On the Geodetic and Hull Numbers of Some Graphs

Gilbert B. Cagaanan Sergio R. Canoy, Jr.

Abstract

Let G be a connected graph, u and v be vertices of G and I[u, v]the closed interval consisting of u, v and all vertices lying on some u-v geodesic. If $S \subseteq V(G)$, then I[S] is the union of all sets I[u, v]for all $u, v \in S$. A subset S of V(G) is called a geodetic set in G if I[S] = V(G). The minimum cardinality of a geodetic set in G is called the geodetic number of G. The convex hull [S] of a subset S of V(G)is defined as the smallest convex set in G containing S. The minimum cardinality among the subsets S of V(G) with [S] = V(G) is called the hull number of G. In this paper, we give the geodetic number and the hull number of some graphs.

Keywords: graph, geodetic number, hull number, gluing, deletion

Preliminaries 1

Let G be a connected simple graph and $d_G(x, y)$ be the length of a shortest path connecting two vertices x and y of G. The couple $(V(G), d_G)$, where

GILBERT B. CAGAANAN has a Ph.D. in Mathematics from MSU-Iligan Institute of Technology, Iligan City. He is a Professor of Mathematics in the Related Subjects Department, School of Engineering Technology. SERGIO R. CANOY, JR. is a Professor of Mathematics in the College of Science and Mathematics, MSU-IIT, Iligan City. This research was partly funded by the Department of Science and Technology-Philippine Council for Advanced Science and Technology Research and Development.

THE MINDANAO FORUM

V(G) is the vertex set of G, is a metric space. An x-y path, denoted by P(x, y), of length $d_G(x, y)$ is called an x-y geodesic. A subset S of V(G) is convex if for every two vertices $x, y \in S$, the vertex set of every x-y geodesic convex if for every two vertices x and y of G, the symbol I[x, y] is is contained in S. For every two vertices x and y of G, the symbol I[x, y] is used to denote the set consisting of x, y and all vertices lying on some x-y geodesic. A subset S of V(G) is called a geodetic set in G if I[S] = V(G), where $I[S] = \bigcup_{x,y \in S} I[x, y]$. The geodetic number of a connected graph G is defined as the cardinality of a minimum geodetic set. It can easily be verified that $S \subseteq I[S]$ and that I[S] = S if and only if S is convex. Convexity in graphs was discussed in [16]. This concept was investigated in [2], [3], [7], [11] and [12]. Some related results on the concept of geodetic number of a graph were obtained in [1], [5], [8], [9], and [15].

The convex hull of a subset S of V(G), denoted by [S], is the smallest convex set in G containing S. It can be formed from the sequence $\{I^p[S]\}$, where p is a non-negative integer, $I^0[S] = S$, $I^1[S] = I[S]$, and $I^p[S] =$ $I[I^{p-1}[S]]$ for $p \ge 2$. For some p_1 , we must have $I^q[S] = I^p[S]$ for all $q \ge p$. Further, if p is the smallest non-negative integer such that $I^q[S] = I^p[S]$ for all $q \ge p$, then $I^p[S] = [S]$.

A subset S of V(G) is a hull set in G if [S] = V(G). A hull set of minimum cardinality is called a minimum hull set in G. The hull number h(G) of G is the cardinality of a minimum hull set in G. These concepts were introduced by Everett and Seidmann [13] and were investigated in [4], [5], [6] and [10].

For other graph theoretic terms which are assumed here, readers are ad-

The following two lemmas were stated in [2].

Lemma 1.1 [2] Let G be a connected graph. Then g(G) = |V(G)| if and only if G is a complete graph.

Lemma 1.2 [2] Let G be a connected graph. Then h(G) = |V(G)| if and only if G is a complete graph.

Proof: Suppose G is a complete graph. If $S \subseteq V(G)$, then S induces a complete subgraph of G. It follows that S is convex in G and hence, S = [S]. This means that [S] = V(G) if and only if S = V(G). Therefore, h(G) = |V(G)|.

Conversely, suppose h(G) = |V(G)|. Assume further that G is not complete. Then there exist vertices $a, b \in V(G)$ such that $d_G(a, b) = 2$. Let c be a vertex in some a-b geodesic that is distinct from a and b. Set $S = V(G) \setminus \{c\}$. Clearly, S is not convex in G. Also, because c is in some a-b geodesic, it follows that $c \in I[S] \subseteq [S]$. Thus, [S] = V(G).

Therefore $h(G) \leq |S| = |V(G)| - 1$. This contradicts our assumption that h(G) = |V(G)|. Therefore G is a complete graph.

A vertex v in a connected graph G is an *extreme vertex* if the set of neighbors N(v) of v induces a complete subgraph of G. In what follows, Ex(G) denotes the set of extreme vertices in G.

Theorem 1.3 Let G be a connected graph. If $x \in Ex(G)$, then $V(G) \setminus \{x\}$ is a convex set.

Proof: Let $x \in Ex(G)$ and let $a, b \in C = V(G) \setminus \{x\}$. If a and b are heighbors of x, then $d_G(a, b) = 1$ and so, the vertex set of every a-b geodesic is contained in C.

Suppose now that none of a and b is a neighbor of x. Clearly, the vertex set of every a-b geodesic is contained in C if $d_C(a,b) \leq 3$. So, suppose $d_G(a,b) \geq 4$. Suppose further that x is in some a-b geodesic $P_{r+2}(a,b) =$ $[a, x_1, \ldots, x_r, b]$ $(r \geq 3)$. Then there exists $k \in \{1, 2, \ldots, r-2\}$ such that $x_{k+1} = x$. This implies that x_k and x_{k+2} are neighbors of x. Since $x \in Ex(G)$, $x_k x_{k+2} \in E(G)$. Thus, $[a, x_1, \ldots, x_k, x_{k+2}, \ldots, x_r, b]$ is a path connecting a and b. This contradicts the fact that $P_{r+2}(a, b)$ is an a-b geodesic. Therefore x cannot be a vertex in any a-b geodesic.

If one of a and b is a neighbor of x, then a slightly similar argument as above can be used to prove that the vertex set of every a-b geodesic is contained in C.

Therefore, $V(G) \setminus \{x\}$ is a convex set.

2 K_r-gluing of Complete Graphs

Definition 2.1 Let K_{p_1}, K_{p_2}, \ldots and K_{p_n} be complete graphs, each containing a complete subgraph K_r $(r \ge 1)$. The graph G obtained from the union of these n complete graphs by identifying the K_r 's (one from each complete graph) in an arbitrary way is called the K_r -gluing of K_{p_1}, K_{p_2}, \ldots and K_{p_n} .

Remark 2.2 Let p, q and r be positive integers such that $1 \leq r \leq p \leq q$. If G is the K_r -gluing of K_p and K_q , then

$$Ex(G) = \begin{cases} V(G) & \text{if } r = p, \\ V(G) \setminus V(K_r) & \text{if } r < p. \end{cases}$$

Theorem 2.3 Let p, q and r be positive integers such that $1 \le r \le p \le q$. If G is the K_r -gluing of K_p and K_q , then

$$g(G) = \begin{cases} q & \text{if } p = r, \\ q + p - 2r & \text{if } p > r. \end{cases}$$

Proof: Consider the following cases:

Case 1. Suppose p = r. Then $G = K_q$. Thus, $g(G) = g(K_q) = q$ by Lemma 1.1.

Case 2. Let p > r and $x \in V(G)$. If $x \in Ex(G)$, then $x \in I[Ex(G)]$. If $x \notin Ex(G)$, then $x \in V(G) \setminus Ex(G) = V(K_r)$. Let $u \in [V(K_q) \setminus V(K_r)]$ and $v \in [V(K_p) \setminus V(K_r)]$. Note that $d_G(u, v) = 2$. Thus, [u, x, v] is a u-v geodesic; that is, $x \in I[u, v]$. Since $u, v \in Ex(G)$, we have $x \in I[Ex(G)]$. Hence, I[Ex(G)] = V(G).

Therefore, by definition, g(G) = |Ex(G)| = q + p - 2r.

Theorem 2.4 Let p, q and r be positive integers such that $1 \le r \le p \le q$. If G is the K_r -gluing of K_p and K_q , then

$$h(G) = \begin{cases} q & \text{if } p = r, \text{ and} \\ q + p - 2r & \text{if } p > r. \end{cases}$$

Proof: One can follow the proof of Theorem 2.3.

The following result is an extension of Theorem 2.3.

Theorem 2.5 Let p_1, p_2, \ldots, p_n and r be positive integers such that $1 \leq r < p_1 \leq p_2 \leq \cdots \leq p_n$. If G is the K_r -gluing of K_{p_1}, K_{p_2}, \ldots , and K_{p_n} , then $q(G) = \sum_{i=1}^n p_i - nr$.

Proof: As in the proof of Theorem 2.3 (Case 2), we can show that $S_0 \approx [V(K_{p_1}) \setminus V(K_r)] \cup \cdots \cup [V(K_{p_n}) \setminus V(K_r)]$ is a minimum geodetic set of G. Therefore, by definition, the result now follows.

3 Graphs Obtained by Deletion of Edges

Definition 3.1 Let K_n be the complete graph of order $n \geq 3$ and Ω_n family of complete proper subgraphs of K_n . We say that Ω is an *independent* set (family) if no two distinct subgraphs in Ω have a common vertex.

Definition 3.2 Let K_n be the complete graph of order $n \geq 3$ and Ω an independent family of complete proper subgraphs of K_n , each of order at least 2. The graph G obtained from K_n by deleting the edges in Ω , denoted by $K_n \setminus E(\Omega)$, is the graph of order n such that $xy \in E(G)$ if and only if xyis not an edge in any subgraph in Ω .

Theorem 3.3 Let K_n be complete graph of order $n \ge 3$ and Ω be an independent family of complete proper subgraphs of K_n , each of order at least 2. If $G = K_n \setminus E(\Omega)$ and $k = \min\{p : K_p \in \Omega\}$, then

$$g(G) = \begin{cases} 2, & \text{if } k = 2\\ 3, & \text{if } k = 3\\ 4, & \text{if } k \neq 2, 3 \text{ and } |\Omega| \ge 2\\ p, & \text{if } \Omega = \{K_p\} \end{cases}.$$

Proof: Consider the ff. cases:

Case 1. Suppose k = 2 and let $V(K_2) = \{a, b\}$. Then d(a, b) = 2. Since $x \in I[a, b]$ for all $x \notin V(K_2)$, it follows that $V(G) \smallsetminus V(K_2) \subseteq I[a, b]$. This implies that $V(K_2)$ is a minimum geodetic set in G. Thus, g(G) = 2.

Case 2. Suppose k = 3. Let $V(K_3) = \{x, y, z\}$. Clearly, $V(G) \subseteq V(K_3) \subseteq I[V(K_3)]$; hence $V(K_3)$ is a geodetic set in G. If g(G) = 2, then there exists $S = \{a, b\}$ such that d(a, b) = 2 and V(G) = I[S]. In particular, $x \in I[a, b]$ for all $x \in V(G) \setminus S$. This implies that $K_2 = \langle \{a, b\} \rangle \in \Omega$, contrary to our assumption.

Case 3. Suppose $k \ge 4$ and $|\Omega| \ge 2$. It is routine to show that $g(G) \ge 4$. Let K_p, K_q be distinct elements of Ω , $a, b \in V(K_p)$ and $x, y \in V(K_q)$. Then I[S] = V(G) for $S = \{a, b, x, y\}$. Thus, g(G) = 4.

Case 4. Suppose $\Omega = \{K_p\}$ and let S be a geodetic set in G. Let $x \in V(K_p)$. If $x \notin S$, then there exist $a, b \in S$ such that $x \in I[a, b]$. This implies that d(a, b) = 2; hence $a, b \in V(K_p)$. It follows that $ax, bx \notin E(G)$ which is impossible. Therefore, $x \in S$; hence, $V(K_p) \subseteq S$. Since $I[V(K_p)] = V(G)$, $V(K_p)$ is a minimum geodetic set. Therefore g(G) = p. \Box

The following is a quick consequence of Theorem 3.3.

Corollary 3.4 Let K_n be complete graph of order $n \ge 3$. If G is the graph of order n obtained from K_n by deleting an independent family of edges, then g(G) = 2.

The following result is due to Chartrand, Harary and Zang [10].

Theorem 3.5 If v is a vertex of a graph G such that $\langle N(v) \rangle$ is complete (that is, $v \in V(G)$), then v belongs to every hull set and every geodetic set of G.

Theorem 3.6 Let K_n be complete graph of order $n \ge 3$ and Ω an independent family of complete proper subgraphs of K_n , each of order at least 2. If $G = K_n \setminus E(\Omega)$, then

$$h(G) = \begin{cases} 2 & \text{if } |\Omega| \ge 2\\ p & \text{if } \Omega = \{K_p\}. \end{cases}$$

Proof: Suppose $G = K_n \setminus E(\Omega)$. Consider the following cases:

Case 1. Suppose $\Omega = \{K_p\}$. Let $S = V(K_p)$ and choose $x, y \in S$. Then $d_G(x, y) = 2$. If $z \notin S$, then [x, z, y] is an x-y geodesic. Thus, $V(G) \subseteq I[S]$. This means that [S] = V(G); that is, S is a hull set in G. Moreover, S is a minimum hull set in G by Theorem 3.5. Therefore, h(G) = |S| = p.

Case 2. Suppose $|\Omega| \ge 2$. Fix $H = K_q \in \Omega$. Choose $a, b \in V(H)$ and let $A = \{a, b\}$. Clearly, $d_G(a, b) = 2$. Also, if $c \notin V(H)$, then [a, c, b] is an $a \cdot b$ geodesic. This implies that $(V(G) \setminus V(H)) \cup A \subseteq I[A]$. Choose $x, y \in K_P$, where $K_P \in (\Omega \setminus \{H\})$. Then $x, y \in I[A]$ and $d_G(x, y) = 2$. Note that if $w \in V(H)$, then [x, w, y] is an x-y geodesic. This shows that $V(H) \subseteq I^2[A]$. Since $I[A] \subseteq I^2[A]$, it follows that $V(G) \subseteq I^2[A]$. Thus, $I^2[A] = V(G)$; that is, A is a hull set in G. Since singleton subsets are convex sets, it follows that A is a minimum hull set in G. Therefore h(G) = 2.

The following result is a direct consequence of Theorem 3.6.

Corollary 3.7 Let K_n be complete graph of order $n \ge 3$. If G is a graph of order n obtained from K_n by deleting an independent set of edges, then h(G) = 2.

References

 M. Atici, Graph operations and geodetic numbers. Congressus Numerantium 141 (1999) 95-110. JUNE 2005 ON THE GEODETIC AND HULL NUMBERS OF SOME GRAPHS

- F. Buckley, and F. Harary, Distance in Graphs. Addison-Wesley, Redwood City, CA (1990).
- [3] G. B. Cagaanan, S. R. Canoy, Jr. and S. V. Gervacio, A non-connectivity concept: how does it relate to convexity in graphs? Journal of Research in Science and Engineering 1 (2003) 11-13.
- [4] G. B. Cagaanan and S. R. Canoy Jr., On the hull sets and hull number of the Cartesian product of graphs. Discrete Math. 287 (2004) 141-144.
- [5] S. R. Canoy Jr. and G. B. Cagaanan, On the geodesic and hull numbers of the sum of graphs. *Congressus Numerantium* 161 (2003) 97-104.
- [6] S. R. Canoy Jr. and G. B. Cagaanan, On the hull number of the composition of graphs, Ars Combinatoria (In press).
- [7] S. R. Canoy, Jr., and I. J. L. Garces, Convex sets under some graph operations. Graphs and Combinatorics 18 (2002) 787-793.
- [8] G. Chartrand, F. Harary, and P. Zhang, Geodetic sets in graphs. Discuss. Math. Graph Theory 20 (2000) 129-138.
- [9] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph. Networks 39 (2002) 1-6.
- [10] G. Chartrand, F. Harary, and P. Zhang, On the hull number of a graph. Ars Combinatoria 57 (2000) 129-139.
- [11] G. Chartrand, C. E. Wall and P. Zhang, The convexity number of a graph. Graphs and Combinatorics 18 (2002) 209-217.

۰.

- [12] G. Chartrand and P. Zhang, Convex sets in graphs. Congressus Numerantium 136 (1999) 19-32.
- [13] M. G. Everet and S. B. Seidman, The hull number of a graph. Discrete Math. 57 (1985) 217-223.
- [14] F. Harary, Graph Theory. Addison-Wesley, Reading MA (1969).
- [15] F. Harary, E. Loukakis and C. Tsourus, The geodetic number of a graph. Mathl. Comput. Modeling 17 (1993) 89-95.
- [16] F. Harary and J. Nieminen, Convexity in graphs. J. Differential Geom. 16 (1981) 185-190.