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1, Introduction

here are essentially two different forms of the bandwidth problem.
(1) For a graph G the problem is to label the » vertices v, of G with

distinet integers f{v,) from {1, 2, ..., #} so that the maximum value
of the difference
V(V[) -f(%')l’

taken over all adjacent pairs of vertices, is a minimum.
(2) For a real symmetric matrix M the. problem is to find a symmetric
permutation M" of M so that the maximum value of |i - j| taken over all

fON2ETO entries m’, js 5 minimym,
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In the bandwidth problem for matrices, if we replace each
nonzero entry of M by 1, then the result may be interpreted gs the
adjacency matrix of a graph. Thus, the two bandwidth problems are
equivalent.

The bandwidth problem for matrices seems (o have originated in
the 1950’s when structural engineers first analyzed steel frameworks by
computer manipulation of their structural matrices, In order that
operations like inversion and finding determinants of matrices take as little
time as possible, attempts were made to discover an equivalent matrix in
which all the nonzero entries lay within a narrow band about the main
diagonal - hence the term “bandwidth.”

The bandwidth problem for graphs, on the other hand, originated
from the Jet Propulsion Laboratory (JPL) at Pasadena in 1962. Single
errors in a 6-bit picture code were represented by edge differences in a
hypercube whose vertices were words of the code. At JPL, L. H. Harper
and A. W. Hales sought codes which minimized the maximum absolute
error and the average absolute error.  Thus were born the bandwidth and
the bandwidth sum problems - at least for the cube. F. Harary publicized
the problem in a conference in Prague.

Since the mid-sixties there has been a growing intcrest in the band-
width problem for graphs. Tencountered this problem first in 1977 when
[ was teaching graph theory for the first time, here in Ateneo.

In 1976, C. H. Papadimitriou proved that the graph bandwidth
problem is NP-complete. (The bandwidth problem for matrices is there-

fore NP-complete also.)

2. Preliminary Concepts

By a graph & we understand a pair {(G),E(C);, where F(G) is a finmite
non-empty set of elements called vertices, and F((7) is a set of 2-subsets of
H((5) called edges. For simplicity, an edge ¢ = {a, #} € £{0) will be
written as b, We say that ¢ and 5 are adjacent and we call @ and 5 the
end-vertices of the edge ¢. The numbers [F{G)| and |E(G)| are called the

order and size of G, respectively. . '
The distance between two vertices ¥ and y in a graph G, deno-

ted by d(x,), is defined as the length of any shortest path in .G with end-
vertices x and y. The diameter of G, denoted by &), is defined by

A(G) = max {dah) : a, b e WG}
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A set § < V(G) is called an independent set in G if xy ¢ E(G) for
allx, y € S. The independence number of G, denoted by a(G), is def; ad
to be the cardinality of a largest independent set in G.

The chromatic number of G, denoted by (G), is the minimyp,
number of colors the vertices of GG may be given such that adjacent yery;.
ces get different colors. Thus, 2(G) is the minimum number of indepen.
dent subsets into which ¥((G) may be partitioned.

The connectivity of G, denoted by x(G), is the minimum nyp,.
ber of vertices needed to be removed from G to disconnect G or reduce
to an isolated vertex.

The dominance number of G, denoted by B(G), is the minimum
cardinality of a set of vertices S ¢ V() such that every vertex x ¢ § is ad.
jacent to at least one vertex in S.

3. Some Graphs, Operations and Notations

The following definitions and notations are needed for an understanding
of the graphs given in Table 1.

The sum of two (disjoint) graphs G and #, denoted by G + H, is
the graph with V(G + H) = V(G)UV(H) and E(G + H) = EG) v
E(Hyo{xy :x € (G) and y € V(H)}.

The complement of a graph G, denoted by G, is the graph with
(G )= HG) and where xy € E(G ) if and only if x # y and xy ¢ E(G).

* The complete graph of order n, denoted by K, is the graph of
order n where xy is an edge for all distinct x, y € /(K,). The complete
bipartite graph, denoted by K., is the graph _K_,,, + K_,,

The path of order n, denoted by P,, is the graph with vertices x;,
Xy, ..., X, and with edges x, ;.1 i=1,2, .., n—1. The symbol x;x; ... X,
also denotes the path of order n. The cycle of order # 2 3 is obtained from
the path P, by adding the edge x,x,.

Let K, and K, be two disjoint complete graphs. The graph K, K is
the graph obtained from K,, and K, by adding an edge ab, where a is in
M(K.) and b is in V(K,).

The crown of order 2n, denoted by C,, is formed by taking a cycle
C. with vertices x; and another set of independent vertices y; and adding
the edges xy, i = 1, 2, ., n If we take another cycle of or-der n
with vertices z; and add the edges zy, for i = 1,2, .., n then the
resulting graph is called the double crown of order 3n, denoted by C's.
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The fan of order n+1, denoted by F,, is defined to be the graph
P, + K. The double fan of order n+2 is the graph P, + K, The bifan,
denoted by £, is the graph G + K,, where ( consists of two disjoint
paths £, and P,. The twin fan of order 2a+2, denoted by /%, is the
graph obtained from two disjoint fans xxz...x, + K; and yyya..y, + K, by
adding the edges x\y and X,

Let Gy, G, ..., G, be disjoint graphs, each having a complete sub-
graph K. The K,-gluing of the graphs (J, is the graph obtained by identi-
fying the X,'s of the G/s (one from each graph, in any manner). The
K,-gluing of ¢ copies of K, is denoted by K,(1,p).

The Cartesian product of two graphs & and H, denoted by G x H,
is the graph with J{(G x H) = W) x F(H) and where two vertices (a, )
and (¢,d) are adjacent if and only if (i) ac € £{G)and h=d or (i) a = ¢ and
bd € L(H).

The wheel of order n+l, denoted by W, isthe graph C,+ K.
The biwheel, denoted by W, is the graph G + K, where G consists of

two disjoint cycles ', and .
If x is a real number, we denote by x| the greatest integer not ex-

ceeding x and by [x7 the smallest integer not less than x.

4. Main Results
An integer label % of a graph (7 of order n is a bijective mapping
A:HG)—{1,2, ....n}. The bandwidth of (5, denoted by B((), is de-
fined by :
B({(7) = min, maXa-moi [Ma) — MB) }.

where A ranges over all integer labels of G.

It is known that {"— ]]. [ L W— 1, x(G) — 1, are lower bounds

4(G) | | x(G)

for B((;). These lower bounds were obtained in [3] from the observa-
tion that a graph G of order » is a spanning subgraph of 2™ the graph
obtained from 2, by adding the edge xy whenever the distance x and y in
P, does not exceed B((;). In general, if kis a positive integer, G' is the
graph obtained from (i by adding the edge xy whenever d(x.y) < £,
where d(x,y) is the distance between x and y in (7.

We first give and prove two new lower bounds for bandwidth,
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Theorem 1. B(G) = x(G) for any graph G.
Proof. Let G be a graph of order ». Since G is @ Spanning syb.
graph of 7™ it follows that x(G) = k(£ )=B(G). C

Lemma 1. Let g, b, ¢ be non-zero integers, and let x be any rea]

number. (i) Ifa = { ﬂ then [—-I (ii) P—xT'I l-g]

-
Proof. (i) Suppose that ¢ < [Q] Thene¢ < [,_ - < [i] -
al Ib” C'] bl"C

¢, which is a contradiction.
(ii) Let x=n-¢,0<g<1. Incase ¢=0, (i) clearly holds. So.
let0<e<1 Also,letn=ag ! r,0<r<a Then

). [2]-foer]- e

a 'a

On the other hand,

Hularia Rl |

since0<g<]land0=<r<a 0O

Lemma 2, Let 1 <k <n Then B{ P )—Lk =t

Proof. Consider the graph P!, where P, is the path with verti-

ces 1,2, .,m andedges {7, it1},i=1,2,.. n-1. Letn=(2k+ l)g~r,
0<r<2k+1 If r =0, thenitiseasy to verify that the vertices +1,

342, .., (2g-1)k+q, form a (unique) minimum dominating set in P*.
Hence, B(P)= ¢= [H_'h-l Ifr#0,then the vertices %+1, 3k+2, ...,
(2g — 1)ktgq, »form a minimum dominating setin #*. Hence, it follows

that B(P*)= +1=[ L ]
at B(2')=g¢q e C
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Theorem 2. If G is a graph of order , then B(G) 2 [" — B(G).’.
2(G)

Proof. As in the proof of Theorem 1, we have B(G) > B(P™?)

since G = P9 But B(PH) -[ -‘ by Lemma 2, where #=

2k +

B(G). By Lemma 1(i), 2B(G) + 1 = [ﬂ{’;})“. Therefore, 2B(C) =2

n-B(G)
B(G)
Fl[n_—@
2| PG

] This implies that B(G) > —[ ﬁ(‘:;c ] Hence, B(G)>

H By Lemma 1(ii), we finally get B(G) 2 [”““G’]. 0
20(G)
" We shall denote by Bi, Bz, By, By, Bs the quantities L%;Tl)],

-1, 7G)-1, n-PG) ively.
[ (GJ O =1yl { 2B(G) ]’m‘mmy

We now show that each of the bounds B is sharp, i.e., B(G) = B
for some graph G, Tt is not difficult to check thatif 1< & <pn, then
B(P'y=k=B, fori=1,2,3,4,5 This proves the sharpness of each of
the five lower bounds 5;.

Although each lower bound B; is sharp, none of them is better
than the rest in the following sense: If B, and B; are any two among the
five lower bounds, then there exist graphs (r and A such that B{G) <
B(G) and B(H) > B(H), except that B:(G) 2 Bx(G) for all graphs G.

To prove the foregoing statement, let x(G) =k and let V5, 2, ..., ¥,
form a_partition of F(G) into k independent sets, Then (V)| < a(G) for

each 7 and hence k(G) = |W(G)| =n. This implies that & > . Since

o G)
k= »((7) is an integer, it follows that x(G)>[ s ;‘. Consequently,
BiG)>BAG). C

Table 1 below gives examples of graphs for which B; < B, B;> B,
and B, = B;.
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Table 1. Comparing the lower bounds B,

717 5> 8B, B,<B, B B )
>nz2 KolKs m22, n22, p odd

; o ine . IK mtn29
| ‘3 F. nz5 Pm +Ka, 3smsn+3 p:l(ﬁ
T T4 [Tre 7. notapath | PutPr  m2m22, | n=[3pn]

' m-nis| ,
1 1516 n23 | F'y, nzll all values
2 3 not possnblc W, s n24 p=1
2 | 4 |Kftp) mo2peidpil] | Ki(tp) n<2ptidpitl| n= H{3pl‘2_L
2 |3 16K, n23 | Won, m+n27 p odd
3 14 | Fans min23 | Cp x Py, —m23, n22 p=n-|
315 |3 E;. 26,n<3 | P+ 7(:, n29 | P=1lor2
4| 5[ C% m3 | C,+ K, , ax17 | n=03pn2]

"Each graph in this column is K,(2,0), 1 € p <n.
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