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Abstract

Recently, Fu introduced the concept of a system of paths and used
this to define an integral. For a system consisting of neighborhoods,
this integral is equivalent to the Henstock integral. This paper gives
the Monotone and the Dominated Convergence theorems of the E-path
integral defined by Fu in [3].
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1 Preliminary Concepts and Known Results

In what follows. we define some basic concepts and state some of the known

"esults we shall need in the suceeding section. Interested readers may see [1]
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and 3] for the proofs of these known results and for a better unde
rStandln
g

of the integral.

Definition 1.1 Let R be the real line. A path leading to z ig aset B, -
such that * € E; and z is a point of accumulation of Er. A system of paths
is a collection £ = {E, : x € R} such that each E; is a path leading ¢,
z. A system of paths E' = {E; : x € R} is said to be bilaterg] if for every
point z € R and every € > 0, (z —¢,z) N E,; # & and (z,2+€)NE, 4o
It is said to satisfy the intersection condition if there is associated with E

a positive function J on R such that if 0 < y — z < min{d(z),(y)}, then
EInEyn [SE,y] 7é .

Definition 1.2 Let E = {E, : £ € R} be a system of paths. A family C
of closed subintervals of [a,b] is an E-full cover of [a, b] if there is a positive
function ¢ on [a, b] so that every ifiterval [y, z] of [a, b] for which y, z € E,,y <

z < zand 0 < z —y < d(x) necessarily belongs to the collection C.

For convenience, we shall refer to the function ¢ in Definition 1.2 as the
positive function corresponding to the E-full cover C.

The following results are proved in [3].

Lemma 1.3 Let E = {E, : z € R} be a system of paths and §(z) >0 be
a positive function on [a,b]. Then the collection C = {[u,v] C [a,b] 1wV €
E,u<z<v,0<v—u<d(z) for somez € [a,b]} is an E-full cover of

[a,b].

S_
Lemma 1.4 (Intersection Lemma) Let E = {E; : 2 € R} be a5y
; an
tem of paths. If Cy and Cy are E-full covers of [a,b], then C1NC2 15 also
E-full cover of [a,b].
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Definition 1.5 Let E = {E; : z € R} be a system of paths and C an
pfull cover of [a,b]. A tagged division D = {([u,v]; )} of [a,b] is called a
(partition of [a, b] if each [u,v] belongs to C, u,v € E, and v < z < v for

every interval-point pair ([u, v);z) in D.

The following result guarantees the existence of a C-partition of an inter-

«al for every given E-full cover C of [a,b]. See [1] and [3] for its proof.

Theorem 1.6 (Thomson’s Lemma) Let E = {E, : ¢ € R} be a sys-
tem of paths which is bilateral and has the intersection condition. If C is an

E-full cover of [a,b], then there is a C-partition of any interval [a,b].

In what follows, E = {E, : £ € R} is a fixed system of paths that is

bilateral, and satisfies the intersection condition.

Definition 1.7 A real-valued functien f defined on [a, b] is E-path inte-
grable to the number A if for every € > 0 there exists an E-full cover C of

la,b] such that for any C-partition D = {([u,v];€)} of [a,b],

(D)) f(&)(v—u)- Al <e

The E-path integral A of f, if it exists, is unique. In symbols we write

b
(EP) / ’ Ft)dt = (BP) / f=A

It is shown in [1] and [3] that the set of all E-path integrable real-valued
Nnetiong defined on [a, b] is a real vector space and that E-path integrability
over the whole interval implies E-path integrability on every subinterval. The

f 5
01lowmg results were also proved.
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Theorem 1.8 If f,g : [a,b] — R are E-path integrable on |
%] ang

f(z) < g(x) for almost all x € [a,b], then

b
(eP) [ foyat < (BP) / ' o)t

Theorem 1.9 If f(x) = 0 almost everywhere in [a,b], then f is g padh
-pa

integrable to zero on [a,b].

Theorem 1.10 (Henstock’s Lemma) If f : [a,b] — R is E-path in-
tegrable on [a,b] with E-primitive F defined by F(z) = fab f(t)dt for every
T € [a,b], then for every € > 0, there exists an E-full cover C of [a, b] such
that for any C-partition D = {([u,v]; &)} of [a, b],

(D)D 1f(©)(w —u) — F(v) + F(u)| < e.

Definition 1.11 A function F : [a,b] — R is said to be of bounded vart-
ation if V(F;[a,b]) = sup{(D) > |F(v) — F(u)|} is finite, where supremum
is taken over all divisions D = {([u,v]; €)} of [a, b].

2 Results

The following result is known as the Uniform Convergence Theorem.

; e wuence
Theorem 2.1 (Unifom Convergence Theorem) If{fn} %’ =

T
of real-valued E-path integrable functions defined on [a, b] that converd

formly to f on [a,b], then f is E-path integrable on [a, b] and

es U

1 (£P) [ =P [ .
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Proof: Let € > 0. By uniform convergence, there exists a natural number

N such that for all m,n > N and for all z € [a, b],
|[felZ) — fm(z)| < e (1)
By hypothesis, there exist E-full covers C), and C,, of [a,b] such that if

= {([w, v];€)} is a Cyp-partition of [a,b], and Dy = {([u,v];€)} is a Cpp-

partition of [a, b], then
b
|(D1)an(f)(v —u) — (EP)/ fal <€

and

(D) Y fu@)w =)~ (BP) [l < ©)

Let n,m > N and put C = C, N Cp,. By Lemma 1.4, C is an E-full cover of
a,b]. Let D = {([u,v];§)} be a C-partition of [a,b]. Then D is both a Ch-
and a C,,-partition of [a,b]. Consequently, by (1) and (2), we have

b b b
(87) [ g - P) [ £l < 1EP) JEED G
+(D) S 1£a(8) = fm(@) (v — )

(D) @) — ) - / fl

< (2+b—a) (3)

b

This means that the sequence {(EP) f.} is a Cauchy sequence in R

a
and thus converges to a real number, say A. Next, let € > 0. Then there is

4natural number N such that
b
(P [ fv-Al<e (@)
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and
|f(2) — fn(z)| < €

for all x € [a,b]. Since fy is E-path integrable on [a,b], there jg an E-fy))
cover C'y of [a,b] such that for any Cy-partition D = {([w,v]; )} of la, b

(D)3 (@) —u) = (EP) [ ful < ©)

Let C = Cy. If D = {([u,v];&)} is a C-partition of [a, 8], then by (4), (5)

and (6), we have

)

(D) FE) = Al < (D) IF(€) = Fn(©)|(v —u)
HD) S @) — ) - (8P) [ il

b
+|(EP) / fn— Al
< (2+b—a)e.

This proves the theorem. O

Lemma 2.2 Let f : [a,b] — R be E-path integrable on [a,b and let
Flz) = (E'P)/ f(t)dt for each x € [a,b]. If F is of bounded variation on
[a,b], then |f| is E-path integrable and

(EP) / FI(t)dt = V(F; [a, B).

. ists a
Proof: Let € > 0. Since F is of bounded variation on a, b], there €X15 .

division Dy = {[a;,b;] : 1 < i < n} of [a,b] such that

P 7)
V(F;[a,b]) — € < Z|F(b¢)—F(ai)|- (
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or each € [a, b], let

61(z) = dist(z, S\ {z})
= inf{lz—yl:y e S\ {z}},

~ yhere S = U;{ai,b;} (the union of all endpoints of the intervals in Dj)
: Then fOI' eaCh T € [aa b]? 61($) = 0

Now, since f is E-path integrable on [a,b], by the Henstock lemma,
there exists an E-full cover C; of [a, b] such that for any Cj-partition D =
{([v,v};€)} of [a,b], we have

D) If(€)(v—u)— F(v) + F(u)| < (8)

Let 6*(z) be the positive function corresponding to the E-full cover C; of
la,b]. For each z € [a, b], define

d(z) = —m’m{dl( ),0%(z)}

Let C = {[u,v] c [a,b] : u,v € E;,u <7 <v,0<v—u< §z) for some
z € [a,b]}. Then C is an E-full cover of [a,b]. Suppose D = {([u,v]; 5)} is a
C-partition of [a,b]. By definition of §(z), D is a C;-partition of [a,b]. Also,

¢ach interval [u, v] in D is subset of some [a;, b;]. Hence, by (7),

V(F;la,b]) —e < Z |F(b:;) — F(a:)|

IA

(D)S" |F(w) - F(w)]
< V(F;la,b]). (9)
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Therefore, by (8) and (9),
(D) 21 f1(€) (v — u) = V(F; [a, b])
< (D)) IfIE) (@ - u) — |F(v) — F(u)]]
+|(D) Y |F(v) — F(u)| = V(F; [a, b))

< (D)) _IIfIE) (= u) = |F(v) = F(w)|]| + ¢
< (D)) 1€ —u) — Fv) + F(u)| +e¢
< 2e.

This proves the theorem. 0

Theorem 2.3 If f,g : [a,b] — R are E-path integrable on [a,b] and
|f| < g, then |f| is E-path integrable on [a, b).

Proof: Let F' be the E-primitive of f defined by
Flz) = (EP)/ f(t)dt

for each = € [a,b]. By Theorem 1.8 and the hypothesis, for every subinterval

[u,v] of [a, b], we have

|F(v) = F(u)]

|wm/ﬁmm
(EP) / " o)t

< o0

IN

Thus

wmmmsflwﬁ<m,

Le., I is of bounded variation on [a, b]. By Lemma 2.2, it follows that |f] 18

E-path integrable on [a, b).
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Theorem 2.4 Let f,g :— R be E-path integrable on [a,b]. If there erist
g-path integrable functions h and h* on [a,b] such that hx < f,g < h, then

| pax(f,9) = fV g and min (f,g) = f A g are E-path integrable on [a, b].

Proof : For functions f and g we have
1
fvg=5(f+g+If—gl)

and
fAg=3(f+a—17 - 9. (10)

~ Hence

If—gl=2(fVg)—(f+9g) <2h—(f+9).

Since the set of all E-path integrable functions on [a, b] is a real vector space,

it follows that f — g and 2h — (f + g) are E-path integrable on [a,b]. By

Theorem 2.3, it follows that |f — g| is E-path integrable on [a,b]. Thus by
(10), f V g is E-path integrable on [a, b].
Similarly, f A g is E-path integrable on [a, b]. O

By induction on the number of functions involved, we obtain an extension

of the above theorem.

Corollary 2.5 Let f; :— R, j = 1,2,...,n, be E-path integrable func-
lions on [a,b]. Suppose that there exist E-path integrable functions h and g
on [a,b] such that h < f; < g for each j = 1,2,...,n. Then Vfi, and Afl,
ure E-path integrable on [a, b].

Theorem 2.6 (Monotone Convergence Theorem) Let {f,} be an

'i’LCTeasing sequence of E-path integrable real-valued functions defined on [a, b]
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and suppose that the sequence converges pointwise to a real-valued f
Unction

f on [a,b]. Then {(EP) f fn} converges to a real number if and only if f
is
E-path integrable on [a,b]. Moreover,

tm (2P) [ 1= () [ 1

Proof : Suppose that f is E-path integrable on [a,b]. Then, by hypothesis

and Theorem 1.8, we have

(EP) /ab f < (EP) /ab fars < (EP) /abf

for all n. Hence the sequence {(EP) fab fa} is increasing and is bounded.
Thus it converges to a real number.

Conversely, suppose {(EP) [, b fn} converges, say

= lim (EP) fn

For each n, let
Fi@) = (BP) [ fu(0)e
Then, given € > 0, there exists a natural number N, such that for all k 2 No,

we have b
|(EP)/ fr — Al =A— Fy(b) <e (11)

here
Since {f,} converges pointwise to f, it follows that for each £ € [a, 0], ¢

is a natural number m(e, £) > Np such that

(12)
| fmee)(€) — F(E)] <€

_full cover
By the Henstock lemma for E-path integrals, there exists an B

partltlon D

—
=

C, of [a,b] for each natural number n such that for any Cn
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(0,016} of [a 8]
(D) Y- 1a(®)(v = w) = Fufw) + F(v)| < o (13)

For each n, let d,(z) be the positive function corresponding to the E-full
cover Cy, of [a,b]. For each £ € [a, b], define §(z) = Gnee)(€). Let

C={w,v]Cla,b:u,ve By ,u<z<v,0<v—u<d).

Then C' is an E-full cover of [a,b]. Let D = {([u,v];£)} be a C-partition of
[a,0]. Then

(D)Y FO@w—u) = A < (D)D 1£(E) = fn(ee)(©)l(v — w)
+(D) Y | fmie)(€) = Fin(e) (V) + Fney ()]
+|(D) Y F(ee)(v) — Fngey(w) — Al -

Now, for every interval [u,v] in D, the sequence
{Fa([u,v])} = {Fa(v) — Fo(u)}

isincreasing and bounded. Hence it converges to a real number, say F'([u,v]) =

F(v) — F(u). Since F,(b) = (D) >_(Fn(v) — Fn(u)), it follows that

A = lim F,(b)

= (D)) (F(v) - F(u)
= F(b)— F(a) .

Next, let p = min{m(e, §) : £ is an associated point in D}. Then p < my(e, €)
for each €in D and p > Ny. Thus, by (11), we have
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D) Y (Fm(ee)() = Frnegy(w)) — A] = D) " (Fngeg)(v) — Fn(eg)(u
< A—(D)Z( Fp(v) ~ Fy(u))
= A-FE,b)
< e (14)

Therefore, by (12), (13), and (14), we have

D)Zf({)('u—u)—A| < e€lb—a)+e+e
= (b—a+2).

This completes the proof of the theorem. O
Theorem 2.7 (Dominated Convergence Theorem) Let {f,} be a se-

quence of E-path integrable real-valued functions defined on [a, b] and suppose

that {f.} converges pointwise to a real-valued function f on [a,b]. If there

exist E-path integrable functions h and g on |a,b] such that g < f, < h for
all n, then f is E-path integrable on [a,b] and

JLTOEP/fn_EP/f

Proof: By Corollary 2.5 Pik = VE_.(fa) is E-path integrable for each
pair (j,k) of positive integers, where j < k. For a fixed j, the sequence
{@ik}x is increasing and the corresponding sequence {(EP) f: <Pj.k}k of E-
path integrals is increasing and bounded and so, convergent. By Theore™

2.6, the limit function sup{f, : n > j} is E-path integrable on [a,b]-
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Similarly, we can show that inf{f, : n > j} is E-path integrable on [a, b].

Then
b b
) [ nflainz ) < inf{(BP) [ g2 )
b
< sup{(EP) [ fin> ;)
b a
< (EP)/ (sup{fn:n>j}). (15)
Since {fn} converges pointwise to f, it follows that
lim (inf{fa(z) : 0 2 5}) = lim (sup{fu(a) : n 2 7)),

By Theorem 2.6 applied to the sequences {inf{f, : n > j}}; and {—sup{f, :
n > j}};, it follows that y is E-path integrable on [a,b] and

b b
lim (EP) / (inf{fa(z) :n>3}) = (EP) / f

j—oo

~ Jlim(BP) [ (sup{fa(a) :n2 }).(16)

11—

This proves the theorem. O
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