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;\bstract 

order n. How can the vertices of G be labele . . . . 
Let G be a graph of ·,num difference between labels of d' d b1Jec-t1ve/y 

by I, 2, ... , such th~t _the "':::ue is called the bandwidth or densi; y:;;:: vertices is 
minimum? This mm1maxl was posed by Harary in.1963. graph G, 

denoted by B( • 
1 

n - 1 . n 
G) Th's prob em l f l 

It is known that each of f d(G} , a.(G) -1, x(G) - l is a lower bound for 

,J(G). (G) "'(G) are the diameter, independence number and chromat· 
B( G), where u1 

, <l _ ' "' 1c 
umber ofG respectively. . . 

n , --Le/ K(G) and ~(G) denote the connectzv1ty and the dominance number, res• 

th t K(G) and r n- ~(G)l I pectively, of the graph G. We show a I 2~(G) are a so lower bounds for 

B(G). b d . ,L • Each of the aforecited lower oun s is Sr,arp in the sense that some graphs 
have bandwidth exactly equal to the lower bound. We show, however, that none of the 
lower bounds is gen~rally a good lower bound. Specifically, we show that if Bi and n1 
are two of the five lower bounds, then there exist grap~s G and H such that B;(G) < 
B,{G) and Bi(ll) > B;(ll), except that B2(G) < B3(G)for all graphs G. 

1. Introduction 

here are essentially two different forms of the bandwidth problem. 
(1) For a graph G the problem is to label then vertices v; of G with 
distin~t integers/( v;) from { 1, 2, ... , n} so that the maximum value 
of the difference 

JI( V;) - ft V1)I, 

taken over all adjacent pairs of vertices, is a minimum. 
(2) For~ real symmetric matrix M the. problem is to find a symmetric 
permutation of M so that the maximum value of Ii - JI taken over all 
nonzero entnes m' .. is a nu· • 

1J n1mum. 
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In the bandwidth problem for matrices, if we replace each 

no?-Zero entry of M by I, then the result may be interpreted is the 

adJacency matrix of a graph. Thus, the two bandwidth problems are 

equivalent. 

The bandwidth problem for matrices seems to have originated in 

the 1950' s when structural engineers first analyzed steel frameworks by 

computer manipulation of their structural matrices. In order that 

operations like inversion and finding determinants of matrices take as little 

time as possible, attempts were made to discover an equivalent matrix in 

which all the nonzero entries lay within a narrow band about the main 

diagonal - hence the term "bandwidth." 

The bandwidth problem. for graphs, on the other hand, originated 

from the Jet Propulsion Laboratory (JPL) at Pasadena in 1962. Single 

errors in a 6-bit picture code were represented by edge differences in a 

hypercube whose vertices were words of the code. At JPL, L. II. Harper 

and A. W. Hales sought codes which minimized the maximum absolute 

error and t4e average absolute error. Thus were born the bandwidth and 

the bandwidth sum problems - at least for the cube. F. Harary publicized 

the problem in a conference in Prague. 

Since the mid-sixties there has been a growing-interest in the band-

width problem for graphs. I encountered this problem first in 1977 ·when 

I was teaching graph theory for the first time, here in Ateneo. 

In 1976, C. H. Papadimitriou proved that the graph bandwidth 

problem is NP-complete. {The bandwidth problem for matrices is there-

fore NP-complete also.) 

2. Preliminary Concepts 

By a graph G we understand a pair (V(G),E(G)), where V(G) is a finite , 

non-emp~y set of elements called vertices, and ·E( G) is a set of 2-subsets of 

V(G) called edges. For simplicity, an, edge e = {a, b} E E(G) will be 

written as ab. We say that a and b are adj a cent and we call a and b the 

end-vertices of the edge e. The numbers IV( G)I and IE( G)I are called the 

order and size of G, resJ>ectively. 

The distance between two vertices x and y in a graph G, deno-

ted by d(xJJ), is defined as the length of any shortest path in . G with end-

vertices x and y. The diameter of G, denoted by d( G), 1s defined by 

d(G) • max .{d(a,b): a, b E V(G)}. . 
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A set s c V( G) is called an independent set in G if xy i £( G) for 
all x, y Es. The independence _number of G, d~noted b}'. a(G), is defined 
to be the cardinality of a largest independent set 1n G. 

The .chromatic number ~f G, denoted by x.( G), is the minimum 
number of colors the vertices of G may be given such that adjacent verti-
ces g~t different colors. Thus, x(G) is ~h_e minimum number of indepen-
dent subsets into which V(G) may be part1t1oned. 

The connectivity of G, denoted by K( G), is the minimum num-
ber of vertices needed to be removed from G to disconnect G or reduce G 
to an isolated vertex. 

The dominance number of G, denoted by P( G), is the minimum 
cardinality of a set of vertices S c V( G) such that every vertex x i S is ad-
jacent to at least one vertex in S. 

3. Some Graphs, Operations and Notations 

The following definiti9ns and notations are needed for an understanding 
of the graphs given in Table 1. 

The sum of two (disjoint) graphs G and H, denoted by G + H, is 
the graph with V(G + H) = V(G)uV(H) and E(G + H) = E(G) u 
E(H)u{xy: x E V(G) andy E V(H)}. 

The complement of a graph G, denoted by G, is the graph with 

V( G) = V(G) and where xy EE( G) if and only if x -:1- y and xy E(G). 
• The complete graph of ord.er n, denoted by. Kn, is the graph of 

order n where xy is an edge for all distinct x, y E V(Kn). The complete 
- -

bipartite graph, denoted by Km,n is the graph Km + Kn. 

The path of order n, denoted by Pn, is the graph with vertices x1, 

X2, ... , Xn and with edges X;, X;+I i = I, 2, ... , n -1. The symbol X1X2 ... Xn 

also denotes the path of order n._ The cycle of order n > 3 is obtained from 
the path Pn by adding the edge xn,X1. 

. Let Km and Kn be two disjoint complete graphs. The graph Km !Kn is 
the graph obtained from Km and Kn by adding an edge ab, where a is in 
V(Km) and b is in V(Kn). 

The crown of order 2n, denoted by Cn, is formed by taking a cycle 
C,, wit~ vertices X; and another set of n independent vertices y; and adding 
the edges Xt}';, i = 1, 2, ... , n. If we take another cycle of or-der n 
with vertices z; and add the edges Zt}';, for ; = 1, 2, ... , n then the 
resulting graph is called the dou hie crown of order 3n, denoted by C' n.• 
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The fan of order n+ 1, denoted by Fn, is defined to be the graph 

Pn + Ki. The double fan of order n+2 is the graph Pn + K2. The bifan, 

denoted by Fm,n, is the graph G + K 1, where G consists of two disjoint 

paths Pm and Pn. The twin fan of order 2n+2, denoted by F~, is the 

graph obtained from two disjoint fans XiX2 ... xn + Ki and Yv'2•••Yn + Ki by 

adding the edges XtY1 and XrtYn• • 

Let Gi, G2, ... , G n be disjoint graphs, each having a complete sub-

graph Kp. The Kp-gluing of the graphs G; is the graph obtained by identi-

fying the Kp's of the G;'s (one from each graph, in any manner). The 

Kp-gluing oft copies of Kn is denoted by Kn(t,p). 

The Cartesian product of two graphs G and Jl, denoted by G x H, 

is the graph with V(G x H) = V(G) x V(H) and where two vertices (a,.b) 

and (c,d) are adjacent if and only if (i) ac E E(G) and b = d or (ii) a= c and 

bd E E(H).· 

The wheel of order n+l, denoted by Wn, •is the graph C~ + K1. 

The biwheel, denoted by Wm.n, is the graph G + K 1, where G consists of 

two disjoint cycles Cm and Cn. 

If x is a real number, we denote by LxJ the greatest integer not ex-

ceeding x and by r x l the smallest· integer not less than x. 

4. Main Results 

An integer label 'A, of a graph_ G of order n is a bijective mapping 

'A,: V(G) {I, 2, ... , n}. The bandwidth ofG, denoted by B(G), is ·de-

fined by 

B(G) = min,_ maxabEE(G){ _j'A,(a) - 'A,(b)I }, 

where A ranges over. all integer labels of G. _ 

It is known th~t r n -
11.r n l- I, x( G) - 1, are lower bounds 

d(G) .I a(G) -
. . . 

for B(G). Th~se lower bounds were obtained in [3] from ihe observa~ 

tion that a graph G of order n is a spanning subgraph of P"BCG) , the graph . 
obtained from Pn by adding the edge xy whenever the ·distance x and ·y in 

Pn does not exceed B(G). In general, if k is a positive integer, Gk is the 

graph obtained from G by adding the edge xy whenever d(x,y) < k, 

where d(x,y) is the distance between x and yin ·a. 

We first give and prove two new lower bounds for bandwidth. 
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Theorem 1. B(G) > K(G)for any graph G. 

Proof Let G be a graph of order n. Since G is a spanning sub-
graph of P,,BCG), it follows that K(G) < K( P,,B<G)) = B(G). 

Lemma 1. Let a, b, c be non-zero integers, and let x be any real 

number. (i) If a> r ! l then C > r ! l (ii) rr; 11 = r = l· 

Proof (i) Suppose that C < r ! l · Then C < r lb~ C 11 < r b ~Cl = 

c, which is a contradiction. 

(ii) Let x = n - e, 0 < e < 1. In case e = 0, (ii) clearly holds. So, 
let O < e < 1. Also, let n = aq + r, 0 < r < a. Then 

On the other hand, 

since O < e < 1 and O < r < a. 

Lemma 2. Let 1 < k < n. Then ~( P: ) = I n l· 
I 2k+l 

Proof Consider the graph Pnk, where Pn is the path with verti-
, 

ces 1, 2, ... , n and edges { i, i+ 1}, i = I, 2, ... , n-1. Let n = (2k + 1 )q + r, 
0 < r < 2k + 1. If r = 0, then it is easy to verify that the vertices k+ 1, 

3k+2, ... , (2q-1)k+q, form a (unique) minimum dominating set in Pnk. 

Hence, B( p:) = q = I n l· If r -::f. 0, then the vertices k+ 1, 3k+2, ... , 
I 2k +1 

(2q- 1)k+q, n form a minimum dominating set in P,,k. Hence, it follows 

that B( p: ) = q + 1 • I n l· I 2k +1 • 
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Theorem 2. IfG is a graph of order n, thenB(G) rn-~(G)l · 
2~(G) 

. Proof As in the proof of Theorem 1, we have P(G) > P( P,,8C
0>) 

• since G c pnB(G) . ·But P( pB(G)) = r n l by Lemma 2 where k = 
n 2k + 1 ' 

B(G). By Lemma l(i), 2B(G) + 1 > r n l · Therefore 2B(G) > 
~(G) , 

I
n - ~(G)l Thi • 1· 1 rn - ~(G)l " • 

. s imp 1es that B(G) - • . Hence B(G) > 
~(G) . 2 ~(G) ' 

'I ~rn- ~(G)ll · By Lemma l(ii), we finally get B(G) > rn- ~(G)l · D 
I 2 ~(G) . . 2~(G) 

We shall denote by B1, B2, B3, B4, Bs the quantities r n- I 1, 
. d(G) 

r 
n l- 1, x(G) - 1, K(G) and rn- ~(G)l, respectively. 

a.(G) 2~(G) . 

We now show that each of the bounds B is sharp, i.e., B(G;) = B; 

for some· graph G;. It is not difficult to check that if 1 < k < n, then 

B( P"k ) = k = B ;, for i = 1, • 2, 3, 4, 5 .• This proves the sharpness of each of 

the five lower bounds B;. 

Although each lower bound B; is sharp~ none of them is better 

than the rest in the following sense: If B; ~d B1 are any two among the 

five lower bounds, ·then there exist graphs G and H such that B,(G) < 

BI.._G) and B,(H) > Bj_H), except that B3(G) > B2(G) (or all graphs G. 

To prove the foregoing statement, let x(G) =~and let V1, V2, ... , Vn 

form a partition of V(G) i11:to k independent sets. Then IV;I < a.(G) for 

each i and hence ka.(G) > IV(G)I -· n. This implies that k > n . Since 
. ct.<G) 

k = x(G) is an integer, it follows that x(G) > r n l · Consequently, 
cx.(G) 

B3(G) > B2(G). 
Table 1 below gives examples of graphs for which B; < B1, B; > B1, 

andB; =B1. 
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Table 1. Comparing the lower bounds B; 

l J B;>B1 
B;<B1 B,= B-• -

j 

Podd 
-

I 2 Km,n, m"2:.n~2 KmlKn m>2, n~2, 

m+n>9 
.. 

Pm +Kn, 391191+3 
-

I 3 Fn, n>5 p I or 2 

I 4 Tree T, not a path P,,,+Pn, m~2, n~2, 11 l3pt2l -

lm-nlSI 

I 5 Cn, n~3 Fn, n>ll all values 

2 3 not possible Wn, 
, n>4 p-1 

2 4 Kn(t,p) n>2p+ I~ pit l ~n(l,p) n<2p+ I~ pltl n - I +l3p/2J 

2 5 Cm X Kn, n~3 Wm,n, m+n>7 podd 

3 4 Fm,n, m+n~3 Cm X Pn, m>3, n>2 p-n- I 

3 5 L1
;=J Kn ,_ t>6, n<3 Pn + K2, n>9 P. 1 or 2 

.4 5 C'n, n>3 Cn + K2 , n>17 n = r Jpt2l 

·Each graph in this column is Kn(2,p ), I < p < n. 
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