Embedding a Graph in a Harmonious Graph or a Graceful Graph

SEVERINO V. GERY ACIO

pecial names are given to graphs that admit vertex- or edgelabelings which satisfy some nice properties [I]. For instance, we have the so-called permutation graphs, full graphs, Fibonacci graphs, geometric graphs, magic graphs, graceful graphs, harmonious graphs, tordial graphs and strongly c-elegant graphs. A class of graphs called felicitous graphs generalizes both the harmonious graphs and the strongly c-elegant graphs. Lee, Schmeichel and Shee [2] gave several examples of felicitous graphs as well as examples of nonfelicitous graphs. They proved that every graph is a subgraph of a harmonious graph. Since every harmonious graph is felicitous, it follows then that every grap^h is a subgraph of a felicitous graph. We shall also prove that every graph is a subgraph of a graceful graph.

Definitions

By a graph G we mean a pair $G = \langle V(G), E(G) \rangle$, where $V(G)$ is a nonempty finite set of elements called **vertices** and $E(G)$ is a set of unordered pairs xy called **edges**, where x and y are distinct vertices in $V(G)$.

Let G be a graph with m edges. A **harmonious labeling** of G is a one-to-one mapping φ : $V(G) \rightarrow \{0, 1, 2, ..., m-1\}$ such that the induced mapping $\varphi^* : E(G) \to \{0, 1, 2, ..., m-1\}$ defined by $\varphi^*(e) =$ $\varphi(x) + \varphi(y)$ (mod *m*) for all $e = xy \in E(G)$ is bijective. A graph is said to be **harmonious** if it admits a harmonious labeling.

Let *G* be a graph with *m* edges. A **felicitous labeling** [3] of *G* 1s ^a one-to-one mapping φ : $V(G) \rightarrow \{0, 1, 2, ..., m\}$ such that the induced mapping $\varphi^* : E(G) \to \{0, 1, 2, ..., m-1\}$ defined by $\varphi^*(e) = \varphi(x) + \varphi(y)$ (mod m) for all $e = xy \in E(G)$ is bijective. A graph is said to be feli-. **citous** if it admits a felicitous_ labeling. Clearly, every harmonious graph is a felicitous graph.

SEVERINO V. GERVACIO was a former Dean and former Vice Chancellor for Research and Extension, MSU-lligan Institute of Technology. Currently a Professor of Mathematics at De la Salle University.

THE MINDANAO FORUM

The symbol K_n denotes the complete graph with n vertices such that $xy \in E(K_n)$ for all distinct vertices $x, y \in V(K_n)$. Graham and Sloane [2] proved that K_n is harmonious if and only if $n \leq 4$. Lee, Schmeichel and Shee [2] proved that K_n is felicitous if and only if $n \le 4$. Figure 1 shows harmonious (and felicitous) labelings of K_n , $n \leq 4$.

Fig. 1. Harmonious labelings of K_1 , K_2 , K_3 , and K_4 .

Let G be a graph with *m* edges. A **graceful labeling** of G is a oneto-one mapping φ : $V(G) \rightarrow \{0, 1, 2, ..., m\}$ such that the induced mapping $\varphi^* : E(G) \to \{1, 2, 3, ..., m\}$ defined by $\varphi^*(e) = |\varphi(x) - \varphi(y)|$ for all $e = xy \in E(G)$ is bijective. A graph is said to be graceful if it admits a graceful labeling.

Eigure 2 shows the star S_6 **, the path** P_3 **, and corresponding graceful** labelings.

Fig. 2. Graceful labelings of S_6 and P_5 .

Harmonious Labeling

We shall prove here that there exist harmonious graphs with arbitrarily large complete subgraphs. This result clearly itnplies that every graph is ^a subgraph of some harmonious graph.

The **Fibonacci numbers** F_n are defined by $F_1 = 1$, $F_2 = 1$, and F_n $F_{n-1} + F_{n-2}$ for each $n \ge 3$. Let us define the **felicitous numbers** f_n by $f_1 = 0, f_2 = 1$, and $f_n = f_{n-1} + f_{n-2} + 1$, for each $n \ge 3$. One can easily show by mathematical induction that $f_n = F_{n+1} - 1$ for $n \ge 1$.

Consider the first $n \geq 2$ felicitous numbers f_i and let $\sum_n = \{f_i + f_j :$ $i \neq j$ and $i, j \leq n$ }. It follows from the definition of felicitous numbers that for each $k \ge 2$, $f_{k+1} > \sigma$ for every $\sigma \in \Sigma_k$. It follows, by mathematical induction, that Σ_n contains ($\binom{n}{2}$) distinct elements. Now, 1 and $f_{n+1} - 1$ are the minimum and maximum elements, respectively, of Σ_n . Consequently, $f_{n+1} - 1 \geq \binom{n}{2}$. If we set $\binom{n}{r} = 0$, when $r > n$, then the inequality $f_{n+1} - 1 \geq$ $\binom{n}{2}$ holds for $n \ge 1$. It follows also that $F_{n+2} - \binom{n}{2} - 2 \ge 0$ for $n \ge 1$.

Let S_m be the star with $m \geq 0$ edges. Denote by $K_n \circ S_m$ the graph obtained by identifying one vertex of K_n with the central vertex of S_m . (S_m) has a unique central vertex except when $m = 1$ in which case we take anyone of its two central vertices.)

Theorem 1. Let $n \ge 1$, $m = F_{n+2} - {n \choose 2} - 2$. Then $K_n \circ S_m$ is harmonious.

Proof. The theorem is trivially true when $n = 1$. Assume that $n \ge$ 2. Label the vertices of K_n with the felicitous numbers $f_1, f_2, ..., f_n$ with the label $f_1 = 0$ at the vertex which is identified with the central vertex of S_m . The number of elements of the set $\{1, 2, ..., f_{n+1}-1\}$ which are not in \sum_{n} is $f_{n+1} - 1 - \binom{n}{n} = F_{n+2} - \binom{n}{n} - 2 = m \ge 0$. Use these *m* elements to label the remaining *m* vertices of S_m . \square

Since every graph with *n* vertices is a subgraph of K_n , we immediately get the following two corollaries.

Corollary 1.1. Every graph is a subgraph of a harmonious graph.

Corollary 1.2. Every graph is a subgraph of a felicitous graph.

Harmonious Labeling

We shall prove here that there exist harmonious graphs with arbitrarily large complete subgraphs. This result clearly implies that every graph is ^a subgraph of some harmonious graph.

The **Fibonacci numbers** F_n are defined by $F_1 = 1$, $F_2 = 1$, and F_n $F_{n-1} + F_{n-2}$ for each $n \geq 3$. Let us define the **felicitous numbers** f_n by $f_1 = 0, f_2 = 1$, and $f_n = f_{n-1} + f_{n-2} + 1$, for each $n \ge 3$. One can easily $f_n = \sqrt{2}$. by mathematical induction that $f_n = F_{n+1} - 1$ for $n \ge 1$.

Consider the first $n \ge 2$ felicitous numbers f_i and let $\sum_n = \{f_i + f_j :$ $i \neq j$ and $i, j \leq n$ }. It follows from the definition of felicitous numbers that for each $k \ge 2$, $f_{k+1} > \sigma$ for every $\sigma \in \Sigma_k$. It follows, by mathematical induction, that \sum_{n} contains ($\binom{n}{1}$) distinct elements. Now, 1 and $f_{n+1} - 1$ are the minimum and maximum elements, respectively, of Σ_n . Consequently, $f_{n+1} - 1 \geq \binom{n}{r}$. If we set $\binom{n}{r} = 0$, when $r > n$, then the inequality $f_{n+1} - 1 \geq$ f'') holds for $n \ge 1$. It follows also that $F_{n+2} - {n \choose 2} - 2 \ge 0$ for $n \ge 1$.

Let S_m be the star with $m \geq 0$ edges. Denote by $K_n \circ S_m$ the graph obtained by identifying one vertex of K_n with the central vertex of S_m . (S_m has a unique central vertex except when $m = 1$ in which case we take anyone of its two central vertices.)

Theorem 1. Let $n \ge 1$, $m = F_{n+2} - {n \choose 2} - 2$. Then $K_n \circ S_m$ is harmonious.

Proof. The theorem is trivially true when $n = 1$. Assume that $n \ge$ 2. Label the vertices of K_n with the felicitous numbers $f_1, f_2, ..., f_n$ with the label $f_1 = 0$ at the vertex which is identified with the central vertex of S_m . The number of elements of the set $\{1, 2, ..., f_{n+1}-1\}$ which are not in \sum_{n} is $f_{n+1} - 1 - {n \choose 2} = F_{n+2} - {n \choose 2} - 2 = m \ge 0$. Use these *m* elements to label the remaining *m* vertices of S_m . \square

Since every graph with *n* vertices is a subgraph of K_n , we immediately get the following two corollaries.

Corollary 1.1. Every graph is a subgraph of a harmonious graph.

Corollary 1.2. Every graph is a subgraph of a felicitous graph.

THE MINDANAO FORUM

 K_6 o S_4 .

I

Graceful Labeling

Similar to the case of harmonious graphs, we shall prove here that there exist graceful graphs with arbitrarily large complete subgraph.

Let us define the numbers g_n by $g_1 = 0$, and $g_n = 2g_{n-1} + 1$ for $n \ge$ 2. It is easy to see that for any positive integer *n*, the set $\Delta_n = {\left\{ {\left| {{g_i} - {g_j}} \right| : i} \right\}}$ $\neq j$, $1 \leq i, j \leq n$ } consists of $\binom{n}{2}$ distinct elements. From the definition of g_n , it is also easily seen that $g_n = 2^{n-1} - 1$. Since the largest element of Δ_n is. g_n , it follows that $g_n \geq \binom{n}{2}$.

Theorem 2. Let $n \ge 1$ and $m = 2^{n-1} - {n \choose 2} - 1$. Then the graph K_n ^o*Sm* is graceful.

Proof. Observe that $m = 2^{n-1} - {n \choose 2} - 1 = g_n - {n \choose 2} \ge 0$. Label the vertices of K_n using $g_1, g_2, ..., g_n$. Then all the induced edge labels $|g_i - g_j|$, $i = j$ are distinct and they are $\binom{n}{2}$ in number, the total number of edges in K_n . Identify the center of S_m , with the vertex of K_n which is labeled by 0.

SEVERINO V. GERVACIO

Use the numbers is the set $\{0, 1, 2, ..., {n \choose 2} + m\}$ to label the other *m* vertices of S_{n_r} . We see then that the induced edge labels are 1, 2, ..., $\binom{n}{2} + m$, where $\binom{n}{2} + m$ is the number of edges of $K_n \circ S_m$. Therefore, $K_n \circ S_m$ is graceful.

Corollary 2.1. Every graph is a subgraph of a graceful graph.

Figure 4 below illustrates the theorem for $n = 5$.

Ks oSs

Fig. 4. A graceful labeling of K_5 o S_5

Remarks

The harmonious graphs and graceful graphs constructed here which have arbitrarily large complete subgraphs contain so many vertices. For example, in constructing a graceful graph which contains K_{10} , we need a star S_{466} and so the graceful K_{10} o S_{466} is of order 476. Thus, every graph of order 10 is a subgraph of some graceful graph of order 476. What is the smallest integer *k* such that every graph of order 10 is a subgraph of some graceful graph of order at most *k?* Is *k* equal to 476 or less than 476? The reader is challenged to find more economical constructions of graceful graphs and harmonious graphs containing a complete subgraph of a given order.

,

THE MINDANAO FORUM

References

- Gervacio, S. V., *Research Topics in Gruph Theory and Com*, their *Graph znics* a research project funded by the National Research County *torics*, a research project funded by the National Research Council.
 $\frac{1000}{\pi}$ t , $\frac{1990}{t}$.
- Graham, R. L. and Sloane, N. J. A., *On additive bases and har*, $\frac{1}{2}$, \frac *nious graphs,* **SIAM J. Alg. Discrete Methods ¹**{1980) 382.404_ *o..*
- [3] Lee, S. M., Schmeichel, S. and Shee, S. C., *On felicitous* **Discrete Math 93** (1991) 201-209 *graphs,*