On Semi-Open and Semi-Closed Functions

Sergio R. Canoy, Jr.

Abstract

In this paper the concepts of semi-open and semi-closed functions are introduced. The conditions involved are weaker than those of the open and closed functions are introduced. Some equivalent statements of these newly-defined concepts are likewise offered.

Keywords: semi-open, semi-closed, function, semi-continuous, semi-closure

1 Introduction

In 1963, N. Levine [4] introduced the concept of semi-open set in topological spaces. He then used this new term to define the property of semi-continuity for functions from a topological space into another topological space. In [1], Canoy and Benitez gave some equivalent statements of semi-continuity. In particular, an equivalent statement involving the new concept called semiclosure of a set is given. This present paper deals with the semi-open and the semi-closed functions. We shall give some characterizations of these new properties of functions.

[!] **SERGIO R. CANOY, JR.** is a Professor of Mathematics in the Department o^f hematics, College of Science and Mathematics, MSU-IIT, Iligan City.

Throughout this paper, X and Y are topological spaces.

Definition 1.1 A subset *O* of *X* is *semi-open* if $O \subseteq cl(int(O)]$ (closure of the interior of O). Equivalently, O is semi-open open if there exists a_n open set *G* in *X* such that $G \subseteq O \subseteq cl(G)$. A subset *F* of *X* is *semi-closed* if the complement F^c of F is semi-open.

It is easy to see from Definition 1.1 that every open set (closed set) in X is semi-open (resp. semi-closed) in X . Although the family of all semi-open sets in a topological space X does not form a topology on X , Levine (see [4]) managed to show the following useful result.

Theorem 1.2 (Levine) Let $\{O_\alpha : \alpha \in I\}$ be a collection of semi-open *sets in X. Then* \cup { O_{α} : $\alpha \in I$ } *is a semi-open set in X.*

Definition 1.3 A function $f: X \to Y$ is *semi-continuous* on *X* if $f^{-1}(0)$ is semi-open in *X* for every open set O in *Y.*

Observe that by definition, a continuous function is always semi-continuous. However, there are semi-continuous functions which are not continuous. Readers are referred to [4] for an illustration.

Definition 1.4 A function $f: X \to Y$ is *semi-open* (semi-closed) on X if $f(G)$ is semi-open (resp. semi-closed) in *X* for every open set *G* in *X*.

The following two results are simple. The second of which says that for bijective functions, the two concepts are equivalent.

. *per,,* **Theorem 1.5** If $f: X \to Y$ is open (closed) on X, then f semi-of *{resp. closed) on X.*

JUNE 2005

Theorem 1.6 Let $f : X \to Y$ be a bijective function. Then f is semi- Ω_{gen} *if and only if it is semi-closed A.*

---------------...:...:...::..:.::=--:~:..:::.:::..::::::::

Remark t. 7 *A semi-open function need not be semi-continuous.*

To see this, consider $X = Y = \{1, 2, 3, 4\}$, $T_1 = \{\emptyset, X, \{3\}, \{2, 4\}, \{2, 3, 4\}\}$, and $T_2 = {\emptyset, X, {2}, {3}, {2,3}, {2,4}, {2,3,4}}$. Define $f: (X, T_1) \rightarrow$ (Y, T_2) by $f(x) = x$. Since $T_1 \subset T_2$, it follows that *f* is an open function. Thus, by Theorem 1.5, f is a semi-open function. Now, take $O = \{2\}$. $T_{\text{then}} O$ is open in *Y* and $f^{-1}(O) = \{2\}$. Since $T_1 - int(\{2\}) = \emptyset$, it follows $\text{R}_{\text{nat}} T_1 - cl[T_1 - int(\{2\})] = \varnothing. \text{ Hence } \{2\} \nsubseteq T_1 - cl[T_1 - int(\{2\})], \text{ that is,}$ $f^{-1}(O) = \{2\}$ is not semi-open in *X*. Accordingly, *f* is not semi-continuous on X .

Remark 1.8 *A semi-continuous function need not be semi-open.*

Consider $Y = \{1, 2, 3, 4\}$ and $T = \{\emptyset, Y, \{3\}, \{2, 4\}, \{2, 3, 4\}\}\$. Let $A =$ $\{1,4\}$ carry the relative topology T_A and define $f : (A, T_A) \rightarrow (Y, T)$ by $f(a) = a$ (*f* is really the inclusion function). Since $f^{-1}(O) = O \cap A$ is open in *A* for every O in *T,* it follows that *f* .is a continuous function. Therefore, *f* is a semi-continuous function. Next, choose $G = \{4\}$. Since $G = A \cap 2, 4$, *G* is an open set in *A*. By definition, $f(G) = \{4\}$. Since $\{4\}$ is not in *T*, $T-int({4}) = \emptyset$. This implies that $T-cl[T-int({4})] = \emptyset$. Therefore $f(G) = \{4\}$ is not semi-open in *Y*. Accordingly, *f* is not semi-open on *A*.

Theorem 1.9 Let $f: X \to Y$ be a function. Then the following state*ments are equivalent.*

(i) f *is semi-open on* X

- (b) $f(int(A)) \subseteq \text{cl}[int(f(A))]$ for every $A \subseteq X$.
- $f(c)$ $f(B)$ is semi-open for every element B of a basis for Y .
- (d) For each $p \in X$ and every open set O in X containing p, there exists q *semi-open set G in Y such that* $f(p) \in G \subseteq f(O)$.

Proof: (a):(b): Suppose *f* is semi-open on *X* and let *A* be a subset of *X*. Since *f* is semi-open and *int*(*A*) is an open set in *X*, $f(int(A))$ is a semi-open set in *Y* by Definition 1.4. By Definition 1.1, we have $f(int(A)) \subseteq$ $\text{cl}\left[\text{int}(f(\text{int}(A)))\right]$ (closure and interior are with respect to the topology on *Y*). Now, since $int(A) \subseteq A$, $f(int(A)) \subseteq f(A)$. Therefore $f(int(A)) \subseteq$ $cl(int(f(int(A))] \subseteq cl(int(f((A))].$

 $(b):(c)$: Assume that statement (b) holds. Let B be an element of a base for *X*. Then *B* is open, i.e., $int(B) = B$. Therefore, by our assumption,

$$
f(int(B)) = f(B) \subseteq \text{cl}[int(f(B))].
$$

This means that $f(B)$ is semi-open in *Y* by Definition 1.1.

 $(c):(d)$: First, suppose that the image of every basic (open) set is semiopen. Let $p \in X$ and O an open set in X containing p. Then there exists a basic element *B* such that $p \in B \subseteq O$. Next, set $G = f(B)$. Then by assumption, *G* is semi-open set. Moreover, $f(p) \in G$ and $G \subseteq f(O)$.

(d):(a): Assume that statement in (d) holds. Let O be an open set in X and $z \in f(O)$. Choose $x \in O$ such that $f(x) = z$. By our assumption, there exists a semi-open set G_z containing z such that $G_z \subseteq f(O)$. It follows that $f(O) = \bigcup \{G_z : z \in f(O)\}.$ Therefore, by Theorem 1.2, $f(O)$ is a semi-open set in *Y*. Therefore, since *O* was arbitrary, f is semi-open in X .

The proof of the theorem is complete. \Box

We shall now give a characterization of semi-closed functions. To do this, δ_{inst} we recall a definition and some results in [2].

Definition 1.10 Let *A* be a subset of *X*. A point $p \in X$ is a *semi-closure point* of *A* if for every semi-open set *G* in *X*, $p \in G$ implies that $G \cap A \neq \emptyset$. The set of all semi-closure points of *A* is denoted by *scl (A).*

Theorem 1.11 Let $A \subseteq X$. Then

 (a) $A \subseteq \mathfrak{sol}(A);$

(b) *A* is semi-closed if and only if $A = \text{ccl}(A)$; and

(c) *scl(A) is the smallest semi-closed set containing A.*

Theorem 1.12 *A function* $f: X \to Y$ *is semi-closed on X if and only if scl*($f(A)$) \subseteq $f(cl(A))$ *for every subset A of X.*

Proof: Let *A* be a subset of *X* and suppose that *f* is semi-closed on *X.* Since $cl(A)$ is a closed set, the set $f(cl(A))$ is semi-closed in *Y*. Note that since $A \subseteq cl(A)$, we have $f(A) \subseteq f(cl(A))$. Theorem 1.11(c) now tells us that $scl(f(A)) \subseteq f(cl(A)).$

Conversely, suppose that $scl(f(A)) \subseteq f(cl(A))$ for every subset *A* of *X.* Let *K* be a closed subset of *X*. Then, by Theorem 1.11(a), $f(K) \subseteq$ *scl(f(K))*. By our assumption, it follows that $f(K) \subseteq \text{scl}(f(K)) \subseteq f(\text{cl}(K))$. Since K is closed, we know that $cl(K) = K$. Therefore we have $f(K) \subseteq$ $\mathcal{S}cl(f(K)) \subseteq f(K)$ showing that $f(K) = \mathcal{S}cl(f(K))$. By Theorem 1.11(b), $f(K)$ is a semi-closed set in *Y*. Therefore *f* is a semi-closed function. \square

151

References

- [l] Canoy, S.R., and Benitez, J., On semi-continuous functions, *The Manila Journal of Science,* **4 (2001) 22-25.**
- [2] Canoy, S. R., and Lemence, R. S., Semi-open sets and semi-closure of $_{\rm a}$ **set, Mindanao Forum, (In press).**
- [3] Dugundji, J., *Topology,* New Delhi Prentice Hall of India Private Ltd., **1975.**
- [4] Levine, N., Semi-open sets and semi-continuity in topological spaces, **American Mathematical Monthly, ⁷⁰(1963) 36-41.**