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Abstract 
This paper revisits the concept of semi-open set in a topological space defined by N . Lcvi11c in 1963 [2) . We ah;o define new concepts such as semi-closed set , and semi-closure point of a set and give some results concerning these concepts. 
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1 Introduction 

Generally, the family of all semi-open sets in a topological space X, though 
contains all the open sets, does not form a topology on the set X. In this 
paper we take another look at semi-open sets and define new concepts such 
a5 semi-closed set and semi-closure of a set in a topological space. We shall 
see that a semi-closure of a set is generally smaller than the closure of a set 
and that it diffcrH from the latter in some i;enH<!. 
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h
. er X Y and Z are topological spaces. 

Throughout t is pap ' ' ' 

2 
Definitions and Results 

Definition 2.1 A subset O of Xis semi-open if O C cl[int(O)] (closure 

of the interior of O). Equivalently, 0 is semi-open if there exists an open set 

Gin X such that G c O c cl(G). 

Remark 2.2 Every open set is semi-open. 

Remark 2.3 In a discrete space X, a subset A of X is open if and only 

if it is semi-open. 

Note that every subset of a discrete space X is open. Thus every semi

open set A in Xis open. Therefore by Remark 2.2, the assertion of Remark 

2.3 is true. 

Theorem 2.4 Let H be a non-empty nowhere dense set in X, that is, 

int(d(H)) = 0. Then He is semi-open but H is not. 

Proof: To show this, suppose H is semi-open. Then there exists an open 

set Osuch that O C H C cl(O). Since H is non-empty, 0 is non-empty. 

Thus int(H) (which contains 0) is non-empty. It follows that int(cl(H)) == 0 

contrary to our assumption that H is nowhere dense. Therefore, H is not 

semi-open. 

Next, let G he the complement of cl ( H). Since cl ( H) is a closed set 

containing H · t £ 11 
) - X 

'
1 0 ows-that G is an open set and G C He. Also, cl(G -

(otherwise, int(cl(H)) -L 0) Th 
1 · us we have 

G C He c cl ( G) . 
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'fberefore He is a semi-open set. D 

Corollary 2.5 If O is an open subset of X that is not closed, then cI(O f'. 
O is not semi-open in X . 

Proof: By Theorem.2.4, since cl(O),O =f 0 , it remains to show that 
cl(O) ,O is nowhere dense. So, suppose that x E int[cI(cl(O ) ,O)]. Then 
there exists an open set Gx containing x such that Gx C cl(cl (O),O). Since 

it follows that Gx n O = 0 . Thus, x (/. cl(O) . But x E int[cl(cl(O), O)] 
implies that x E cl(O) because 

int[cl(cl(O) , O)] c cl(cl(O),O) c cl(cl(O)) = cl(O) . 

Therefore, we obtain a contradiction. 
Therefore int[cl(cl(O),O)] = 0, i.e., cl(O),O is nowhere dense in X. □ 

Corollary 2.6 If S is a semi-open subset of X that is not closed, then 
cl(S)-......S is not semi-open in X. 

Proof: We claim that the difference cl(S)'--8 is a non-empty nowhere dense 
set in X. Since S is not closed, cl(S), S =f 0 . Now, since S is semi-open, 
there exists an open set Osuch that O C SC cl(O). Clearly, cl(S) = cl(O) . 
Thus cl(S),S c cl(O),O. Our proof of Corollary 2.5 shows that cl(O)-......O 
is nowhere dense in X . Therefore the inclusion 

1rr!p]ics that cl(S) , S is also nowhere dense in X . The desired result now 
fullows from Theorem 2.4. □ 
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Theorem 2. 7 (Levine) Let { Oo. : a E I} be a collection of sern,. 
i-open 

sets in X. Then U{ Oo. : a E J} is a semi-open set in X. 

Remark 2.8 The intersection of two semi-open sets need not be . 
semi-

open. 

To see this, let X be the real space with the standard topology, A== (O, 2] 

and B = (2, 3). Clearly, A and Bare semi-open sets in X. However, AnB == 

{ 2} is not semi-open in X because 

{2} cJ_ cl(int( {2} )) = cl(0) = 0 . 

Definition 2.9 A subset F of X is semi-closed if its complement pc is 

semi-open in X . 

Remark 2.10 Every closed subset of a topological space is semi-closed. 

Note that Remark 2.10 follows from Remark 2.2 and Definition 2.9. 

Theorem 2.11 Let {F0 : a E J} be a collection of semi-closed sets in 

X. Then n{ F0 : a E I} is a semi-closed set in X. 

Proof: By applying De Morgan's law and using Theorem 2.7, we get the 

desired result. D 

Next, we define the concept of semi-closure point of a set. 

. losure D fi · · X · semi-c e n1tion 2.12 LetAbeasubsetofX. ApointpE 1sa 

point of A if for every semi-open set G in X, p E G implies that G n A f 
0

· 

We denote by scl(A) the set of all semi-closure points of A. 
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Theorem 2.13 Let ACX. Then 

(a) AC scl(A); 

(b) scl(A) C cl(A); 

(c) A is semi-closed if and only if A= scl(A). 

Proof: (a) Let.p EA and Ga semi-open set with p E G. Then p EA n G 

and so, An G =I= 0. This shows that p E scl(A). Therefore, Ac scl(A) . 

(b) Let x E scl(A) and let G be an open set in X with x E G. By Remark 

2.2, G is a semi-open set containing x . Since x E scl(A), G n A =I= 0 by 

Definition 2.12. This shows that x E cl(A). Accordingly, scl(A) C cl(A). 

(c)(:) Suppose A is semi-closed. Let x (/. A, i.e., x E Ac. Set G = Ac. Then 

G is semi-open by Definition 2.Y and x E G. Since An G = 0, it follows 

that x E scl(A). Therefore, scl(A) C A. Combining this with (a), we have 

A= scl(A). 

( ¢::) Suppose A = scl(A) and let p (/. Ac. Since p (/. scl(A) , there exists 

a semi-open set OP containing p such that OP n A = 0, i.e., OP c Ac. It 

follows that 

Therefore, Ac is semi-open by Theorem 2.7. Therefore, A is semi-closed by 

Definition 2.9. 

The proof of the theorem is complete. 
□ 

Remark 2.14 There exists a set A with scl(A) properly contained in 

cl(A). 
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Let X = JR with the standard topology. Consider A = (0, 2). By defini

tion of closure of a set, cl(A) = [O, 2J. Now, since (-oo, OJ and [2, +oo) are 

. sets (-oo OJ u [2 +oo) = Ac is semi-open. It follows that A . 

semi-open , , ' 
1s 

semi-closed. Thus, by Theorem 2.13(c), scl(A) = (0, 2). This justifies the 

remark. 

Theorem 2.15 Let ACX. Then scl(A) is the smallest semi-closed set 

containing A, i.e., A = n{F : F is semi-closed and A C F}. Moreover, 

for B, C C X , we have the following: 

(a) B c C implies that scl(B) C scl(C) 

(b) scl(scl(B)) = scl(B) 

(c) scl(B) U scl(C) C scl(B UC) 

(d) If A is closed then scl(A) = A. In particular, scl(0) = 0. 

Proof: Let T = n{F: F is semi-closed and A C F}. It is easy to see 

that ACT. Also, by Theorem 2.11, Tis a semi-closed set in X. Hence, ye 

is semi-open in X . Thus, if p rt T, then p rt scl(A) because 

This means that scl(A) C T. 

On the other hand, if z rt scl(A), then there exists a semi-open set Gz 

containing z such that Gz n A= 0, i.e., A CG~, where G~ is a semi-closed 

set. Since z r/ G~, z ¢ T by definition of the set T. It follows that TC scl(A). 

The above inclusions imply the desired equality. 
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Now, suppose that A , Band Care subsets of X. If B c C , then the set 

{ F : F is semi-closed and C c F} 

is contained in 

{ K : K is semi-closed and B c K} . 

Thus, using the result of the first part of the theorem, scl(B) C scl(C). This 

proves (a) . Since scl(A) is semi-closed, (b) follows from Theorem 2.13(c) . 

The statements in (d) follow from Remark 2.10 and Theorem 2.13(c). Finally, 

because BC BU C and C C BU C, (c) will follow from (a). □ 

Remark 2.16 There exist sets B and C such that scl(B) U scl( C) is 

properly contained in scl ( B U C) . 

Again, consider the real space X = IR with the standard topology. Let 

B = (0, 2]c and C = [2, 3t. Then B and C are semi-closed sets (see Remark 

2.8). Hence, by Theorem 2.13(c), 

scl(B) U scl(C) =BU C = IR,{2} . 

Since R, {2} is not semi-closed, the smallest semi-closed set containing it is 

, Ilt Therefore, by Theorem 2.15, scl(B UC) = IR. This proves the remark. 

Remark 2.16 simply tells us that the operation "semi-closure" on a set is 

not distribut ive over unions of sets. This is one difference between t he two 

closure operations. 
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Abstract 

A version of the Fundamental Theorem of Calculus for Wang and 
Ding's integral is formulated in this paper. At the same time, it also 
states and proves the Cauchy Extension Theorem for the said integral 
as <lefiue<l using Thomson's local system. 

Keywords: local system, choice, S-cover, S-integral, Henstock's lemma 

1 Preliminary Concepts and Results 

We first give the concepts and preliminary results that we need. 

Definition 1.1 Let IR be the real line and 2IR the collection of all subsets 

of IR. Suppose for every x E JR, there corresponds a nonempty S(x) c 2IR 

such that 

t!:J JULIUS V. BENITEZ and SERGIO R. CANOY, JR. are both connected with 
the Department of Mathematics, College of Science and Mathematics, MSU-Iligan Insti
tute of Technology, Iligan City. 
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1. {x} ~ S(x); 

2. x Ea whenever a E S(x); 

3. a 1 E S(x) and a1 C a2 implies that a 2 E S(x); 

4. a E S(x) and 8 > 0 implies that (x - o, x +. o) n a E S(x) . 

Then S = { S ( x) ·: x E IR} is called a local system. S is said to . be bilateral 

if every a E S ( x) contains points on both sides of x. It is filtering if for every 

x E IR, a 1 n a 2 E S(x) whenever a1, a2 E S(x). Further, it is said to have the 

intersection condition if for every collection of sets {a(x) : x E JR}, called 

a choice from S, where a(x) nS(x), there is a positive function o such that 

if O < y- x < min{o(x), o(y)}, then a(x) n a(y) n [x, y] f- 0 ... 

Definition 1.2 A family C of finite closed intervals is called an S-cover 

of IR if for every x E IR, the set 

a(x) = {y: y = x, or y > x and (x, y] EC, or y < x and [y, x] EC} 

belongs to S(x). 

The following results are proved in- (1]. 

. . l . S-cover oJ"l if Lemma 1.3 A family C of finite closed interua s is an 

and only if there exists a choice { a ( x) : x E IR} of S such that 

(a) if y E a(x ) and y > x, then [x, y] E C and 

(b) if y E a(x ) and y < x , then [y, x ] E C 
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Lemma 1.4 Let {u(x) : x E IR} be choice from Sand 

C = {[u, v] C JR: u E T(v) or v E T(u)} . 

Then C is an S-cover of JR. 

In view of Lemma 1.3, it follows that every S-cover C of JR has a cor

responding choice from S . Conversely, every choice from S can be used to 

define an S-cover for JR. These facts will be frequently used in the next 

section. 

Definition 1.5 Let S = {S(x) : x E JR} be a local system which 

is bilateral and has the intersection condition and C an S-cover for JR. A 

tagged division D = { ([u, v]; E)} is called a C-partition of an interval [a, b] 

if each [u, v] belongs to C. The associated or tag point is~= u if v E u(u) 

or~= v if u E u(v) or either one when both occur, where {u(x) : x E JR} is 

the choice from S corresponding to C. 

The following result guarantees the existence of a C-partition of an inter

val for every given S-cover C of R. See [4] for its proof. 

Theorem 1.6 (Thomson's Lemma) Let S = {S(x) : x E JR} be a 

local system which is bilateral and has the intersection condition. If C is an 

S-cover of JR, then there is a C-partition of any interval [a, b]. 

Henceforth , S = {S(x) : x E JR} is a fixed local system that is bilateral, 

filteri11g ancl satisfie:,;; the intersection condit ion. 
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Definition 1. 7 The real number L is the S-limit of a function F : 

[a, b] _. IR as x _. ~' if for every E > 0, there exists a a(~) E S(~) such that 

IF(x) - LI < f whenever X Ea(€) n [a, b) and X =I= r In this case, we Write 

S- lim F(x) = L. 
x-+( 

Theorem 1.8 (1] If lim F(x) = L, then S- lim F(x) = L. 
x-+( x-+( 

Definition 1.9 A function F : [a, b] ~ JR is S-differentiable at~ E [a, b] 

if 
S- lim F(x) - F(~) 

x-+( X - ~ 
exists. 

We denote this limit by SDF([J and call it the S-derivative of Fat(. F 

is S-differentiable on [a, b] if it is S-differentiable at every point in [a, b]. 

Corollary 1.10 If F : [a, b] ~ JR is differentiable on [a, b], then it is 

S-differentiable there. Moreover, F'(x) = SDF(x) for every x E [a, b] . 

Proof: This follows from Definition 1.9 and Theorem 1.8. □ 

Definition 1.11 A function F : [a, b] ~ JR is S-continuous at ~ E [a, b] 

if for every E > 0, there exists a(~) E S(~) such that IF(x) - F(()I < f 

whenever x E a(O n [a, b]. Fis S-continuous on [a, b] if it is contmuous at 

every point in ( a, b] . 

Th . 
h it is 

eorem 1.12 If F : [a, b] -➔ JR is S-differentiable on [a, b], t en 

S -continuous there. 
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Proof: Let c; E [a, b] and let c > 0. By assumption, corresponding to 

f./(b - a), there exists a cr(c;) E S(c;) such that 

IF(x) - F(c;) - SDF(c;)(x - c;)I < E 

whenever x E a-(c;) n [a, b] and x =I c;. Set 

where 

6 = c/(1 + ISDF(c;)I) . 

By Property ( 4) in Definition 1.1 , it follows that T(c;) E S(c;). Now, if 

x E T(c;) n [a, b], then we have 

IF(x) - F(c;)I < IF(x) - F(~) - SDF(~)(x - c;)I + ISDF(c;)llx - c;I 

< 2c . 

This shows that Fis S-continuous at c;. Therefore Fis S-continuous on 

[a, b]. □ 

Lemma 1.13 If c; E JR and 8 > 0, then (c; - 8, c; + 8) E S(c;) . 

Proof: By Property (3) of Definition 1.1 , the real line JR is in S(c;). Thus, 

by Property (iv), 

(~ - 6, ~ + 6) = (~ - 6, E + 6) n RE S(c;) . □ 

Theorem 1.14 If F : [a, b] -+ JR is continuous on [a, b], then it is S 

continuous there. 
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Proof: Let ~ E [a, b] and let E > 0. By continuity of p at ~ 

.,, , there exist 
a c5 > 0 such that IF(x) - F(~)I < E whenever x E (~ _ c5 ~ 8 

- - - , .,, + 8) n [a, b] . 
Put a(~) - (~ - c5, ~ + 6). Then a(~) E S(~) by Lemma 1.13 Fu 

· rther, if 
x Ea(~) n [a, b], then IF(x) - F(~)I < E. This proves the theorem 

. 0 

Definition 1.15 A real-valued function f defined on [a b] 1·s s · t 
' -in egrable 

to the number A if for every f > 0 there exists a;n S-cover C of JR such that 

for any C-partition D = { ([u, v]; ~)} of [a, b], 

l(D) I: J(~)(v - u) - Al < E. 

The S-integral A of f, if it exists, is unique. In symbols we write 

(S) [ f(t) dt = (S) [ f = A. 

It is shown in (1] and [5] that the set of all S-integrable real-valued func

tions defined on (a, b] is a real vector space and that S-integrability over 

the whole interval implies S-integrability on every subinterval. Further, the 

following results were also proved. 

Theorem 1.16 If f(x) = O almost everywhere in [a, b] then f is S

integrable to zero on [a, b]. 

b] If f is 
Corollary 1.17 Let f and g be real-valued Junctions on [a, · 

h g is also 
S-integrable on [a, b] and f = g almost everywhere on [a, b] , t en 

S-integrable on [a, b]. Moreover, 

b lb 
(S) 1 f = (S) }. g. 
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Theorem 1.18 (Henstock's Lemma) If f: [a, b] ~ IR is S-integrable 

on [a, b] with S-primitive F defined by 

F(x) = (S) J.x SDF(t) dt = F(x) - F(a) 

for every x E [a, b], then for every€> 0, there exists an S-cover C of R such 

that for any C-partition D = { ([u, v]; €)} of [a, b], 

l(D) L f(€)(v - u) - F(v) + F(u)j < €. 

2 Main Results 

The first result says that the S-integral recovers a function ( an S-continuous 

function) from its S-derivative. 

Theorem 2.1 (Fundamental Theorem) Let F : [a, b] ~ IR be S

continuous on [a, b]. If Fis S-differentiable nearly everywhere on [a, b](i.e. 

except for a countable .set), then SDF is S-integrable on [a, b] and 

(S) J.x SDF(t) dt = F(x) - F(a) 

for every x E [a, b]. 

Proof: Let E = { Xn E [a, b] SDF(xn) does not exist}. Define G : 

[a, b] ~ lR by 

G(x) = SDF(x) 

if x E [a, b] , E and G(x) = 0 if x E E. Then G(x) = SDF(x) nearly 

everywhere. We shall show that G is S-integrable on [a, b]. 
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So let E > O. By S-differentiability of F on [a, b] , E th . 
' ' ere exists 

<T(x) E S(x) for each x E (a, b) , E such that if y E a(x) n [a, b] and Y :f. x, 

then 

IF(y) - F(x) - SDF(x)(y - x)I < E • IY - xi. 

For x = Xn, use S-continuity of Fat x to choose T(x) E S(x) so that 

y E T(x) n (.a, b) implies IF(y) - F(x)I < t · 2-n. 

Next, define v(x) = <T(x) if x E [a, b],E, v(x) = T(x) if x EE, and v(x) == JR 

if otherwise. Then v(x) E S(x) for every real number x and M = {v(x) : 

x E IR} is a choice from S. Let C be an S-cover of IR corresponding to M 

and D = {([u,v];~)} a C-partition of [a,b]. Write D = D 1 U D2, where 

D1 = {([u, v]; ~) E D : ~ E E} and D2 = {([u, v]; ~) E D : ~ E [a, b]"-E}. 

Then 

l(D) I: G(~)(v - u) - F(b) + F(a)I 

< l(D1) L G(~)(v - u) - F(b) + F(a)I 

+l(D2) L G(~)(v - u) - F(b) + F(a)I 

< (D1) L IG(~)(v - u) - F(v) + F(u)I + (D2) L IF(v) - F(u)I 
00 

< f · (b - a)+ L f. 2- n 
n=l 

- (b-a+l)<:. 

This shows that G is S-integrable on [a, b] and 

(S) t G(t) dt = F(b) - F(a). 

Therefore, by Theorem 1.18, SDF is S-integrable and 

(S ) t S DF(t) dt = F(b) - F(a). 
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The above argument can be applied to any interval [a, x] \/x E [a, b]. D 

Lemma 2.2 Suppose that (S) l J(t) dt exists for every x E (a, b). Then 

Jor every E > 0, there exists an S -cover C of JR such that if c E ( a, b) and 

D = { ( [u, v]; E)} is a C-partition of [c, b], then 

l(D) I; J(€)(v - u) - (S) [ JI < <. 

Proof: Let {an} be a decreasing sequence in (a, b) that converges to a. 

1 Set ao = b and let f > 0. For each n , there exists an S-cover Cn of JR such 

that if D = { ([u, v]; E)} is a Cn-partition of [an, an-il, we have 

For each n, let {an ( x) : x E JR} be a choice from S corresponding to Cn . 
Define 

Then { T(x) : x E IR} is a choice from S. Let 

, ifx=ao=b 
, if an < x < an- 1 for some n 
, if x = an for some n 
, elsewhere. 

C={[u,v]cJR: uET(v)orvET(u)} . 

Then by Lemma 1.2, C is an S-cover of JR. Let c E (a, b) and D = { ([u, v]; ()} 

a C-partit1on of [c, b]. Choose an integer m such that 

Note that by definition of T(x), an is an associated point of D for every 

n = 1, 2, ... , m. Also, for every interval-point pair ([u, v]; E) in D, there 
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exists some n = 1, 2, ... 'm + 1 such that [u, v] C [an, an-1]. For such 

let D denote the set of pairs ([u, v]; ~) in D such that [u v] C [ an n, 
n . . . . ' an, an-1]. 

Note that Dn 1s a partial Cn-part1tion of [an, an-1]. Also, observe that 

m 

Dm+l = D-.......LJ Dn 
n=l 

is a partial Cm+1-partition of [am+l, am] - Thus, 

j(D) Lt(E)(v- u) - (S) t tj = j(D) L {t(e)(v - u) - (S) [ t}I 
m+l 

< ~ j(Dn) L {t(E)(v- u)- (S) [ f }I 
CX) 

This completes the proof of the theorem. D 

We now prove the Cauchy Extension Theorem. 

Theorem 2.3 (Cauchy Extension) (i) If f : [a, b] -+ JR is S-integrable 

on each interval [x, b] for every x E (a, b] and (S) l~ 1• f exists, then 

f is S-integrable on [a, b] and 

(S) lb f = (S) lim fb f. 
a x-+a ix 

(ii) If f : [a, b] -+ JR is S -integrable on each interval [a, x ] for every x E [a, b) 

and (S) lim lx f exists, then f is S-integrable on [a, b] and 
X-+b a 

(S) lb f = (S) lim rx f. 
a x-+b la 

Proof : Let 
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and let E > 0. By Lemma 2.2, there exists an S-cover C* of IR such that if 

x E (.a, b) and D = { ( [u, -µ]; ~)} is a C*-partition of [x, b], then 

l(D) Ll(O(v - u) - (S) t 11 < < 

Let { a * ( x) : x E JR} be a choice corresponding to C • · Since ( S) Jim {" l x--a Jx 
exists, there exists O'(a) E S(a) such that whenever x E O'(a) n [a, b), we have 

Define 

{ 

O'*(x)n(a,x+E) --=--- , if x E(a,b] 
r(x) = :(a)n(a-l+l.f(a)l'a+l+l.f(a)I) , ifx=a 

~ , elsewhere 

Let C = {[u, v] C IR : u E r(v) or v E r(u)}. Then by Lemma 1.2, C is 

an S-cover of IR. Let D = {([u, v]; ~)} a C-partition of [a, b]. There exists a 

c such that ([a, c]; ~) is in D. Since a ~ r(c) , it follows that ~ = a. Write 

D = D1 U D2, where D2 = {([a, c]; a)} and D1 = D,D2. Then 

l(D) LN)(v - u) - LI - l(D1) L l(O(v- u) + l(a)(c - a) - LI 

< l(D1) Ll(O(v - u) - (S) [ 11 

+l(S) [ l - LI+ ll(a)l(c - a) 

< E+E+E 

- 3c. 

This proves that f is S-integrable on [a, b]. Part ( ii) can be proved using a 

similar argument. □ 
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