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Abstract 
Path chromatic index is one of the many coloring invariants of 

graphs. H.C. Serate [6] had presented an in-depth study of such col-
oring invariant. However, no_ne has been established in the path chro-
matic index of the composition of graphs. Hence, the goal of this paper 
is to determine the path chromatic index of some special graphs. 
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1 Introduction 

Problems on graph coloring invariant have been undertaken by a number 

of graph theorists. The origin of all graph coloring problems is the famous 
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Four Colour Problen1 posted in 1852. There had been several st d' 
u ies on 

partitioning the edge-set as well as the vertex-set of graphs. Among these 

studies is that of H.C. Serate's [6] On the Path Chromatic Index o1 S orne 
Graphs. In her study, the path chromatic index of path, cycle, star, complete 
graph; and, other special graphs were established. 

In this paper, we are faced with the problem of investigating the path 

chromatic index of the composition of some special graphs. Specifically, 

we aim to determine the path chromatic index of K1 (G), G(K1), Kn(G), 

Pm(K n), Pm(Pn) and Pm(G), where G is any graph. 

2 Preliminaries 

A path of length n-1, denoted by Pn, is a sequence [x1 , x2 , ... , xn] of distinct 

vertices of G where [xi, Xi+i] is an edge of G for all i = 1, 2, ... , n - l. The 

vertices x 1 and Xn are called end-vertices of the path. A linear forest is a 

graph whose components are paths. 

Two graphs G and H are isomorphic if there exists a one-to-one corre-

spondence between their vertex sets, which preserve adjacency. The compo-

sition of two graphs G
1 

= (X
1

, E 1 ) and G
2 

= (X
2

, E
2

) is the graph Gi(G2

) 

where V(Gi(G2)) = Xi x X2 and [(xi, x2), (Yi, y2)] E E(Gi(G2)) if and only 

if (1) Xi= Yi and [x2, Y2] E E2 or (2) [xi, Yi] E E1. 
• i·rnurn , (G) • the rnin The path chromatic index of a graph G, denoted by Xoo is . 

hrornat1c 
number of colors the edges of G can be given so that each monoc 

rnber . . . . • urn nu color class induces a linear forest Equivalently, 1t 1s the minim • &~ 
of subsets into which E( G) can be partitioned into subsets Ei' E2, • • ·' 

that each (Ei) is a linear forest. 
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The following results are in (6). 

Theorem 2.1 Let G = Pn, the path of order n > 2. Then x~(G) = 1 

Theorem 2.2 Let G = Cn, the cycle of order n > 3. Then x~(G) = 2 

Theorem 2.3 Let G be the totally isolated graph Kn. Then x~(G) = 0. 

Remark 2.4 K1(G) rv G(K1) rv G for any graph G. 

Remark 2.5 Kn(G) rv G1 U G2 U ... U Gn for any G, where G rv G1 rv 

G2 ... ,....., Gn and Gi 's are disconnected. 

3 Main Results 

Theorem 3.1 If x~(G) = t, then 

for any graph G. 

Proof: Let G be any graph with x~(G) = t. From Remark 2.4, K 1 (G) ,..._, 

G(K1) ~ G. Thus x~(K1 (G)) = x~(G(Ki)) = t. 

Theorem 3.2 If x~(G) = r, then x~(Kn(G)) = r for all N and for 
a,ny graph G h -, w ere Kn is the totally isolated graph of order n. 

Proof· S . -. • uppose G 1s any graph and x~(G) = r. Observe that Kn(G) is 
JUst the unio f 
2
_
51 

n ° n graphs G which are disconnected to one another [Remark 
• We color e h G ac the same with that of r colors. 
lience ' (-Xoo K 11(G)) = T. 0 
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Theore111 3.3 \:xi ( /~11 ( l\·,. )) = 11, '01· 111 > 3 and }'or <'7l'''' 11 , 1 J' - ' • 'u , lllte1y,p , 
_ 

111 is 

!hr p<ith of 01rlc1· 111 and l\. 11 is the totally isolatr<l gaiph of O?'Cfrr ri. 

Proof: Label the verticrs of P1,1(.l\',1) a~ :--hown in tho Figure 1 below, 

( ) 
(b2,k1) (bm-1,k1) 

bi, k, ~--;9-------0---n (l Jm, ki) 

(b2, kn-1) . 
( b1, kn-1) Cl'-i"+---H--0--------<~J--~ ( bm, k11

_ t) 
(bm-1, kn-1) 

Figure 1: 

Observe that the maximum degree of PM(K n) is 2n. At most two edges 

incident to the vertex with maximum degree of 2n can be given the same 

color. Hence n colors will be the minimum number of color all edges incident 

to it. Thus x~(Pm(Kn)) > n. Now, consider the following cases. 

Case 1. m < n. We partition the linear forest of Pm(Kn) into subsets 

L1, L2, ... , Ln such that Lin Li= 0, where i,j = 1, 2, ... , n. Let 

L1 = {[(b1, k1), (b2, k1), ... , (bm, k1)], [(b1, k2), (b2, k2), .. ,, (bm, k2)],' •• ' 

[ ( b1 , kn), ( b2, kn), ... 1 ( bm, kn)]} 

L2 {[(b1, ki), (b2, k2), ... , (bm, km)], [(b1, k2), (b2, k3), · · ·, (bm, km-i)l' ••• ' 

[(bi, kn-1), (b2, kn), ... , (bm, km-2)]} 
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Ln - {[(bi, ki), (b2, kn),···, (bm, kn-(m-2))], [(bi, k2), (b2, ki), 
... , (bm, kn-(m-3))], ···,[(bi, kn), (b2, kn-i), ... , (bm, kn-tm-i))]}. 

Hence Lin Li= 0 and Pm(Kn) = U~i Li. Color each Li with a single color. 
The minimum number of colors to color Pm (Kn is n because if we color Ln 
with any of the colors used in Li, L2, ... , Ln-i, at least one cycle is induced. 
Hence x~(Pm(Kn)) = n. 

Case 2. m = n. We partition the linear forest of Pm(K n) into n subsets 
Mi, M2, .... , Mn such that Mi n Mi = 0, where i, j = 1, 2, ... , n. Let 

M1 = {[(bi, ki), (b2, ki), ... , (bm, ki)], [(bi, k2), (b2, k2), .. ·, (bm, k2)], ... , 
[ ( b1 , kn) , ( b2, kn) , , , · , ( bm, kn)]} 

M2 {((bi, k1), (b2, k2), ... , (bm, kn)], [(bi, k2), (b2, k3), · · ·, (bm, k1)], · · ·, 
[(bi, kn), (b2, ki),, ·,, (bm, kn-i)]} 

!vln {[(bi, ki), (b2, kn), ... , (bm, k2)], ((b1, k2), (b2, ki), · · ·, (bm, k3)], · · ·, 
[(bi, kn), (b2, kn-1),. ·., (bm, k1)]}. 

Thus MinMi = 0 and Pm(Kn) = LJ7=1 Mi· Color each A1i with a single color. 
The minimum numbers of colors to color Pm(Kn) is n since if we color Mn 
With any of the colors used in M1 , M2 , ... , Mn at least one cycle is induced. 
Hence X~(Pm(Kn)) = n. 

Case 3. m > n, where m = n + q. Again, we partition the linear 
fore t f - • 0 8 0 Pm(Kn) into n subsets N1 , N2 , ... , Nn such that Nin Ni= , where 
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i, j = 1, 2, ... , n. Let 

N1 = {[(bi, k1), (b2, k1), · • •, (bm, k1)], [(bi, k2), (b2, k2), ... , (bm, k2)], ... , 

[(b1, kn), (b2, kn), ... , (bm, kn)]} 

N2 {[(b1, k1), (b2, k2), ... , (vn, kn), (bn+i, k1), ... , (bn+q, kq)), 

[(b1, k2), (b2, k3),, · ·, (bn, k1), (bn+l, k2), ... , (bn+q, kq+1)], ... , 

[(b1, kn), (b2, k1), · · ·, (bn, kn-1), (bn+l, kn), ... , (bn+q, kq+(n-1))]} 

Nn {[(b1, k1), (b2, kn),···, (bn, k2), (bn+l, k1), (bn+2, kn),· .. , (bn+q, kn-(q-3))]. 

[(b1, k2), (b2, k1), · · ·, (bn, k3), (bn+l, k2), (bn+2, kn), ... , (bn+q, kn-(q-3))], .. 

[(b1, kn), (b2, kn-1), · · ·, (bn, k1), (bn+l, kn),··,, (bn+q, kn-(q-1))]} 

Hence Nin NJ= 0 and Pm(Kn) = LJ7=1 Ni. Color each Ni with a single color. 

The minimum numbers of colors to color Pm(Kn) is n since if we color Mn 

with any of the colors used in N1, N2, ... , Nn at least one cycle is induced. 

Hence x~(Pm(Kn)) = n 

Therefore, in any case, x~(Pm(Kn)) = n. 

Theorem 3.4 x~(Pm(Pn)) = n + l, form > 3 and n > 2, where Pm 

and Pn are paths of order m and n, respectively. 

Proof: Using the figure above, let 

£ = {[(b1, k1), (b1, k2), ... , (b1, kn)], [(b2, k1), (b2, k2), · · ·, (b2, kn)], ••• ' 

[(bm, k1), (bm, k2,.,., (bm, kn)]} 

- ) L Therefore, which induces a linear forest. Observe that Pm(Pn) = Pm(l<n U • 

from Theorem 3.3, x~(Pm(Pn)) = x~(Pm(I<n)) + x~(L) = -n + 1. O 
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Remark 3.5 For n = 1, the theorem above does not hold. 

Theorem 3.6 x~(Pm(Cn)) = n + 2 for rn > 3 and n > 3, where Pm is 

the path of order m and Cn is the cycle of order n. 

Proof: Using the figure above, let 

Note that Pm(Cn) = Pm(Pn) UM. From Theorem 3.4, x~(Pm(Cn)) 
x'00(Pm(Pn)) + x~(m) = n + m. 

Remark 3. 7 Let G be any graph of order n and Pm be the path of order 

m > 3. Then Pm(G) rv Pm(Kn) U G1 U G2 U ... U Gm, where G rv G1 U G2 L1 

... U Gm and Gi 's are disconnected to one another. 

As an immediate consequence of the above remark and the preceding 

theorems, we the the following. 

Corollary 3.8 x~(Pm(G)) = x~(Pm(Kn)) + x~(G) = n + 1. 

Proof: This follows from Remark 3.7. 
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