The Monotone and the Dominated Convergence Theorems for an Integral Involving a System of Paths

Daisy Lou C. Lim Sergio R. Canoy, Jr.

Abstract

Recently, Fu introduced the concept of a system of paths and used this to define an integral. For a system consisting of neighborhoods, this integral is equivalent to the Henstock integral. This paper gives the Monotone and the Dominated Convergence theorems of the E-path integral defined by Fu in (3).

Keywords: integral, system of paths, monotone, dominated, convergence

1 **Preliminary Concepts and Known Results**

In what follows. we define some basic concepts and state some of the known $^{\rm{regults}}$ we shall need in the suceeding section. Interested readers may see [1]

A DAISY LOU C. LIM and SERGIO R. CANOY, JR. are Professors of Mathematics in the Department of Mathematics, MSU-IIT, Iligan City. Lim holds a Ph.D. in athematics specializing in Sequential Analysis from Niigata University, Niigata, Japan.

and $[3]$ for the proofs of these known results and for a better under $_{\rm ndeg_{i}}$ of the integral.

Definition 1.1 Let \mathbb{R} be the real line. A *path* leading to *x* is a set $E_x \subset \mathbb{R}$ such that $x \in E_x$ and x is a point of accumulation of E_x . A *system of paths* is a collection $E = \{E_x : x \in \mathbb{R}\}\$ such that each E_x is a path leading to x. A system of paths $E = \{E_x : x \in \mathbb{R}\}\$ is said to be *bilateral* if for every point $x \in \mathbb{R}$ and every $\epsilon > 0$, $(x - \epsilon, x) \cap E_x \neq \emptyset$ and $(x, x + \epsilon) \cap E_x \neq \emptyset$. It is said to satisfy the *intersection condition* if there is associated with *E* a positive function δ on R such that if $0 < y - x < \min{\{\delta(x), \delta(y)\}}$, then $E_x \cap E_y \cap [x, y] \neq \varnothing.$

Definition 1.2 Let $E = \{E_x : x \in \mathbb{R}\}$ be a system of paths. A family *C* of closed subintervals of $[a, b]$ is an E-full cover of $[a, b]$ if there is a positive function δ on $[a, b]$ so that every interval $[y, z]$ of $[a, b]$ for which $y, z \in E_x, y \leq z$ $x \leq z$ and $0 < z - y < \delta(x)$ necessarily belongs to the collection *C*.

For convenience, we shall refer to the function δ in Definition 1.2 as the positive function corresponding to the E-full cover *C.*

The following results are proved in [3].

Lemma 1.3 *Let* $E = \{E_x : x \in \mathbb{R}\}$ *be a system of paths and* $\delta(x) > 0$ *be a positive function on* $[a, b]$. Then the collection $C = \{[u, v] \subset [a, b] : u, v \in$ $E_x, u \leq x \leq v, 0 < v - u < \delta(x)$ for some $x \in [a, b]$ *is an E-full cover of* $[a, b]$.

Lemma 1.4 (Intersection Lemma) Let $E = \{E_x : x \in \mathbb{R}\}$ be a sys- ${\it term \ of \ paths}.$ If C_1 and C_2 are E-full covers of $[a,b],$ then $C_1 \cap C_2$ is also an *E-full cover of [a, b].*

 $\overline{}$

Definition 1.5 Let $E = \{E_x : x \in \mathbb{R}\}$ be a system of paths and *C* and E full cover of [a, b]. A tagged division $D = \{([u, v]; x)\}\$ of [a, b] is called a *C*-partition of [a, b] if each [u, v] belongs to *C*, $u, v \in E_x$ and $u \leq x \leq v$ for r_{every} interval-point pair $([u, v]; x)$ in *D*.

The following result guarantees the existence of a C-partition of an interval for every given E -full cover C of $[a, b]$. See $[1]$ and $[3]$ for its proof.

Theorem 1.6 (Thomson's Lemma) Let $E = \{E_x : x \in \mathbb{R}\}\$ be a sys*tem of paths which is bilateral and has the intersection condition. If C is an E-full cover of* $[a, b]$, *then there is a C-partition of any interval* $[a, b]$ *.*

In what follows, $E = \{E_x : x \in \mathbb{R}\}\$ is a fixed system of paths that is bilateral, and satisfies the intersection condition.

Definition 1.7 A real-valued function f defined on $[a, b]$ is E-path integrable to the number A if for every $\epsilon > 0$ there exists an E-full cover C of $[a, b]$ such that for any *C*-partition $D = \{([u, v]; \xi)\}\$ of $[a, b],$

$$
|(D)\sum f(\xi)(v-u)-A|<\epsilon.
$$

The E-path integral *A* of *f,* if it exists, is unique. In symbols we write

$$
(EP)\int_a^b f(t)dt = (EP)\int_a^b f = A.
$$

It is shown in $[1]$ and $[3]$ that the set of all E-path integrable real-valued functions defined on $[a, b]$ is a real vector space and that E -path integrability over the whole interval implies E-path integrability on every subinterval. The ^{tollowing} results were also proved.

Theorem 1.8 *If* $f, g : [a, b] \rightarrow \mathbb{R}$ *are E-path integrable* on *l* $f(x) \leq g(x)$ *for almost all* $x \in [a, b]$, *then* a_n *a*_{n} *a*<sub> n

o. 1

$$
(EP)\int_{a}^{b}f(t)dt \leq (EP)\int_{a}^{b}g(t)dt.
$$

Theorem 1.9 If $f(x) = 0$ almost everywhere in [a, b], then f is E-path *integrable to zero on* $[a, b]$.

Theorem 1.10 (Henstock's Lemma) If $f : [a, b] \rightarrow \mathbb{R}$ is E-path in*tegrable on* [a, b] *with E-primitive F defined by* $F(x) = \int_a^b f(t)dt$ for every $x \in [a, b]$, then for every $\epsilon > 0$, there exists an E-full cover C of $[a, b]$ such *that for any C-partition D* = { $([u, v]; \xi)$ } *of* $[a, b]$,

$$
(D)\sum |f(\xi)(v-u)-F(v)+F(u)|<\epsilon.
$$

Definition 1.11 A function $F : [a, b] \rightarrow \mathbb{R}$ is said to be of *bounded variation* if $V(F; [a, b]) = sup\{(D) \sum |F(v) - F(u)|\}$ is finite, where supremum is taken over all divisions $D = \{([u, v]; \xi)\}\$ of $[a, b]$.

2 Results

The following result is known *as* the Uniform Convergence Theorem.

} *is ^asequence* **Theorem 2.1 (Unifom Convergence Theorem)** *IJ{JnJ*²⁰ σ *teal-valued E-path integrable functions defined on* $[a, b]$ *that converges uniformly to f on* $[a, b]$, *then f is E-path integrable on* $[a, b]$ *and*

$$
\lim_{n \to \infty} (EP) \int_a^b f_n = (EP) \int_a^b f.
$$

;...---=

proof: Let $\epsilon > 0$. By uniform convergence, there exists a natural number N such that for all $m, n \geq N$ and for all $x \in [a, b]$,

$$
|f_n(x) - f_m(x)| < \epsilon. \tag{1}
$$

By hypothesis, there exist E-full covers C_n and C_m of $[a, b]$ such that if $D_1 = \{([u, v]; \xi)\}\$ is a C_n -partition of $[a, b]$, and $D_2 = \{([u, v]; \xi)\}\$ is a C_m **partition of** *[a, b],* **then**

$$
|(D_1)\sum f_n(\xi)(v-u)-(EP)\int_a^b f_n|<\epsilon
$$

and

$$
|(D_2)\sum f_n(\xi)(v-u)-(EP)\int_a^b f_m|<\epsilon.\tag{2}
$$

Let $n, m \ge N$ and put $C = C_n \cap C_m$. By Lemma 1.4, *C* is an *E*-full cover of [a, b]. Let $D = \{([u, v]; \xi)\}\)$ be a *C*-partition of [a, b]. Then *D* is both a C_n and a C_m -partition of $[a, b]$. Consequently, by (1) and (2), we have

$$
|(EP)\int_{a}^{b} f_{n} - (EP)\int_{a}^{b} f_{m}| \leq |(EP)\int_{a}^{b} f_{n} - (D)\sum f_{n}(\xi)(v - u)|
$$

$$
+ (D)\sum |f_{n}(\xi) - f_{m}(\xi)|(v - u)
$$

$$
+ |(D)\sum f_{m}(\xi)(v - u) - \int_{a}^{b} f_{m}|
$$

$$
< (2 + b - a)\epsilon.
$$
 (3)

This means that the sequence $\{(EP) \int_a^b f_n\}$ is a Cauchy sequence in R. and thus converges to a real number, say A . Next, let $\epsilon > 0$. Then there is ^a**natural number** *N* **such that**

$$
|(EP)\int_{a}^{b}f_N-A|<\epsilon\tag{4}
$$

and

$$
f(x) - f_N(x)| < \epsilon \tag{5}
$$

for all $x \in [a, b]$. Since f_N is E-path integrable on $[a, b]$, there is an E-full cover C_N of $[a, b]$ such that for any C_N -partition $D = \{([u, v]; \xi)\}\$ of $[a, b]$

$$
|(D)\sum f_N(\xi)(v-u)-(EP)\int_a^b f_N|<\epsilon.\tag{6}
$$

Let $C = C_N$. If $D = \{([u, v]; \xi)\}\$ is a *C*-partition of $[a, b]$, then by (4), (5), and (6) , we have

$$
|(D)\sum f(\xi) - A| \leq (D)\sum |f(\xi) - f_N(\xi)|(v - u)
$$

+
$$
|(D)\sum f_N(\xi)(v - u) - (EP)\int_a^b f_N|
$$

+
$$
|(EP)\int_a^b f_N - A|
$$

$$
< (2 + b - a)\epsilon.
$$

This proves the theorem.

Lemma 2.2 Let $f : [a, b] \rightarrow \mathbb{R}$ be *E-path integrable on* $[a, b]$ and let $F(x) = (EP) \int_a^x f(t)dt$ for each $x \in [a, b]$. If *F* is of bounded variation on $[a, b]$, then $|f|$ is E-path integrable and

$$
(EP)\int_a^b|f|(t)dt=V(F;[a,b]).
$$

Proof: Let $\epsilon > 0$. Since *F* is of bounded variation on [a, b], there exists a division $D_0 = \{[a_i, b_i] : 1 \leq i \leq n\}$ of $[a, b]$ such that

$$
V(F; [a, b]) - \epsilon < \sum_{i=1}^{p} |F(b_i) - F(a_i)|. \tag{7}
$$

VOL. XIX $N_{0.1}$

-

 $_{\text{for each}} x \in [a, b]$, let

$$
\delta_1(x) = dist(x, S \setminus \{x\})
$$

= $inf\{|x - y| : y \in S \setminus \{x\}\},$

where $S = \bigcup_{i=1}^{n} \{a_i, b_i\}$ (the union of all endpoints of the intervals in D_0) Then for each $x \in [a, b]$, $\delta_1(x) > 0$.

Now, since f is E-path integrable on $[a, b]$, by the Henstock lemma, there exists an E-full cover C_1 of [a, b] such that for any C_1 -partition $D =$ ${([u, v]; \xi)}$ of $[a, b]$, we have

$$
(D)\sum |f(\xi)(v-u)-F(v)+F(u)|<\epsilon\qquad \qquad (8)
$$

Let $\delta^*(x)$ be the positive function corresponding to the E-full cover C_1 of $[a, b]$. For each $x \in [a, b]$, define

$$
\delta(x) = \frac{1}{2}min\{\delta_1(x), \delta^*(x)\}
$$

Let $C = \{ [u, v] \subset [a, b] : u, v \in E_x, u \leq x \leq v, 0 < v - u < \delta(x) \text{ for some }$ $x \in [a, b]$. Then *C* is an *E*-full cover of $[a, b]$. Suppose $D = \{([u, v]; \xi)\}\$ is a C-partition of [a, b]. By definition of $\delta(x)$, D is a C₁-partition of [a, b]. Also, each interval $[u, v]$ in *D* is subset of some $[a_i, b_i]$. Hence, by (7),

$$
V(F; [a, b]) - \epsilon \quad < \quad \sum_{i=1}^{p} |F(b_i) - F(a_i)|
$$
\n
$$
\leq \quad (D) \sum |F(v) - F(u)|
$$
\n
$$
\leq \quad V(F; [a, b]). \tag{9}
$$

I~

Therefore, by (8) and (9),
\n
$$
|(D) \sum |f|(\xi)(v - u) - V(F; [a, b])
$$
\n
$$
\leq (D) \sum [|f|(\xi)(v - u) - |F(v) - F(u)|]
$$
\n
$$
+ |(D) \sum |F(v) - F(u)| - V(F; [a, b])|
$$
\n
$$
\leq (D) \sum |[f|(\xi)(v - u) - |F(v) - F(u)|]| + \epsilon
$$
\n
$$
\leq (D) \sum |f(\xi)(v - u) - F(v) + F(u)| + \epsilon
$$
\n
$$
< 2\epsilon.
$$

This proves the theorem.

Theorem 2.3 If $f, g : [a, b] \rightarrow \mathbb{R}$ are *E-path integrable on* $[a, b]$ and $|f| \leq g$, then $|f|$ is *E*-path integrable on $[a, b]$.

Proof: Let *F* be the E-primitive of *f* defined by

$$
F(x) = (EP) \int_a^x f(t)dt
$$

for each $x \in [a, b]$. By Theorem 1.8 and the hypothesis, for every subinterval *[u, v]* of *[a, b],* we have

$$
|F(v) - F(u)| = |(EP) \int_{u}^{v} f(t)dt|
$$

$$
\leq (EP) \int_{u}^{v} g(t)dt
$$

$$
< \infty
$$

Thus

$$
V(F; [a, b]) \le \int_a^b g(t)dt < \infty ,
$$

i.e., F is of bounded variation on [a, b]. By Lemma 2.2, it follows that $|f|$ is E -path integrable on $[a, b]$.

 \Box

Theorem 2.4 Let $f, g \mapsto \mathbb{R}$ be E-path integrable on [a, b]. If there exist *g*-path integrable functions h and h* on [a, b] such that $h* \leq f, g \leq h$, then $\lim_{\text{max}}(f, g) = f \vee g$ and $\min(f, g) = f \wedge g$ are E-path integrable on [a, b].

Proof: For functions *f* and *g* we have

$$
f \vee g = \frac{1}{2}(f + g + |f - g|)
$$

and

$$
f \wedge g = \frac{1}{2}(f + g - |f - g)|). \tag{10}
$$

□

Hence

$$
|f - g| = 2(f \vee g) - (f + g) \le 2h - (f + g).
$$

Since the set of all E-path integrable functions on $[a, b]$ is a real vector space, it follows that $f - g$ and $2h - (f + g)$ are E-path integrable on [a, b]. By Theorem 2.3, it follows that $|f - g|$ is E-path integrable on [a, b]. Thus by (10), $f \vee g$ is E-path integrable on [a, b].

Similarly, $f \wedge g$ is E-path integrable on $[a, b]$.

By induction on the number of functions involved, we obtain an extension of the above theorem.

Corollary 2.5 Let $f_j : \to \mathbb{R}$, $j = 1, 2, \ldots, n$, be E-path integrable func*tions on* [a, *b]. Suppose that there exist E-path integrable functions h and g* $\mathbb{P}^{on}[a,b]$ such that $h \leq f_j \leq g$ for each $j = 1, 2, \ldots, n$. Then $\forall f_{j=1}^n$ and $\land f_{j=1}^n$ *are E-path integrable on* [a, *b].*

Theorem 2.6 (Monotone Convergence Theorem) Let $\{f_n\}$ be an *increasing sequence of E-path integrable real-valued functions defined on* $[a, b]$

and suppose that the sequence converges pointwise to a real-valued function f on [a, b]. Then $\{(EP) \int_a^b f_n\}$ converges to a real number if and only if f is *E-path integrable on [a,* b]. *Moreover,*

$$
\lim_{n \to \infty} (EP) \int_a^b f_n = (EP) \int_a^b f.
$$

Proof: Suppose that *J* is E-path integrable on *[a, b].* Then, by hypothesis and Theorem 1.8, we have

$$
(EP)\int_a^b f_n \le (EP)\int_a^b f_{n+1} \le (EP)\int_a^b f
$$

for all *n*. Hence the sequence $\{(EP) \int_a^b f_n\}$ is increasing and is bounded. Thus it converges to a real number.

Conversely, suppose $\{(EP) \int_a^b f_n\}$ converges, say

$$
A = \lim_{n \to \infty} (EP) \int_a^b f_n.
$$

For each *n,* let

$$
F_n(x) = (EP) \int_a^x f_n(t) dt
$$

Then, given $\epsilon > 0$, there exists a natural number N_0 such that for all $k \ge N_0$, we have

$$
|(EP)\int_{a}^{b} f_{k} - A| = A - F_{k}(b) < \epsilon. \tag{11}
$$

Since $\{f_n\}$ converges pointwise to f, it follows that for each $\xi \in [a, b]$, th is a natural number $m(\epsilon, \xi) \geq N_0$ such that

$$
|f_{m(\epsilon,\xi)}(\xi)-f(\xi)|<\epsilon.
$$

(12)

 E_{full} cover By the Henstock lemma for E-path integrals, there exists an E^{-1} C partition C_n of [a, b] for each natural number *n* such that for any C_n -partition $D =$ $\{(u, v]; \xi)\}\,$ of $[a, b],$

$$
(D) \sum |f_n(\xi)(v-u) - F_n(v) + F(v)| < \frac{\epsilon}{2^n}.\tag{13}
$$

For each *n*, let $\delta_n(x)$ be the positive function corresponding to the E-full cover *C_n* of [a, b]. For each $\xi \in [a, b]$, define $\delta(x) = \delta_{m(\epsilon, \xi)}(\xi)$. Let

$$
C = \{ [u, v] \subset [a, b] : u, v \in E_x, u \leq x \leq v, 0 < v - u < \delta(x) .
$$

Then *C* is an *E*-full cover of [a, b]. Let $D = \{([u, v]; \xi)\}\)$ be a *C*-partition of $[a, b]$. Then

$$
|(D)\sum f(\xi)(v-u) - A| \leq (D)\sum |f(\xi) - f_{m(\epsilon,\xi)}(\xi)|(v-u) + (D)\sum |f_{m(\epsilon,\xi)}(\xi) - F_{m(\epsilon,\xi)}(v) + F_{m(\epsilon,\xi)}(u)| + |(D)\sum F_{m(\epsilon,\xi)}(v) - F_{m(\epsilon,\xi)}(u) - A|.
$$

Now, for every interval $[u, v]$ in *D*, the sequence

$$
\{F_n([u,v])\} = \{F_n(v) - F_n(u)\}\
$$

is increasing and bounded. Hence it converges to a real number, say $F([u, v]) =$ $F(v) - F(u)$. Since $F_n(b) = (D) \sum (F_n(v) - F_n(u))$, it follows that

$$
A = \lim_{n \to \infty} F_n(b)
$$

= $(D) \sum (F(v) - F(u))$
= $F(b) - F(a)$.

Next, let $p = min{m(\epsilon, \xi)} : \xi$ is an associated point in D}. Then $p \le m(\epsilon, \xi)$ for each ξ in *D* and $p \geq N_0$. Thus, by (11), we have

$$
\begin{array}{rcl}\n\left| (D) \sum (F_{m(\epsilon,\xi)}(v) - F_{m(\epsilon,\xi)}(u)) - A \right| & = & A - (D) \sum (F_{m(\epsilon,\xi)}(v) - F_{m(\epsilon,\xi)}(u)) \\
& \leq & A - (D) \sum (F_p(v) - F_p(u)) \\
& = & A - F_p(b) \\
&< & \epsilon.\n\end{array}
$$
\n(14)

Therefore, by (12) , (13) , and (14) , we have

$$
|(D)\sum f(\xi)(v-u)-A| < \epsilon(b-a)+\epsilon+\epsilon
$$
\n
$$
= (b-a+2)\epsilon.
$$

This completes the proof of the theorem.

Theorem 2.7 (Dominated Convergence Theorem) *Let* {fn} *be a sequence of E-path integrable real-valued functions defined on* (a, b1 *and suppose that* ${f_n}$ *converges pointwise to a real-valued function f on* $[a, b]$ *. If there exist E-path integrable functions h and g on* $[a, b]$ *such that* $g \leq f_n \leq h$ *for all n, then f is E-path integrable on* (a, b] *and*

$$
\lim_{n \to \infty} (EP) \int_a^b f_n = (EP) \int_a^b f.
$$

Proof: By Corollary 2.5 $\varphi_{j,k} = \vee_{n=j}^{k}(f_n)$ is E-path integrable for each pair (j, k) of positive integers, where $j < k$. For a fixed j, the sequence ${\varphi_{j,k}}_k$ is increasing and the corresponding sequence ${\{\langle EP \rangle \int_a^b \varphi_{j,k}\}_k}$ of E path integrals is increasing and bounded and so, convergent. By Theorem 2.6, the limit function sup $\{f_n : n \geq j\}$ is E-path integrable on [a, b].

D

Similarly, we can show that $\inf\{f_n : n \geq j\}$ is E-path integrable on [a, b]. 'fhen

$$
(EP) \int_{a}^{b} (inf\{f_n : n \ge j\}) \le inf\{(EP) \int_{a}^{b} f_n : n \ge j\}
$$

$$
\le sup\{(EP) \int_{a}^{b} f_n : n \ge j\}
$$

$$
\le (EP) \int_{a}^{b} (sup\{f_n : n \ge j\}).
$$
 (15)

Since ${f_n}$ converges pointwise to f , it follows that

$$
\lim_{j \to \infty} (inf\{f_n(x) : n \ge j\}) = \lim_{j \to \infty} (sup\{f_n(x) : n \ge j\}).
$$

By Theorem 2.6 applied to the sequences $\{inf\{f_n : n \geq j\}\}_j$ and $\{-sup\{f_n : n \geq j\}\}_j$ $n \geq j$ }, it follows that *J* is E-path integrable on $[a, b]$ and

$$
\lim_{j \to \infty} (EP) \int_{a}^{b} (inf\{f_n(x) : n \ge j\}) = (EP) \int_{a}^{b} f
$$
\n
$$
= \lim_{j \to \infty} (EP) \int_{a}^{b} (sup\{f_n(x) : n \ge j\}). (16)
$$

This proves the theorem.

References

- [l] Aldema, R., *An Integral With Respect to a System of Paths,* M.S. Thesis submitted to the School of Graduate studies, MSU-IIT, 1998.
- [2) Gordon R., *Another Look at the Convergence Theorems for the Henstock Integral,* Real Analysis Exchange, **15** (1990) 724-728.
- [3) Fu, *S.,Path Integral: An Inversion of the Path Derivatives,* Real Analysis Exchange, 20(1994-1995) 340-346.
- [4] Lee, P.Y., *Lanzhou Lectures on Henstock Integration,* World Scientific. 1989.
- [5] Thomson, B.S., *Real Functions*, Springer LN 1170, 1985.