On the Steiner Number of the
Composition of Graphs

Rolito G. Eballe

Abstract

Given a connected graph G and a non-empty subset W of V(G),
a Steiner W-tree is a tree of minimum or

der that contains all of w.
Let §(W) denote the set of all vertices of G that lie on any Steiner
W-tree. If S(W) = V(G), then W is said to be a Steiner set. of G.
The Steiner number st(G) of G is defined as the mimimum cardinality
of a Steiner set of G. In this paper, we characterize the Steiner sets
in the composition G[H] of a non-trivial connected graph G and a
disconnected graph H. We then present a formula that can be used
to determine the Steiner number st(G[H]).
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W) = V(G), then W is said

referred to as the Steiner interval of W. 1f S( ;
- set of minimum cardmality

to be a Steiner set of G. Accordingly, a Steine

: .__1+v is the Steiner numb
is called a minimum Steiner set and this cardinality ! er

3 anning tree, V
st(G) of G. Since every connected graph G contains & 5P . (@)
I d >
is always a Steiner set of G. Therefore, if G is connected of order n 2 2, then
2 < st(G) < n.

Steiner sets and Steiner numbers have bee
where the authors characterized

n studied recently in [2] and

[4]. A more recent investigation is in (1],
the Steiner sets in the join G + H and compositio
connected graphs G and H. One of the formulas obtained there can be stated
as follows: st(G[H]) = min{|V(H) \ S'| : 8 is a cutset of H and no proper
subset of S’ disconnects H} if H is non-complete and G has a vertex of degree
|V (G)| — 1; otherwise, st(G[H]) = st(G) - |V(H)|. Although descriptions of
Steiner sets of G+ H with either G or H (or both) disconnected can be found

n G[H] of two non-trivial

in [1), the equally challenging task of describing the Steiner sets of G[H] with
H disconnected has been postponed.

In this paper, we shall characterize the Steiner sets in the composi-
tion G[H] of a non-trivial connected graph G and a disconnected graph H.
Our main objective is to obtain a formula that can be used to determine
the Steiner number st(G[H]) of the composition G[H]. (Note that graph-

theoretic terms not specifically defined here may be found in [3].)

2 Results

The composition of two graphs G and H, denoted by G[H], 18 the graph
with vertex set V(G[H]) = V(G) x V(H) and edge set E(G[H)) whose €l
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ments satisfy the adjacency condition: (uq, vy) is adjacent to (u2,vy) if and

only if wiua € E(G), or u; = uy and U1V2 € E(H). Note that even if H

s disconnected, the composition G[H] is always connected provided G is

connected.

Let W C V(G[H]). The G-projection We of W and the F-

projection Wy
of W are defined as follows:

We =
Wy =

{u: (v,v) € W for some g € V(H)},
{v: (u,v) € W for some 4, € V(G)}.

Theorem 2.1 Let G be a non-trivial connected graph and H a discon-

nected graph. Let W C V(G[H]) such that \Wel = 1. Then W is o Steiner
set of G[H| if and only if the following conditions hold:

() We = {u} for some u € V(G) with deg(u) = |V(G)| - 1;

(i) Wy = V(H).

Proof: Assume that W is a Steiner set of G[H]; let We = {u} and let
@€ V(G) such that a is adjacent to u. Clearly, W = {u} x Wy. Since W is a
Steiner set of G[H] and G is non-trivial, it follows that (W) is disconnected;
hence, any Steiner W-tree must have at least |W| + 1 vertices. But the
“jacency of the vertices in V(G[H]) immediately shows that for any b €
V(H), the subgraph (W U {(a,b)}) is connected. Therefore, thinking of any
*Panning treq of (Wu {(a,b)}), we can now conclude that every Steiner W-
tee has Xactly |W| + 1 vertices. Since W is a Steiner set of G[H], by

definition eVery vertex of G[H] is in some Steiner W-tree. Consequently, u

yy; ;
B b adjacent to all the other vertices of G , or degg(u) = |V(G)| - 1.
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Next, we show that Wy = V(H) by contradiction. Assume that W, ;o
a proper subset of V(H). Since W is a Steiner set of G[H], every vertey of
G[H] is in some Steiner W-tree (whose order is |[W}+1); thus, the subgrapy,
(W U {(u,y)}) is connected for every y € V(H)\Wh. Since W = {u} x w,,
it follows that the subgraph (Wgy U {y}) is connected in H for every y ¢
V(H) \ Wy. Consequently, (Wy U (V(H) \ Wx)) = (V(H)) is connected, 5
contradiction to the hypothesis that H is disconnected. Therefore we must
have Wy = V(H).

The converse is straightforward. 0
The following result is a consequence of the above theorem.

Corollary 2.2 Let G be a non-trivial connected graph and H a discon-
nected graph. Then G has no spanning star subgraph if and only if |[Wg| > 2

for every Steiner set W of G[H].

Proof: Suppose G has no spanning star subgraph. Suppose further that
G[H] has a Steiner set W with |Wg| = 1. Then W = {u} for some u € V(G)
with deg(u) = m = |V(G)|—1. This implies that G has a spanning subgraph

K m, contrary to our assumption. Thus, |Wg| > 2 for every Steiner set W

of G[H).
Conversely, suppose |Wg| > 2 for every S

ume,

teiner set W of G[H ]. Ass
()l

=V
to the contrary that G has a spanning subgraph Ain-1 where 1 |

p— = - 1‘ and
Let Ky p1 = (u)+ Kn-1, where K ,_, is the empty graph of order 1 e
: Theo
u € V(G) Then wW* = {u} X V(H) is a Steiner set of G[H]! by fG[H]
; ts O
9.1. This clearly contradicts our assumption of the Steiner € s ’

Therefore G does not have a spanning star subgraph.
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Lemma 2.3 Let G be a non-trivial connected graph and H a disconnected
graph. Let W C V(G[H]) such that (Wel > 2, and let T* be 4 Steiner W -
wee. If T s a spanning tree of the subgraph (V(T*))g), then T is a Steiner
We-tree. Moreover, |V(T*)| = |W|+ |V(T) \ Wg|.

Proof : The fact that 7™ is connected in G [H] implies that the subgraph
((V(T*))g) is connected in G, and hence has a spanning tree. Let T then
be a spanning tree of ((V(T*))g). Since V(T™*) contains W, it follows that
V(T) contains Wg. Furthermore, |V(T%)| > |W| + V(T) \ Wgl.

Assume for contradiction that 7 is not a Steiner We-trze. Then there
exists a tree 7" in G containing all of We such that '"" i) < |V(T)|. If
V(T') = Wg, then (Wg) is connected. Since [We| > 2, it follows that (W)
is connected also. Consequently, |W| = |V(T*)| and |Wg| = |V(T)|. From
[V(T)| > |V(T")|, we obtain a contradiction |Weg| > [V(T")|. Thus, V(T") \
We is nonempty. Moreover, from the argument leading to the contradiction,
the subgraph (W) must be disconnected and so is the subgraph (Wg) (note
that Wg is not a singleton).

Let Ry, Ry, -- be the vertex sets of the components of (Wg). We propose
to show that we can form a tree in G[H] containing W such that its order is
Smaller than that of 7*. To do this, consider all vertices of the form (2,2)
Where z is a fixed element of V(H)andz € V(T')\Wg. If (W N (R; x V(H)))
'S connected, take spanning tree 7;'. (Note that if (W N (R; x V(H))) is
disconnect)ed, then necessarily R; is a singleton.) By using the adjacency
elation of the vertices of the tree 7" in G, form a tree T** in G[H] in the
following manner: connect each 77, through one of its vertices, to any appro-

Priate vertex (z, z),z € V(T') \ W i (WnN(R; x V(H))) is disconnected,
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disregard all its edges and then connect all its vertices to any appropriate

vertex (z,z), z € V(T') \ Wg. Furthermore, includ
We and zz’ € E(T"). Now

e in T** any edge cop-

necting (z, z) and («/, z) whenever ,2' € v(T)\
the tree T** obviously contains W, and that |V(T")| = [W|+|V(T")\ Wel.
Since |V (T") \ Wg| < |V(T) \ Wel, it follows that |V(T**| < |V(T™)], a con-
tradiction to the hypothesis that 7™ is a Steiner W-tree. This contradiction
ﬁnally' implies that 7" must be a Steiner W-tree.

Now let us consider the possibilities for We. If Wo = V(T), then (Wg)
is connected. Since (W) must be connected also, it follows that V(T™) =W,
and hence the equation [V(T*)| = W]+ [V(T) \ Wg| holds. On the other
hand, if Wy is a proper subset of V(T), then (We) is necessarily disconnected.
Using a similar argument as in the preceding paragraph, we can form a tree
Ta in G[H] containing W and with exactly |[W| + |V(T) \ Wg| vertices.
Combining this with the inequality in the first paragraph and the fact that

T* is a Steiner W-tree, we obtain |V(T™)| = |W| + |V(T) \ Wg|. This

completes the proof. O

Theorem 2.4 Let G be a non-trivial connected graph and H a discon-

nected graph, and let W C V(G[H]) such that |We| > 2. IfWisa Steiner

set of G[H], then the G-projection Wg of W is a Steiner set of G. Moreoveh

W = W x V(H).

d
Proof: To show that S(We) = V(G), let u € V(G). Let v € V(H) &

i _treé

let z = (u,v). Since W is a Steiner set of G|[H], there exists 2 Steiner W )
of (V(Te) B

T* containing z as a vertex. Now if T'is a spanning tree
that every

T is a Steiner Wg-tree by Lemma 2.3. Since u € V(T), it folloWs
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vertex of G is in some Steiner We-tree. Cons

Squently, V(G) € S(Wy). By
the other inclusion S(Wg) ¢ V(G) is obvioys. Therefore, S(Wg)

and, hence, W is a Steiner set of G.
To show that W = W, x V(H),

it suffices tq show that WexV(H ) W.
For contradiction, suppose there exists a vert

that (z,y) ¢ W. Let T* be a tree in
[fT" is a spanning tree of (V(

ex (z,y) € Wy, x V(H)
G[H] such that W ( {(z,y)
T*))g), then V(T*)
By Lemma 2.3, 7 cannot be a Steiner W/-

such
Yev(r).
2 W+ 14+ v\ wy)
tree. Consequently, (z,y) ¢ S(W),

W is a Steiner set of G[H]. Hence,
every vertex in Wg x V(H)isin W, or We x V(H) Ccw. O

a contradiction to the assumption that

nected graph, and let W € V(G[H)) such that [Wg| > 2. Then, W is q

Steiner set of G[H] if and only if W = Q x V(H), where Q is q Steiner set
of G.

Proof: Suppose W is a, Steiner set of G[H ]. If we take Q = W&, then by

Theorem 2.4, Q is a Steiner set of G and that W — Q x V(H).

Conversely, Suppose W = Q x V(H)

where @ is a Steiner set of G. If
Q= V(G)

, then obviously Q x V(H) is a Steiner set of G[H]. So assume
that Q js o Proper subset of V(G). Necessarily, (Q) is disconnected. As a

‘Osequence, a]] Steiner Q-trees are of order |Q| + & for some positive integer
k. By Lemma 2.3, every Steiner W-tree has an order (|V(H)| - Q) + k.
L(}t V(G) = {Ul, Ug, - )u|V(G)|} and V(H) = {vl,v% vy ’v|V(H)|}‘ For an

?ﬂ'bitra,-y element, (ui,v;) € V(G [H]), let T* be a Steiner Q-tree contain-

ing mponents
"8 u, Moreover, denote by R, R,,--- the vertex sets of the comp
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of (Q). Clearly (R, x V(H)) is connected if and only if R, is not a single.
ton. Now if R, is not a singleton, take a spanning tree Ta of (Rq x V(H))
such that (u;,v;) € V(T,) in case u; € R,. By using the adjacency of tp,
vertices of the tree 7% in G, form a tree 7% in G[H] in the fOllowing
manner: connect each T,, through one of its vertices, to any appropriate
vertex (z,v;), z € V(T™) \ Q; if Rs is a singleton, disregard all the edges
of (R x V(H)) and then connect all its vertices to any appropriate ver-
tex (z,v;), ¢ € V(T%)\ Q. In addition, include in T%) any edge cop.
necting (z,v;) and (z’,v;) whenever z,2’ € V(T™) \ Q and zz’ € E(Tw),
The vertex set of the constructed tree 7(“%) has the following properties:
W C V(T@), (u,v;) € V(T0)) and [V(T0)]| = (\V(H)|- |Q)) +
So T®i%) must be a Steiner W-tree. Consequently, (ui,v;) € S(W), or
V(G[H]) € S(W). Since S(W) C V(G[H]), we have S(W) = V(G[H)).
Therefore, W is a Steiner set of G[H]. 0

Our final result is a consequence of Theorem 2.1, Corollary 2.2 and The-
orem 2.5. This result gives the Steiner number of the composition G[H],

where G is nontrivial and connected while H is disconnected.

Theorem 2.6 Let G be a nontrivial connected graph and H a discon-
nected graph. If G has a vertez of degree |V (G)|—1, then st(G[H]) = |V (H)l;
otherwise, st(G[H]) = st(G) - |V'(H)|.

Proof: Suppose G has a vertex of degree |V(G)| — 1. By Theorem 21,
the Steiner sets of G[H| whose G-projections are singletons are exactly th‘.)se
of the form W = Wg x V(H), where We = {u} for some u € V(G) with
dega(u) = |[V(H)| — 1. On the other hand, by Theorem 2.5, the Steiner ¢
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(G| H) whose G-pro jections are not singletons are exactly those of the form
0

W= QxV (H), where Q is a Steiner set of G. As a consequence, we have

st(GlH) = [V(H)
pose now that G does not have a vertex of degree |V (G)|—1. Then by

Sup
Corollary 2.2, the G-pro jections of the Steiner sets of G[H] have cardinalities
greater than one. So by applying Theorem 2.5, we obtain st(G[H]) = st(G)-
\V(H)I- O

We end this paper with a sample of specific situations where Theorem
9.6 can be applied. Note that by inspection the Steiner number of the path
P,, where n > 2, is 2, while the Steiner number of the cycle C, is either 2 or

3, depending on whether n is even or odd.

Corollary 2.7 Let H be a disconnected graph. Let K, be the complete
graph of order n; let F, and W, be the fan and wheel of order n + 1, re-
spectively. Also, let P, and C, be the path and cycle of order n, respectively.
Then the following hold:

() st(Kn[H]) = |V (H)|, where n > 2;
) st(Fu[H]) = |V(H)|, where n > 2;
) W, [H]) = |V ()], where n.> 3;
) st(P,[H]) = 2. \V(H)|, where n > 2;

(1) st
(C"[H]) =1 |V(H)|, where r is 2 or 3 depending on whether n is
e’Uen or Odd.
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