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Abstract

This study introduces a certain property that is satisfied by some
functions. We show that this property is weaker than that of a weak
continuous surjection. Since weak continuity is weaker than continuity,
this property is weaker than that of continuous surjection. We shall
show that under certain conditions this, and the interiority condition
preserve local connectedness.
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1 Introduction

Chew and Tong defined in [1] the concept of weak continuity of a function.
This new term must have been derived from the fact that the condition

"Volved is strictly weaker than the condition for continuity of a function.
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One would easily recognize that the condition for weak continuity is obtajneq
by slightly modifying the condition for continuity.

Another concept that was given and defined in [1] was the interiority
condition of a function. It was shown in [1] that this condition, together
with weak continuity, will imply continuity.

In this paper, we shall introduce a certain property that is satisfied by
some functions and show that this new property is strictly weaker than that
of a weak continuous surjection. We shall see that under certain conditions,

this property and the interiority condition will preserve local connectedness.

Definition 1.1 A mapping f : X — Y is said to satisfy the SC condition
if for every open set V in Y, y € V implies that fHy) Nint f~Y(V) # g,
where f~!(y) = {z € X : f(z) = y}.

Example 1.2 Let X = R be the set of real numbers with the usual
topology U and Y = {a, b} with the discrete topology D. Define the function

f: X —>Yby f(z) =aif £ <0and f(z) = bif £ > 0. Then f satisfies the
SC' condition.

Theorem 1.3 If f: X — Y satisfies the SC condition, then it must be

a surjection (an onto function).

. -1V
Proof: Let y € Y. The SC condition implies that f~!(y) Nint f V) #
5 : ch
@. Since int f~1(V) =int X = X , it follows that there exists T € X su

0
that f(z) =y. This proves that f is onto.
_ e X if
Definition 1.4 A mapping f: X — Y is weak continuous at 20 b
Om

. et
for every open set V in Y containing f(z,), there exists an open 3
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5 ON MAPPINGS SATISFYING THE SC CONDITION

aining o such that f(O) C V. It is weak continuous on X if it is weak
con

continuous at every point of X.

Example 1.5 Every continuous function f : X — Y is weakly continu-
0uS.

Theorem 1.6 If f : X — Y is a weak continuous surjection, then f

satisfies the SC condition.

Proof: Suppose f is a weak continuous surjection. Let V be an open
st in Y and'y € V. Since f is surjective, there exists an z € f~1(V)
such that f(z) = y. By weak continuity of f, there exists an open set
0 in X containing z such that f(O) C V. Note that f(O) C V implies
that Q@ € f~'(f(O)) € f~}(V). This shows that z € int f~*(V). Since
z € f~(y), it follows that f~1(y) Nint f~1(V) # @. Therefore f satisfies
the SC condition. O

Remark 1.7 The converse of Theorem 1.6 is not true.

To see this, consider the function f defined in Example 1.2. Observe that
for every open interval I containing z = 0, f(I) = {a,b}. Hence, for every
open set, O containing z we have f(O) = {a,b}. Now, V = {a} is an open set
“htaining f(0) = a. Since Y is the discrete space, V = V. This implies that

f
O every open set O containing z, f(O) € V. Thus f is not weak continuous
ey,

" Lemma 1. 8 Let f: X — Y be a bijection that satisfies the SC condition.
Y

s q Hausdorff space, then f has closed point inverses, i.e., f~}(p) is

loseq 4, X for every p e Y.
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Proof: Let p € Y. Since f is onto, there exists an To € X such thy

f(zo) = p. Further, since f is one t0 one, f71(p) = {zo}. Set 4 -
{zr € X : f(z) # p} = X ~ {z0}. We shall show that A is open. To

this end, let 2 € A. Then f(2) & P- Since
z) € V but p ¢ V. By condition (SC),

Yy is Hausdorff, there exists

an open set V in Y such that f(
FUf(@) nint f1T) = {=}nint 1)
1sts an open set O in X containing 2 such that O C f~
Note that if we can show that O C A, then we are done. So, suppose that
O ¢ A. Then z € O. Since f(O) < V, it follows that f(zo) =p €V,
contrary to our choice of V. Thus, O C A and A is open. Accordingly,
0

# @. This implies that there ex-
1(V). Hence f(0) C V.

f~1(p) is closed.

The following result, which can be found in [3, p.139], gives a simple

characterization of Ti-spaces.

Lemma 1.9 A topological space X is a Ti-space if and only if every

singleton subset {z} of X 1s closed.

Theorem 1.10 Let f : X — Y be a bijection that satisfies the SC con
dition. If Y is a Hausdorff space, then X must be a T-space.

Proof: Let z € X and put p = f(z). Since f is one to one, f(P) = {z}
llows

By Lemma 1.8, the singleton set {z} is closed. The desired result now fo
0

from Lemma 1.9.

Next, we shall show that for bijective functions, the SC conditi0

weak continuity are equivalent.
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rem 1.11 Let f : X — Y. be a bijection. Then f satisfies the SC

if and only if it is weak continuous on X.

Theo

andition

proof: (:) Suppose [ satisfies the SC condition. Let z € X and V be
n open set in Y’ containing f(z) = y. By the (SC) condition, f~!(y) N
ot V) # @ Since f is one to one, f~!(y) = {z}. Thus, z € int W),
0., there exists an open set O in X containing z such that O C fYV).
Therefore there exists an open set O in X containing  such that f (0)CV.
This shows that f is weak continuous at z. Since z was arbitrary, f is weak
continuous on X.

(<) This follows from Theorem 1.6. O

It is shown in [1] that a weak continuous function preserves connectedness.
One might ask the question: “Is connectedness also preserved by functions
satisfying the SC' condition?” The function in Example 1.2 will show that

| the answer is “NO”.

Next, we shall show that a connected open mapping satisfying a stronger

“ndition than the (SC') condition preserves local connectedness.

Lemma 1.12 If f: X - Y is a connected mapping and C is a compo-

‘ “Mof Y, then f~1(C) is a union of some components of X.
i
 Proof: Let 4 € f71(C) and B, the component of X containing x. Since

S

| f(lg “Onnected and B, is connected, f(Bz) is connected. Thus, since f(z) €
B
)N C, Mmaximality of C' implies that f(Bz) € C. It follows that B, C

().
* 1S proves the assertion. -
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Lemma 1.13 If f: X — Y is a connected mapping,
such that f(A) C Q, theng : A — Q. defined by g(z) = f(@), is also

connected.

Proof: Let K be a connected subset of A. If K were disconnected i

X, then there exist disjoint nonempty open sets H and G in X such that

K = (KNH)U(KNG). Set E = AnH and F = ANG. Then E and F are

disjoint nonempty open sets in A and K = (K N E)U (K N F). This means

that K is a connected set in A, contrary to our assumption. Thus, K is g
connected subset of X. Since f is connected, it follows that f(K) = g(K) is

a connected set in Y and hence, in Q. This proves the lemma. 0

Lemma 1.14 [2] A space X is locally connected if and only if the com-

ponents of each open set in X are open.

Definition 1.15 A mapping f: X — Y is said to satisfy the interiority
condition if for every open set V in Y, int f -1(V) C f7Y(V). We say that
f satisfies the (SCIT) condition if it satisfies both the SC and the interiority

conditions.

Example 1.16 The function f in Example 1.2 satisfies the interiority

condition. Thus, f satisfies the SCI condition.

The following result is simple.

' . dition
Lemma 1.17 A mapping f : X = Y satisfies the interiority O™

if and only if for every open set V inY, int f'l(V) = int f_l(v)'
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Proof : If f satisfies the interiority condition, then int f (V) C fYV)
for every open set V in Y. Since int f~1(V) is the largest open set con-
tained in f71(V), it follows that int f~*(V) C int f~'(V). The inclusion
it f7Y(V) C int f71(V) is clear because f7H(V) C f~Y(V). Therefore,
int f71() =int f~1(V) for every open set V in Y.

Conversely, if int f~1(V) = int f ~1(V) for every open set V in Y, then
int f~1(V) C f~1(V) because int f7HYV) C fFYw). Therefore, f satisfies

the interiority condition. .

Theorem 1.18 Let X be a locally connected space and Y « topological
space. If f: X —'Y is a connected open mapping satisfying the SCI condi-

tion, then Y 1is locally connected.

Proof: Let V be an open set in Y and C a component of V. By Lemma
112 and Lemma 1.13, f~!(C) is a union of some components of F7Y(V).
Also, f=1(C)Nint f~1(V) is a union of some components of int f~1(V). To
see this, let z € f~'(C)Nint f~'(V) and D, be the component of int f~1(V)
containing z. Then D, is a connected subset of (V). Since z € f~1(C),
there exists a component B, of f~1(V) such that z € B, C f~YC). By
the maximality of B,, it follows that D, C B, C f~1(C). Hence, D, C
fHC) Nintf — 1(V). This justifies our second statement.

Now, since int f ~1(V) is open in X and X is locally connected, its com-
Ponents are open in X. Thus, f~1(C) Nint f~1(V) is open in X. We shall
show that ¢ = f(f71(C) Nnint f~1(V)). To this end, let y € C. Since
Y€V and f satisfies the (SC) condition, f~'(y) Nint f~'(V) # @. This
eans that, there exists an z € f~1(y) Nint f~}(V). Interiority property of
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f and the fact that f-1(y) C f~1(C) imply that = € f7(C) Niint f7(v),
Therefore, y = f(z) is an element of f(f~(C) N nt f7(V)). This shows
that C C f(f~1(C) Nint f~1(V)). Since C C V, it follows that f(f~(C)n
int f=1(V)) C CNV C C. Therefore, C = f(f7'(C)Nint f71(V)). Equality
implies that C is open. O
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