Embedding a Graph in a Harmonious Graph or a Graceful Graph

SEVERINO V. GERVACIO

Special names are given to graphs that admit vertex- or edgelabelings which satisfy some nice properties [1]. For instance, we have the so-called permutation graphs, full graphs, Fibonacci graphs, geometric graphs, magic graphs, graceful graphs, harmonious graphs, tordial graphs and strongly c-elegant graphs. A class of graphs called felicitous graphs generalizes both the harmonious graphs and the strongly c-elegant graphs. Lee, Schmeichel and Shee [2] gave several examples of felicitous graphs as well as examples of nonfelicitous graphs. They proved that every graph is a subgraph of a harmonious graph. Since every harmonious graph is felicitous, it follows then that every graph is a subgraph of a felicitous graph. We shall also prove that every graph is a subgraph of a graceful graph.

Definitions

By a graph G we mean a pair $G = \langle V(G), E(G) \rangle$, where V(G) is a nonempty finite set of elements called vertices and E(G) is a set of unordered pairs xy called edges, where x and y are distinct vertices in V(G).

Let G be a graph with m edges. A harmonious labeling of G is a one-to-one mapping $\phi : V(G) \rightarrow \{0, 1, 2, ..., m-1\}$ such that the induced mapping $\phi : E(G) \rightarrow \{0, 1, 2, ..., m-1\}$ defined by $\phi(e) = \phi(x) + \phi(y) \pmod{m}$ for all $e = xy \in E(G)$ is bijective. A graph is said to be harmonious if it admits a harmonious labeling.

Let G be a graph with m edges. A felicitous labeling [3] of G is a one-to-one mapping $\varphi : V(G) \rightarrow \{0, 1, 2, ..., m\}$ such that the induced mapping $\varphi^* : E(G) \rightarrow \{0, 1, 2, ..., m-1\}$ defined by $\varphi^*(e) = \varphi(x) + \varphi(y)$ (mod m) for all $e = xy \in E(G)$ is bijective. A graph is said to be felicitous if it admits a felicitous labeling. Clearly, every harmonious graph is a felicitous graph.

SEVERINO V. GERVACIO was a former Dean and former Vice Chancellor for Research and Extension, MSU-Iligan Institute of Technology. Currently a Professor of Mathematics at De la Salle University.

THE MINDANAO FORUM

The symbol K_n denotes the complete graph with n vertices such that $xy \in E(K_n)$ for all distinct vertices $x, y \in V(K_n)$. Graham and Sloane [2] proved that K_n is harmonious if and only if $n \le 4$. Lee, Schmeichel and Shee [2] proved that K_n is felicitous if and only if $n \le 4$. Figure 1 shows harmonious (and felicitous) labelings of K_m $n \le 4$.

Fig. 1. Harmonious labelings of K_1 , K_2 , K_3 , and K_4 .

Let G be a graph with m edges. A graceful labeling of G is a oneto-one mapping $\phi : V(G) \to \{0, 1, 2, ..., m\}$ such that the induced mapping $\phi^* : E(G) \to \{1, 2, 3, ..., m\}$ defined by $\phi^*(e) = |\phi(x) - \phi(y)|$ for all $e = xy \in E(G)$ is bijective. A graph is said to be graceful if it admits a graceful labeling.

Figure 2 shows the star S_6 , the path P_5 , and corresponding graceful labelings.

Fig. 2. Graceful labelings of S_6 and P_5 .

SEVERINO V. GERVACIO

Harmonious Labeling

We shall prove here that there exist harmonious graphs with arbitrarily large complete subgraphs. This result clearly implies that every graph is a subgraph of some harmonious graph.

The Fibonacci numbers F_n are defined by $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for each $n \ge 3$. Let us define the felicitous numbers f_n by $f_1 = 0, f_2 = 1$, and $f_n = f_{n-1} + f_{n-2} + 1$, for each $n \ge 3$. One can easily show by mathematical induction that $f_n = F_{n+1} - 1$ for $n \ge 1$.

Consider the first $n \ge 2$ felicitous numbers f_i and let $\sum_n = \{f_i + f_j : i \ne j \text{ and } i, j \le n\}$. It follows from the definition of felicitous numbers that for each $k \ge 2$, $f_{k+1} \ge \sigma$ for every $\sigma \in \sum_k$. It follows, by mathematical induction, that \sum_n contains $\binom{n}{2}$ distinct elements. Now, 1 and $f_{n+1} - 1$ are the minimum and maximum elements, respectively, of \sum_n . Consequently, $f_{n+1} - 1 \ge \binom{n}{2}$. If we set $\binom{n}{r} = 0$, when $r \ge n$, then the inequality $f_{n+1} - 1 \ge \binom{n}{2}$ holds for $n \ge 1$. It follows also that $F_{n+2} - \binom{n}{2} - 2 \ge 0$ for $n \ge 1$.

Let S_m be the star with $m \ge 0$ edges. Denote by $K_n \circ S_m$ the graph obtained by identifying one vertex of K_n with the central vertex of S_m . (S_m has a unique central vertex except when m = 1 in which case we take anyone of its two central vertices.)

Theorem 1. Let $n \ge 1$, $m = F_{n+2} - \binom{n}{2} - 2$. Then $K_n \circ S_m$ is harmonious.

narmonious.

Proof. The theorem is trivially true when n = 1. Assume that $n \ge 2$. Label the vertices of K_n with the felicitous numbers $f_1, f_2, ..., f_n$ with the label $f_1 = 0$ at the vertex which is identified with the central vertex of S_m . The number of elements of the set $\{1, 2, ..., f_{n+1} - 1\}$ which are not in $\sum_n is f_{n+1} - 1 - \binom{n}{2} = F_{n+2} - \binom{n}{2} - 2 = m \ge 0$. Use these m elements to label the remaining m vertices of S_m . \Box

Since every graph with n vertices is a subgraph of K_n , we immediately get the following two corollaries.

Corollary 1.1. Every graph is a subgraph of a harmonious graph.

Corollary 1.2. Every graph is a subgraph of a felicitous graph.

Harmonious Labeling

We shall prove here that there exist harmonious graphs with arbitrarily large complete subgraphs. This result clearly implies that every graph is a subgraph of some harmonious graph.

The Fibonacci numbers F_n are defined by $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for each $n \ge 3$. Let us define the felicitous numbers f_n by $f_1 = 0, f_2 = 1$, and $f_n = f_{n-1} + f_{n-2} + 1$, for each $n \ge 3$. One can easily show by mathematical induction that $f_n = F_{n+1} - 1$ for $n \ge 1$.

Consider the first $n \ge 2$ felicitous numbers f_i and let $\sum_n = \{f_i + f_j : i \ne j \text{ and } i, j \le n\}$. It follows from the definition of felicitous numbers that for each $k \ge 2$, $f_{k+1} \ge \sigma$ for every $\sigma \in \sum_k$. It follows, by mathematical induction, that \sum_n contains $\binom{n}{2}$ distinct elements. Now, 1 and $f_{n+1} - 1$ are the minimum and maximum elements, respectively, of \sum_n . Consequently, $f_{n+1} - 1 \ge \binom{n}{2}$. If we set $\binom{n}{r} = 0$, when $r \ge n$, then the inequality $f_{n+1} - 1 \ge \binom{n}{2}$ holds for $n \ge 1$. It follows also that $F_{n+2} - \binom{n}{2} - 2 \ge 0$ for $n \ge 1$.

Let S_m be the star with $m \ge 0$ edges. Denote by $K_n \circ S_m$ the graph obtained by identifying one vertex of K_n with the central vertex of S_m . (S_m has a unique central vertex except when m = 1 in which case we take anyone of its two central vertices.)

Theorem 1. Let $n \ge 1$, $m = F_{n+2} - \binom{n}{2} - 2$. Then $K_n \circ S_m$ is harmonious.

Proof. The theorem is trivially true when n = 1. Assume that $n \ge 2$. Label the vertices of K_n with the felicitous numbers f_i , f_2 , ..., f_n with the label $f_1 = 0$ at the vertex which is identified with the central vertex of S_m . The number of elements of the set $\{1, 2, ..., f_{n+1} - 1\}$ which are not in $\sum_n is f_{n+1} - 1 - \binom{n}{2} = F_{n+2} - \binom{n}{2} - 2 = m \ge 0$. Use these m elements to label the remaining m vertices of S_m . \square

Since every graph with n vertices is a subgraph of K_n , we immediately get the following two corollaries.

Corollary 1.1. Every graph is a subgraph of a harmonious graph.

Corollary 1.2. Every graph is a subgraph of a felicitous graph.

THE MINDANAO FORUM

Graceful Labeling

Similar to the case of harmonious graphs, we shall prove here that there exist graceful graphs with arbitrarily large complete subgraph.

Let us define the numbers g_n by $g_1 = 0$, and $g_n = 2g_{n-1} + 1$ for $n \ge 2$. It is easy to see that for any positive integer n, the set $\Delta_n = \{|g_i - g_j| : i \neq j, 1 \le i, j \le n\}$ consists of $\binom{n}{2}$ distinct elements. From the definition of g_n , it is also easily seen that $g_n = 2^{n-1} - 1$. Since the largest element of Δ_n is g_n , it follows that $g_n \ge \binom{n}{2}$.

Theorem 2. Let $n \ge 1$ and $m = 2^{n-1} - \binom{n}{2} - 1$. Then the graph K_n o S_m is graceful.

Proof. Observe that $m = 2^{n-1} - \binom{n}{2} - 1 = g_n - \binom{n}{2} \ge 0$. Label the vertices of K_n using $g_1, g_2, ..., g_n$. Then all the induced edge labels $|g_i - g_j|$, i = j are distinct and they are $\binom{n}{2}$ in number, the total number of edges in K_n . Identify the center of S_m with the vertex of K_n which is labeled by 0.

SEVERINO V. GERVACIO

Use the numbers is the set $\{0, 1, 2, ..., \binom{n}{2} + m\}$ to label the other *m* vertices of S_{m} . We see then that the induced edge labels are $1, 2, ..., \binom{n}{2} + m$, where $\binom{n}{2} + m$ is the number of edges of $K_n \circ S_m$. Therefore, $K_n \circ S_m$ is graceful. \Box

Corollary 2.1. Every graph is a subgraph of a graceful graph.

Figure 4 below illustrates the theorem for n = 5.

Ks o Ss

Fig. 4. A graceful labeling of K_5 o S_5

Remarks

The harmonious graphs and graceful graphs constructed here which have arbitrarily large complete subgraphs contain so many vertices. For example, in constructing a graceful graph which contains K_{10} , we need a star S_{466} and so the graceful K_{10} o S_{466} is of order 476. Thus, every graph of order 10 is a subgraph of some graceful graph of order 476. What is the smallest integer k such that every graph of order 10 is a subgraph of some graceful graph of order 10 is a subgraph of order at most k? Is k equal to 476 or less than 476? The reader is challenged to find more economical constructions of graceful graphs and harmonious graphs containing a complete subgraph of a given order.

THE MINDANAO FORUM

References

- Gervacio, S. V., Research Topics in Graph Theory and Combinatorics, a research project funded by the National Research Council of the Philippines, 1990.
- [2] Graham, R. L. and Sloane, N. J. A., On additive bases and harmonious graphs, SIAM J. Alg. Discrete Methods 1 (1980) 382-404.
- [3] Lee, S. M., Schmeichel, S. and Shee, S. C., On felicitous graphs, Discrete Math 93 (1991) 201-209