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Abstract

Path chromatic index is one of the many coloring invariants of
graphs. H.C. Serate [6] had presented an in-depth study of such col-
oring invariant. However, none has been established in the path chro-
matic index of the composition of graphs. Hence, the goal of this paper
is to determine the path chromatic index of some special graphs.

Keywords: path, chromatic index, composition, graph, four color problem

1 Introduction

Problems on graph coloring invariant have been undertaken by a number

of graph theorists. The origin of all graph coloring problems is the famous
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Four Colour Problem posted in 1852. There had been severa] Studies o
partitioning the edge-set as well as the vertex-set of graphs, Among these
studies is that of H.C. Serate’s [6] On the Path Chromatic Indeg of Some
Graphs. In her study, the path chromatic index of path, cycle, star, complete
graph; and, other special graphs were established.

In this paper, we are faced with the problem of investigating the path
chromatic index of the composition of some special graphs. Specifically,
we aim to determine the path chromatic index of K;(G), G(K,), K,(G),
Pn.(K,), Pn(P,) and P, (G), where G is any graph.

2 Preliminaries

A path of length n—1, denoted by FP,, is a sequence [z1, T3, . . . , T,] of distinct
vertices of G where [z;, T;41] is an edge of G for all i = 1,2,...,n — 1. The
vertices z; and z, are called end-vertices of the path. A linear forestis a
graph whose components are paths.

Two graphs G and H are isomorphic if there exists a one-to-one CorTé-
spondence between their vertex sets, which preserve adjacency. The compo-
sition of two graphs G; = (X3, E;) and G, = (Xa, E») is the graph G1(Ga)
where V/(G1(G2)) = Xy ¥ Xy and [(z1,22), (41, 92)] € B(Ga(Ga)) if and oY
if (1) 21 = 41 and [z3, 4] € E; or (2) [21,31] € En.

The path chromatic indez of a graph G, denoted by X5, (G) s the minim

matic
number of colors the edges of G can be given so that each monocht0

mum numbef

En %0

color class induces a linear forest. Equivalently, it is the mini
of subsets into which E(G) can be partitioned into subsets Ey, B2y

that each (E;) is a linear forest.
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The following results are in [6].

Theorem 2.1 Let G = P, the path of order n > 2. Then x,,(G) =1

Theorem 2.2 Let G = C,, the cycle of order n > 3. Then X' (G) = 2
Theorem 2.3 Let G be the totally isolated graph K,. Then x' (G) = 0.
Remark 2.4 K;(G) = G(K1) = G for any graph G.

Remark 2.5 K,(G) 2 G1 UG, U... UG, for any G, where G = G; =

G, 2... 2 Gy and G;’s are disconnected.

3 Main Results
Theorem 3.1 If x. (G) =t, then
Xoo(K1(G)) = X6 (G(K1)) =1,
for any graph G.

Proof: Let G be any graph with x’_(G) = t. From Remark 2.4, K;(G) =
O = G. Thus X, (K1(G)) = X4 (G(K)) = t.

Theorem 3.2 Jf Xoo(G) = 1, then X'o(Kn(G)) = r for all N and for
an —

Ygraph G, where K n 18 the totally isolated graph of order n.
Propr. . T
" %f: Suppose G 1s any graph and x. (G) = r. Observe that K,(G) is

U the unj
25 ton of n graphs G which are disconnected to one another [Remark

Wi
. € color each G the same with that of r colors.
S8 Yo ()} =, -
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Theorem 3.3 \'(Pn(N)) = n, form >3 and for any n, where p
) m 1S

the path of order m and I\, is the totally isolated graph of order n,

Proof: Label the vertices of 1’,\,(1\;,.) as shown in the Figure 1 below

(b‘_g, ’\7]) (bm—-la kl)ﬂ

(bl, k[) —p (bmakl)
(bz. /v.z) (bm—h 'IV )
(b1, k2) O (b )
Pu(Kn)
(b21 kn—l)
(b], kn—l) - ' bmvkn—
(bm—la kn—l) ( 1)
(b2, kn) (bm—ls kn)
(b1, k) bl

Figure 1:
Observe that the maximum degree of Py (K,) is 2n. At most two edges

incident to the vertex with maximum degree of 2n can be given the same
color. Hence n colors will be the minimum number of color all edges incident
to it. Thus X’ (Pn(Kna)) = n. Now, consider the following cases.

Case 1. m < n. We partition the linear forest of Pn(Kn) into subsets

Ly, Lo, ..., L, such that LiNnL; = 0, where i,j = 1,2,...,Mn. Let

Li = {[(blakl)s(bz,kl),---,(bm,kl)]»[(bl,kz),(bz,kz),---’(bm’kZ)]""'
(b1, Kn), (b2, kn)s - - - (b Kin)]}

L, = {[(bl,kl),(bg,kg),...,(bm,km)],[(bl,kg),(bQ,k:;),--'
(b1, kn1), (b, Kn), - - (bmy km—2)]}

, (b,n, kmrl)] gt v 4
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Lo = {[(br, k1), (b2, Kn), - oy Oy ke (2], [(B1, k2), (b, k1),
o) (bm1 kn—(m—3))]’ T [(bl' kn)’ (b2’ kn—l)» v sy (bm’ kn—(m—l))]}-

Hence L;NL; = @ and P, (K,) = iz1 Li. Color each L; with a single color.

The minimum number of colors to color Po(K, is n because if we color L,

with any of the colors used in L;, L, ..

Hence X\ (Pm(Ky,)) = n.

-y Ln_1, at least one cycle is induced.

Case 2. m = n. We partition the linear forest of P.(K,) into n subsets

My, My, .. .., My, such that M; N M; = 0, where i,j = 1,2, .. .,n. Let

My = {[(b1, k1), (b2, k1), - - ., (b, k1), [(b1, k2), (b2, ka), - . ., (b, k2], ...
[(b1, kn), (b2, kr), . . ., (bm, kn)]}

My = {[(b1, k1), (b2, k2), ..., (bm, kn)l, [(b1, k2), (b2, k3), . .., (b, k1)],...
[(by, kn), (b2, k1), - . -, (b, Bn—1)]}

M; = {[(bl,kl),(bg,kn),...,(bm,kg)],[(bl,kz),(bg,kl),...,(bm,kg)],..
[(b1, kn), (B2, kn_1), - - ., (bm, k1)]}

28

Thus Ay, NM; = and P,(K,) = i1 M;. Color each M; with a single color.
The minimum numbers of colors to color P, (K,) is n since if we color M,
With any of the colors used in My, M, ..., M, at least one cycle is induced.
Hence Xoo(Pn(K,)) =

Case 3. m > n, where m = n + q. Again, we partition the linear

lorest of Pn(Ky) into n subsets Ny, N, .. ., N, such that N;N Nj = 0, where
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i,j=1,2,...,n. Let

N, = {[(bl,kl),(bg,kl),...,(bm,kl)],[(bl,kg),(bz,k2),...,(bm,kz)]
[(b1, kn), (b2, kn), - - -, (bim, Kn )]}

Nao = {[(b1, k1), (b2, k2), ..., (bny kn)s (bng1s K1), - - -, (Brg, Kg)],
(b1, k2), (b2, K3, - -y (s k1) (brss k2)s -+, (s Kasa)], - .
(b1, kn), (b2, k1), - - -5 (bny Bn1), (Bnar, K)o (bngy gt (ne))]}

10y

N, = {[(b1. k1), (b2, kr), - .. (b, K2), (bnt1, 1), (Bnt2, Bn)s -, (bntgs Kne(g-3)):
[(b1, k2), (b2, k1), - - -, (bn, k3), (Bra1, K2), (Bns2s En)y - - - (bntg Kne(g-3))], -
[(b1,kr), (b2, kn-1), - - -, (Bn, K1), (Brs1, Kn), - - -y (bntgy Knm(g-1))]}

Hence N;NN; = 0 and Pn,(K,) = J;_; Ni. Color each N; with a single color.

The minimum numbers of colors to color P, (K,) is n since if we color M,

with any of the colors used in Ny, N,,..., N, at least one cycle is induced.
Hence x..(Pm(Kn)) =n
Therefore, in any case, X’ (Pm(Kr)) = n. O

Theorem 3.4 X' (Pn(P,)) = n+1, form > 3 and n > 2, where P

and P, are paths of order m and n, respectively.
Proof: Using the figure above, let

L = {[(b1, k1), (br, Ka), .., (b1, k)], [(b2, Bv), (B, Ka), - - (b2s K]
(s k1), (B K2y -« ., (b Kin)]}

which induces a linear forest. Observe that Py,(P,) = Pm(Kn)UL: Therefor;
from Theorem 3.3, X' (Pn(Py)) = X' (P(Fn)) + Xoo(L) =0+ 1
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Remark 3.5 Forn =1, the theorem above does not hold.

Theorem 3.6 Xo(Prn(Cr)) =n+2 form > 3 and n > 3, where P, is
the path of order m and C, 1is the cycle of order n.

Proof: Using the figure above, let

M = {[(bla kl)’ (bla kn)]’ [(b% kl)’ (b2a kn)]’ IO [(bma kl)’ (bm, kn)]}

Note that Prn(Cn) = Pn(pn) U M. From Theorem 3.4, x. (Pn(Cn)) =
){oo(Pm(Pn)) + Xeo(m) =n +m. O

Remark 3.7 Let G be any graph of order n and P,, be the path of order
m > 3. Then P,(G) = Pm(fn) UGLUGyU...UG,,, where G = G; UGy U

...UG,, and G;’s are disconnected to one another.

As an immediate consequence of the above remark and the preceding

theorems, we the the following.
Corollary 3.8 x&,(Pn(G)) = Xoo(Pm(Kn)) + Xoo(G) =n + 1.

Proof: This follows from Remark 3.7. O

References

] J.A. Bondy nd U.S.R. Murty Graph Theory with Applications, The
MacMillan Press Ltd., 1976.

2 RN. Buenavista, On the Tree Chromatic Indez of a Graph, M.S. Thesis
submitted to the School of Graduate Studies, MSU-IIT, 1996.

177



THE MINDANAO FORUM %

[3] R.N. Buenavista and R.S. Lemence, On the Path Colorapje Indeg of -

Special Graphs, Mindanao Forum,(In press).

[4] R.N. Buenavista and R.S. Lemence, On the Path Colorable Indes of Some
Unary Operations on Graphs (In press).

[5] F. Harary, Graph Theory, Addison Wesley Publishing Co. Singapore,
1989.

(6] H.C.M. Serate, On the Path Chromatic Index of a Graph, M.S. Thesis
submitted to the School of Graduate Studies, MSU - IIT, 1990.

178




{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

