On the Steiner Number of the Composition of Graphs

Rolito G. Eballe

Abstract

External W-tree is a tree of minimum order that contains all of *W*
 $\frac{S(W)}{W}$ denote the set of **W**. ven a connected graph *G* and a non-empty subset *W* of $V(G)$, ner *W*-tree is a tree of minimum t $S(W)$ d $dE[W]$ denote the set of all vertices of *G* that lie on any Steiner tree. If $S(W) = V(G)$, then *W* is said to be a Steiner set of G. The Steiner number $st(G)$ of G is defined as the mimimum cardinality of a Steiner set of G. In this paper, we characterize the Steiner sets the composition $G[H]$ of a non-trivial connected graph G and connected graph H , We then disconnected graph H . We then present a formula that can be used to determine the Steiner number $st(G[H])$.

Keywords: graph, Steiner W-tree, Steiner set, Steiner number, composition

1 **1 Introduction**

Given a connected graph G and a non-empty subset W of $V(G)$, a Steiner $\text{Area is a tree of minimum order that contains all of } W.$ Let $S(W)$ denote set of all vertices of *G* that lie on any Steiner *W*-tree; the set $S(W)$

IROLITO G. EBALLE is an Associate Professor of Mathematics in the Depart- of Mathematics, Central Mindanao University Musuan, Bukidnon, Philippines. He can be contral Mindanao University Musuan, Bukidnon, Philippines. H h.D. in Mathematics from MSU-IIT. Iligan City. This research was supported last individual mission $\sum_{n=0}^{\infty}$ in Mathematics from MSU-IIT, Iligan City. This research was supported det_{tot} and μ the Commission on Higher Education of the Philippines - Mindanao Advanced Education $P_{\text{roject and AL}}$ on Higher Education of the Philippines - Mindanao Advanced Education $P_{\text{roject, and the Central Mindanao University Faculty Development Program}.$
153

 \sim \sim \sim \sim \sim \sim \sim

 $= V(G)$, then *W* is said eferred to as the Steiner interval of W. If $\mathcal{S}(W)$ _{iner set of minimum cardinality} to be a Steiner set of G . Accordingly, a Steiner s is the Steiner number is called a minimum Steiner set and this cardinal G contains a spanning tree, V (G) $t(G)$ of *G*. Since every connected graph G con- $G \text{ is connected of order } n \geq 2$, then Is always a Steiner set of G . Therefore, if G is connected \mathcal{L} $2 \leq st(G) \leq n$.

Steiner sets and Steiner numbers have been studied recently in [2] and [4). A more recent investigation is in [1), where the authors characterized the Steiner sets in the join $G + H$ and composition $G[H]$ of two non-trivial connected graphs *G* and *H.* One of the formulas obtained there can be stated as follows: $st(G[H]) = min{ |V(H) \setminus S'| : S' \text{ is a cutset of } H \text{ and no proper } }$ subset of S' disconnects H } if H is non-complete and G has a vertex of degree $|V(G)| - 1$; otherwise, $st(G[H]) = st(G) \cdot |V(H)|$. Although descriptions of Steiner sets of $G + H$ with either G or H (or both) disconnected can be found in (1), the equally challenging task of describing the Steiner sets of *G[H]* with *H* disconnected has been postponed.

In this paper, we shall characterize the Steiner sets in the composition $G[H]$ of a non-trivial connected graph G and a disconnected graph H . Our main objective is to obtain a formula that can be used to determine the Steiner number $st(G[H])$ of the composition $G[H]$. (Note that graphtheoretic terms not specifically defined here may be found in [3].)

2 Results

The composition of two graphs G and H , denoted by $G[H]$, is the graph with vertex set $V(G[H]) = V(G) \times V(H)$ and edge set $E(G[H])$ whose elements satisfy the adjacency condition: (u_1, v_1) is adjacent to (u_2, v_2) if and only if $u_1u_2 \in E(G)$, or $u_1 = u_2$ and $v_1v_2 \in E(H)$. Note that even if *H* is disconnected, the composition $G[H]$ is always connected provided G is connected.

Let $W \subseteq V(G[H])$. The *G-projection* W_G of W and the *H-projection* W_H of *W* are defined as follows:

> $W_G = \{u : (u, v) \in W \text{ for some } v \in V(H)\},\$ $W_H = \{v : (u, v) \in W \text{ for some } u \in V(G) \}.$

Theorem 2.1 *Let G be- a non-trivial connected graph and H a disconnected graph.* Let $W \subseteq V(G[H])$ *such that* $|W_G| = 1$. *Then W is a Steiner set of* G[H] *if and only if the following conditions hold:*

$$
(i) W_G = \{u\} \text{ for some } u \in V(G) \text{ with } deg_G(u) = |V(G)| - 1;
$$

$$
(ii) W_H = V(H).
$$

Proof: Assume that *W* is a Steiner set of $G[H]$; let $W_G = \{u\}$ and let $a \in V(G)$ such that *a* is adjacent to *u*. Clearly, $W = \{u\} \times W_H$. Since *W* is a Steiner set of $G[H]$ and G is non-trivial, it follows that $\langle W \rangle$ is disconnected; hence, any Steiner W-tree must have at least $|W| + 1$ vertices. But the adjacency of the vertices in $V(G[H])$ immediately shows that for any $b \in$ $V(H)$, the subgraph $\langle W \cup \{(a, b)\}\rangle$ is connected. Therefore, thinking of any spanning tree of $\langle W \cup \{(a, b)\}\rangle$, we can now conclude that every Steiner *W*tree has exactly $|W| + 1$ vertices. Since *W* is a Steiner set of $G[H]$, by definition every vertex of $G[H]$ is in some Steiner W-tree. Consequently, u must be adjacent to all the other vertices of *G*, or $deg_G(u) = |V(G)| - 1$.

□

Next, we show that $W_H = V(H)$ by contradiction. Assume that W_H is a proper subset of $V(H)$. Since *W* is a Steiner set of $G[H]$, every vertex of $G[H]$ is in some Steiner W-tree (whose order is $|W|+1$); thus, the subgraph $(W \cup \{(u, y)\})$ is connected for every $y \in V(H) \setminus W_H$. Since $W = \{u\} \times W_H$ it follows that the subgraph $\langle W_H \cup \{y\} \rangle$ is connected in *H* for every $y \in$ $V(H) \setminus W_H$. Consequently, $\langle W_H \cup (V(H) \setminus W_H) \rangle = \langle V(H) \rangle$ is connected, a contradiction to the hypothesis that *H* is disconnected. Therefore we must have $W_H = V(H)$.

The converse is straightforward.

The following result is a consequence of the above theorem.

Corollary 2. 2 *Let G be a non-trivial connected graph and ^Ha disconnected graph. Then G has no spanning star subgraph if and only if* $|W_G| \geq 2$ *for every Steiner set W of G[H].*

Proof: Suppose *G* has no spanning star subgraph. Suppose further that $G[H]$ has a Steiner set *W* with $|W_G| = 1$. Then $W_G = \{u\}$ for some $u \in V(G)$ with $deg(u) = m = |V(G)| - 1$. This implies that *G* has a spanning subgraph ^S• set *^W* $K_{1,m}$, contrary to our assumption. Thus, $|W_G| \geq 2$ for every Steine of $G[H]$. \cdot **II** \cdot **G** $G[H]$ Assume, [*H*].
Conversely, suppose $|W_G| \geq 2$ for every Steiner set *W* of *G*[*H*]. Assume,

where $n = |V(G)|$ the contrary that *G* has a spanning subgraph $K_{1,n-1}$, where n μ G has a spanning said μ -1, and σ order $n-1$, and Let $K_{1,n-1} = \langle u \rangle + \overline{K}_{n-1}$, where \overline{K}_{n-1} is the empty graph of order $n-1$, and $V(G)$. Then $W^* = \{u\} \times V(H)$ is a Steiner set of $G[H]$, by finder $V(G)$. 2.1. This clearly contradicts our assumption of the Steiner sets of $G[H]$. Therefore *G* does not have a spanning star subgraph.

Lemma 2.3 *Let G be a non-trivial connected graph and H a disconnected graph.* Let $W \subseteq V(G[H])$ such that $|W_G| \geq 2$, and let T^* be a Steiner W*tree. If* T *is a spanning tree of the subgraph* $\langle (V(T^*))_G \rangle$, *then* T *is a Steiner* W_G -tree. Moreover, $|V(T^*)| = |W| + |V(T) \setminus W_G|$.

Proof: The fact that *T** is connected in *G[H]* implies that the subgraph $\langle (V(T^*))_G \rangle$ is connected in *G*, and hence has a spanning tree. Let *T* then be a spanning tree of $\langle (V(T^*))_G \rangle$. Since $V(T^*)$ contains W, it follows that $V(T)$ contains W_G . Furthermore, $|V(T^*)| \geq |W| + |V(T) \setminus W_G|$.

Assume for contradiction that T is not a Steiner W_G -trae. Then there exists a tree T' in *G* containing all of W_G such that $|V'(I')| < |V(T)|$. If $V(T') = W_G$, then $\langle W_G \rangle$ is connected. Since $|W_G| \geq 2$, it follows that $\langle W \rangle$ is connected also. Consequently, $|W| = |V(T^*)|$ and $|W_G| = |V(T)|$. From $|V(T)| > |V(T')|$, we obtain a contradiction $|W_G| > |V(T')|$. Thus, $V(T') \setminus$ W_G is nonempty. Moreover, from the argument leading to the contradiction, the subgraph $\langle W \rangle$ must be disconnected and so is the subgraph $\langle W_G \rangle$ (note that W_G is not a singleton).

Let R_1, R_2, \cdots be the vertex sets of the components of $\langle W_G \rangle$. We propose to show that we can form a tree in *G[H]* containing *W* such that its order is smaller than that of T^* . To do this, consider all vertices of the form (x, z) where z is a fixed element of $V(H)$ and $x \in V(T')\setminus W_G$. If $\langle W \cap (R_i \times V(H)) \rangle$ ¹⁸ connected, take a spanning tree T_i^* . (Note that if $\langle W \cap (R_j \times V(H)) \rangle$ is disconnected, then necessarily R_j is a singleton.) By using the adjacency relation of the vertices of the tree T' in G , form a tree T^{**} in $G[H]$ in the following manner: connect each T_i^* , through one of its vertices, to any appro-Priate vertex (x, z) , $x \in V(T') \setminus W_G$; if $\langle W \cap (R_j \times V(H)) \rangle$ is disconnected,

disregard all its edges and then connect all its vertices to any appropriate vertex (x, z) , $x \in V(T') \setminus W_G$. Furthermore, include in T^{**} any edge connecting (x, z) and (x', z) whenever $x, x' \in V(T') \setminus W_G$ and $xx' \in E(T')$. Now the tree T^{**} obviously contains W , and that $|V(T^{**})| = |W| + |V(T') \setminus W_G|$. Since $|V(T') \setminus W_G|$ < $|V(T) \setminus W_G|$, it follows that $|V(T^{**}| < |V(T^*)|$, a contradiction to the hypothesis that T^* is a Steiner W-tree. This contradiction nally implies that T must be a Steiner W_G -tree.

Now let us consider the possibilities for W_G . If $W_G = V(T)$, then $\langle W_G \rangle$ is connected. Since $\langle W \rangle$ must be connected also, it follows that $V(T^*) = W$, and hence the equation $|V(T^*)| = |W| + |V(T) \setminus W_G|$ holds. On the other hand, if W_G is a proper subset of $V(T)$, then $\langle W_G \rangle$ is necessarily disconnected. Using a similar argument as in the preceding paragraph, we can form a tree *T*¹ in *G[H]* containing *W* and with exactly $|W| + |V(T) \setminus W_G|$ vertices. Cornbining this with the inequality in the first paragraph and the fact that *T*^{*} is a Steiner *W*-tree, we obtain $|V(T^*)| = |W| + |V(T) \setminus W_G|$. This □ completes the proof.

Theorem 2.4 *Let G be a non-trivial connected graph and H a discon* $nected graph, and let W \subseteq V(G[H]) such that $|W_G| \geq 2$. If W is a Steiner$ set of $G[H]$, then the G -projection W_G of W is a Steiner set of G . Moreover, $W = W_G \times V(H).$

Proof: To show that $S(W_G) = V(G)$, let $u \in V(G)$. Let $v \in V(H)$ and W -treef If $x = (u, v)$. Since W is a Steiner set of $G[H]$, there exists a Steiner W. \mathbb{R}^x containing *x* as a vertex. Now if *T* is a spanning tree of $\langle (V(T^x))G \rangle$ en containing x as a vertex. Now if I is a spanning $\frac{1}{2}$ is $\frac{1}{2}$ follows that ever *T* is a Steiner *W_G*-tree by Lemma 2.3. Since $u \in V(T)$, it follows that every

ON THE STEINER NUMBER OF THE COMPOSITION OF GRAPHS **JUNE 2005**

POSITION OF **GRAPHS** the other inclusion $S(W_G) \subseteq V(G)$ is obvious \mathbb{R}^n . But $V(G) \subseteq S(W_G)$. But $S(W_G)$. $V(G) \leq V(G)$
nce W_G is a Stair hence, W_G is a Steiner set of G. \sim Steiner set of G.

 $W = W_G \times V(H)$, it suffices ∞ show that $W_G \times V(H) \subseteq V$ Fortcontradiction, suppose there exists a vertex $(x, y) \in W_G \times V(H)$ such $(x, y) \notin W$. Let T^* be a tree in $G(H)$ that $(x, y) \notin W$. Let T^* be a tree in $G[H]$ such that $W \cup \{(x, y)\} \subseteq V(T^*)$. If a spanning tree of $\langle (V(T^*))_G \rangle$, then $|V(T^*)| \ge |W| + 1 + |V(T')| \setminus W$
Lemma 2.3, T^* cannot be a Steiner W to \subset $2.3, T^{3}$ cannot be a Steiner W-tree. Consequently, $(x, y) \notin S(W)$ furnation to the assumption that *W* is a Steiner set of $G[H]$. Hence, we writex in $W_G \times V(H)$ is in W_G by vertex in $W_G \times V(H)$ is in W , or $W_G \times V(H) \subseteq W$ □

Theorem 2.5 *Let G be a nontrivial connected* ed graph and H a disc^{ed} and H a disc $ph,$ and let $W \subseteq V(G[H])$ $V(G[H])$ such that $|W_G| \geq 2$. Then, *W* is then $S(f[H])$ if \longrightarrow is a such that $|W_G| \geq 2$. *set of G[H] if and only if* $W = Q \times V(H)$, where *Q is a Steiner is*

Proof: Suppose *W* is a Steiner set of *G*[*H*]. If we take $Q = W_G$, then Q is a Steiner set of *G* and that $W = Q \times V(H)$. $Wercol_Y$

Q $W = Q \times V(H)$ where *Q* is a Steiner set of *G*. $Q = V(G)$, then obviously $Q \times V(H)$ is a Steiner set of $G[H]$. So assume Q is a proper subset of $V(G)$. Necessarily \vee is a proper subset of $V(G)$. Necessarily, $\langle Q \rangle$ is disconnected. As equence, all Steiner Q-trees are of order $|Q| + k$ for some positive integer-By Lemma 2.3, every Steiner *W*-tree has an order $(|V(H)| \cdot |Q|)$ + $V(G)$ $u_1, u_2, \ldots, u_{i(v,w)}$ and $V(H) = \{v, v\}$ $u_1, u_2, \cdots, u_{|V(G)|}$ and $V(H) = \{v_1, v_2, \cdots, v_{|V(H)|}\}.$ For an element (with an element of an el Formular $(u_i, v_j) \in V(G[H])$, let T^{u_i} be a Steiner *Q*-tree containthe vertex sets of the company of the components of the components of the components R_1, R_2, \ldots the vertex sets of the components

of $\langle Q \rangle$. Clearly $\langle R_s \times V(H) \rangle$ is connected if and only if R_s is not a singleton. Now if R_{α} is not a singleton, take a spanning tree T_{α} of $\langle R_{\alpha} \times V(H) \rangle$ such that $(u_i, v_j) \in V(T_\alpha)$ in case $u_i \in R_\alpha$. By using the adjacency of the vertices of the tree T^{u_i} in *G*, form a tree $T^{(u_i, v_j)}$ in *G*[*H*] in the following manner: connect each T_{α} , through one of its vertices, to any appropriate vertex (x, v_j) , $x \in V(T^{u_i}) \setminus Q$; if R_β is a singleton, disregard all the edges of $\langle R_\beta \times V(H) \rangle$ and then connect all its vertices to any appropriate vertex (x, v_j) , $x \in V(T^{u_i}) \setminus Q$. In addition, include in $T^{(u_i, v_j)}$ any edge connecting (x, v_j) and (x', v_j) whenever $x, x' \in V(T^{u_i}) \setminus Q$ and $xx' \in E(T^{u_i})$. The vertex set of the constructed tree $T^{(u_i, v_j)}$ has the following properties: $W \subseteq V(T^{(u_i, v_j)}), (u_i, v_j) \in V(T^{(u_i, v_j)})$ and $|V(T^{(u_i, v_j)})| = (|V(H)| \cdot |Q|) + k$. So $T^{(u_i, v_j)}$ must be a Steiner W-tree. Consequently, $(u_i, v_j) \in S(W)$, or $V(G[H]) \subseteq S(W)$. Since $S(W) \subseteq V(G[H])$, we have $S(W) = V(G[H])$. Therefore, W is a Steiner set of $G[H]$. □

Our final result is a consequence- of Theorem 2.1, Corollary 2.2 and Theorem 2.5. This result gives the Steiner number of the composition $G[H]$, where *G* is nontrivial and connected while *H* is disconnected.

Theorem 2.6 *Let G be a nontrivial connected graph and H a disconnected graph. If G has a vertex of degree* $|V(G)|-1$, *then st*($G[H]) = |V(H)|$; *otherwise,* $st(G[H]) = st(G) \cdot |V(H)|$.

Proof: Suppose *G* has a vertex of degree $|V(G)| - 1$. By Theorem 2.1, the Steiner sets of $G[H]$ whose G-projections are singletons are exactly those of the form $W = W_G \times V(H)$, where $W_G = \{u\}$ for some $u \in V(G)$ th $deg_G(u) = |V(H)| - 1$. On the other hand, by Theorem 2.5, the Steiner sets JUNE 2005 *:..----*

 σ _c σ ^{*H*}] whose *G*-projections are not singletons are exactly those of the form $W = Q \times V(H)$, where *Q* is a Steiner set of *G*. As a consequence, we have $_{st(G[H])} = |V(H)|.$

Suppose now that *G* does not have a vertex of degree $|V(G)| - 1$. Then by Corollary 2.2, the G-projections of the Steiner sets of *G[H]* have cardinalities greater than one. So by applying Theorem 2.5, we obtain $st(G[H]) = st(G)$. $V(H)$].

We end this paper with a sample of specific situations where Theorem 2.6 can be applied. Note that by inspection the Steiner number of the path P_n , where $n \geq 2$, is 2, while the Steiner number of the cycle C_n is either 2 or 3, depending on whether *n* is even or odd.

Corollary 2.7 Let H be a disconnected graph. Let K_n be the complete *graph of order n; let* F_n *and* W_n *be the fan and wheel of order n* + 1, *respectively.* Also, let P_n and C_n be the path and cycle of order n, respectively. *Then the following hold:*

- (i) $st(K_n[H]) = |V(H)|$, where $n \geq 2$;
- (iii) $st(F_n[H]) = |V(H)|$, where $n \geq 2$;
- (iii) $st(W_n[H]) = |V(H)|$, where $n \geq 3$;
- $\int^{iv} s t(P_n[H]) = 2 \cdot |V(H)|$, where $n \geq 2$;
- (v) $st(C_n[H]) = r \cdot |V(H)|$, where r is 2 or 3 depending on whether n is *even or odd.*

References

-

- [1] S. R. Canoy, Jr., R. G. Eballe, Steiner sets in the join and $composition$ of graphs, *Congressus Numerantium,* **167** (2004) 65-73.
- [2] G. Chartrand, P. Zhang, The Steiner number of a graph, *Discrete Math.,* **242-** (2002) 41-54.
- [3] F. Harary, *Graph Theory.* Addison-Wesley, Reading MA (1969).
- [4] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo, C. Seara, On the Steiner, geodetic and hull numbers of graphs, *Discrete Math.,* (ln press).