a,b) = 2 and V(G) = I[S]. In particular, x E I[a,b] 
for all x E V ( G) "S. This implies that K2 = ( {a, b}) E n, contrary to our 
assumption. 

Case 3. Suppose k > 4 and IOI > 2. It is routine to show that g( G) > 4. 
Let Kp, Kq be distinct elements of n, a, b E V(Kp) and x, y E V(Kq)- Then 
J[S] = V(G) for S = {a,b,x,y}. Thus, g(G) = 4. 

Case 4. Suppose n = {Kp} and let S be a geodetic set in G. Let x E V(Kp)-
If x S, then there exist a, b E S such that x E J[a, b). This implies that 
d(a,b) = 2; hence a,b E V(Kp)- It follows that ax,bx tJ_ E(G) which is 
impossible. Therefore, x ES; hence, V(Kp) CS. Since I[V(Kp)] = V(G), 
V(Kp) is a minimum geodetic set. Therefore g(G) = p. 

The following is a quick consequence of Theorem 3.3. 

Corollary 3.4 Let Kn be complete graph of ordern > 3. If G is the graph 
of order n obtained from Kn by deleting an independent family of edges, then 
g(G) = 2. 

The following result is due to Chartrand, Harary and Zang [10). 

Theorem 3.5 If vis a vertex of a graph G such that (N(v)) is complete 
( 
th

at is, v E V ( G)), then v belongs to every hull set and every geodetic set of G. 

Theorem 3.6 Let Kn be complete graph of order n > 3 and n an inde-
Pendent r ·l 

h f d t l t 2 Jami Y of complete proper subgraphs of Kn, eac o o~ er a eas • 
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If G = Kn \E(O), then 

{ 
2 if 1n1 > 2 

h(G) = P if n = {Kp}· 

P f . S G _ K \E(") Consider the following cases: roo . uppose - n ll, • 

Case 1. Suppose n = {Kp}· Let S = V(Kp) and choose x, Y E S. Then 

dc(x, y) = 2. If z ¢ S, then [x, z, y] is an x-y geodesic. Thus, V( G) C J(S). 

This means that [S] = V(G); that is, Sis a hull set in G. Moreover, Sis a 

minimum huli'set in G by Theorem 3.5. Therefore, h(G) = ISi = p. 

Case 2. Suppose IOI > 2. Fix H = Kq E 0. Choose a, b E V(H) and let 

A= {a, b}. Clearly, dc(a, b) = 2. Also, if c ¢ V(H), then (a, c, b] is an a-b 

geodesic. This implies that (V(G)\ V(H)) U A C I(A]. Choose x, y E Kp, 

where KP E (O\{H} ). Then x, y E J(A] and dc(x, y) = 2. Note that if 

w E V(H), then [x, w, y] is an x-y geodesic. This shows that V(H) C J2(A). 

Since I[A] c I 2 [A], it follows that V(G) c J2 [A). Thus, J 2 [A) = V(G); that 

is, A is a hull set in G. Since singleton subsets are convex sets, it follows 

that A is a minimum hull set in G. Therefore h( G) = 2. D 

The following result is a direct consequence of Theorem 3.6. 

Corollary 3. 7 Let Kn be complete graph of order n > 3. If G is a graph 

0! order n obtained from Kn by deleting an independent set of edges, then 

h(G) = 2. 
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