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Abstract

This paper revisits the concept of semi-
space defined by N. Levine in 1963 [2).
such as semi-closed set, and semi-
results concerning these concepts.

open set in a topological
We also define new concepts
closure point of a set and give some

Keywords: topology, open, semi-open, interior, nowhere dense, semi-closure
1 Introduction

Generally, the family of all semi-open sets in a topological space X though
contains all the open sets, does not form a topology on the set X In this
baper we take another look at semi-open sets and define new concepts such
as semi-closed set and semi-closure of a set in a topological space. We shall
“ce that a semi-closure of a set is generally smaller than the closure of a set
nd that it differs from the latter in some sense.
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X, ¥, and Z are topological spaces.

Throughout this paper,

2 Definitions and Results

on 2.1 A subset O of X is semi-open if O C cl[int(O)] (closure

Definiti
of the interior of O0). Equivalently, O is semi-open if there exists an open get

G in X such that G cOCdG)

Remark 2.2 Every open set is semi-open.

Remark 2.3 In a discrete space X, a subset A of X is open if and only

if it is semi-0pen-
Note that every subset of a discrete space X is open. Thus every semi-

open set A in X is open. Therefore by Remark 2.2, the assertion of Remark

2.3 is true.

Theorem 2.4 Let H be a non-empty nowhere dense set in X, that 1,

int(cl(H)) = @. Then H° is semi-open but H s not.

Proof: To show this, suppose H is semi-open. Then there exists an open
set O i
- such that O C H C ¢l(0). Since H is non-empty, O is non-empty-
us int(H ' ‘ '
(H) (which contains O) is non-empty. It follows that int(cl(H)) =2

contrary to o :
y to our assumption that H is nowhere dense. Therefore, H 18 not

semi-open.

Nexts let G
eelbin: o be the complement of cl(H). Since cl( H) is a closed et
g H i
y it follows-that G is an open set and G C ge. Also, CI(G) =X

a al e
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Therefore H® is a semi-open set. O

Corollary 2.5 IfO is an open subset of X that is not closed, then cl(O)~

0 is not semi-open in X.

Proof: By Theorem 2.4, since cl(O)\O # @, it remains to show that
c(O)\O is nowhere dense. So, suppose that z int[cl(cl(O)\0)]. Then
there exists an open set G containing z such that G, C cl(cl(O)\0). Since

cl(cl(0)\0) C cl(0°) = O° ,

it follows that G; N O = @. Thus, = ¢ ¢l(0). But z € int[cl(cl(O)\O)]
implies that = € cl(O) because

int[cl(cl(O)\0)] C cl(cl(0)\0) C cl(cl(0)) = cl(O) .

Therefore, we obtain a contradiction.

Therefore int[cl(cl(O)\O)] = @, i.e., cl(O)\O is nowhere dense in X. O

Corollary 2.6 If S is a semi-open subset of X that is not closed, then

c(S)\S is not semi-open in X.

Proof: We claim that the difference cl(S)\S is a non-empty nowhere dense
set in X. Since S is not closed, cl(S)\S # @. Now, since S is semi-open,
there exists an open set O such that O C S C ¢l(0). Clearly, cl (S) =c(0).
Thus cl(S)\S C cl(O)\0. Our proof of Corollary 2.5 shows that c(O)\O

s nowhere dense in X. Therefore the inclusion
cl(S)N\S C c(0)~\O

mplies that cl(S)~ S is also nowhere dense in X. The desired result now

Wlows from Theorem 2.4. -
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Theorem 2.7 (Levine) Let {O : « € I} be a collection of sem;

A . Open
sets in X. Then U{O, : o € I} is a semi-open set in X .

Remark 2.8 The intersection of two semi-open sets need not be sem;
1=

open.

To see this, let X be the real space with the standard topology, A = (0,2]

and B = [2,3). Clearly, A and B are semi-open sets in X. However, AnB —

{2} is not semi-open in X because

{2} € c(int({2})) =cl(2) =@ .

Definition 2.9 A subset F' of X is semi-closed if its complement F¢ is

semi-open in X.
Remark 2.10 FEvery closed subset of a topological space is semi-closed.
Note that Remark 2.10 follows from Remark 2.2 and Definition 2.9,

Theorem 2.11 Let {F, : a € I} be a collection of semi-closed sets in
X. Then N{F, : « € I} is a semi-closed set in X.

Proof: By applying De Morgan’s law and using Theorem 2.7, we get the
desired result. O
Next, we define the concept of semi-closure point of a set.

sa. : = uf‘e
Definition 2.12 Let A be a subset of X. A point p € X is a sem! o
pownt of A if for every semi-open set G in X . p € G implies that GnA 7
We denote by scl(A) the set of all semi-closure points of A.
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Theorem 2.13 Let A C X. Then

(a) AC scl(A);

(b) scl(A) C cl(A);

(c) A is semi-closed if and only if A = scl(A).
Proof: (a) Let.p € A and G a semi-open set with p € G. Thenp € ANG

and so, ANG # @. This shows that p € scl(A). Therefore, A C scl(A).

(b) Let z € scl(A) and let G be an open set in X with z € G. By Remark

2.2, G is a semi-open set containing z. Since z € scl(A4), GN A # & by
Definition 2.12. This shows that z € cl(A). Accordingly, scl(A) C cl(A).
(¢)(:) Suppose A is semi-closed. Let z ¢ A, Le.,, z € A°. Set G = A°. Then
G is semi-open by Definition 2.9 and z € G. Since A N G = @, it follows

that z € scl(A). Therefore, scl(A) C A. Combining this with (
A = scl(A).

a), we have

(<) Suppose A = scl(A) and let p ¢ A°. Since p & scl(A), there exists
a semi-open set O, containing p such that O, N 4 = &, ie, O, C A°. Tt
follows that

A°=U{0, :p € A%} .

Therefore, A€ is semi-open by Theorem 2.7. Therefore, A is semi-closed by

Definition 2.9.

The proof of the theorem is complete. 0O

Remark 2.14 There exists a set A with scl(A) properly contained in
cl(A).
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I the standard topology. Consider A = (0,2). By defin;
11-
= [0,2] Now, since (—09, 0] and (2, +00) are

A¢ is semi-open. It follows that A is

Let X =R wit
tion of closure of a set, ¢ (A)

semi-open sets,
by Theorem 2.13

hus, (c), scl(A) = (0,2). This justifies the

semi-closed. T

remark.

AC X. Then scl(A) is the smallest semi-closed set

Theorem 2.15 Let
closed and A C F }. Moreover

A=n{F:F 15 semi-

containing A, 1€
ve the following:

for B, CCX, we ha

(a) BS C implies that scl(B) € scl(C)

(b) scl(scl (B)) = scl(B)

(c) scl(B)V scl(C) € scl(BUC)

_ A. In particular, scl (@) = 2.

(d) If A s closed then scl(A)

closed and A € F }. It is easy to see

Proof: Let T = N{F:F is semi-
that A C T. Also, by Theorem 2,11, T'isa semi-closed set in X. Hence, T°
is semi-open in X. Thus, if p ¢ T, then p & scl (A) because
T*NACT*CT =60
This means that scl(4) € T.
On th i
) e other hand, if z ¢ scl(A), then there exists a semi-open set G»
containi
ntaining z such that G, N A = &, ie, A CGE, where G is & semi-closf‘d
(A)

set. Sin c
cez ¢ G¢, z ¢ T by definition of the set T. 1t follows that T € scl

Th i ions i
e above inclusions imply the desired equality.
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Now, suppose that A, B and C are subsets of X. If B C C, then the set

{F : F is semi-closed and C C F}

is contained in

{K : K is semi-closed and B C K} .

Thus, using the result of the first part of the theorem, scl(B) C scl(C). This
proves (a). Since scl(A) is semi-closed, (b) follows from Theorem 2.13(c).
The statements in (d) follow from Remark 2.10 and Theorem 2.13(c). Finally,
because B C BUC and C C BUC, (c) will follow from (a). O

Remark 2.16 There exist sets B and C such that scl(B) U scl(C) is
properly contained in scl(BUC).

Again, consider the real space X = R with the standard topology. Let
B = (0,2]¢ and C = [2,3)°. Then B and C are semi-closed sets (see Remark
2.8). Hence, by Theorem 2.13(c),

scl(B)Uscl(C) = BUC =R\{2} .

Since R~ {2} is not semi-closed, the smallest semi-closed set containing it is
E. Therefore, by Theorem 2.15, scl(BU C) = R. This proves the remark.

Remark 2.16 simply tells us that the operation “semi-closure” on a set is

not distributive over unions of sets. This is one difference between the two

closure operations.
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The Fundamenty] Theorem and
the Cauchy Extension for
Integrals in Local Systems
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Abstract

A version of the Fundamental Theorem of Calculus for Wang and
Ding’s integral is formulated in this paper. At the same time, it also
states and proves the Cauchy Extension Theorem for ¢

he said integral
as defined using Thomson's local system. '

Keywords: local system, choice, S-cover, S-integral, Henstock’s lemma,

1 Preliminary Concepts and Results

We first give the concepts and preliminary results that we need.

Definition 1.1 Let R be the real line and 2R the collection of all subsets

of R. Suppose for every = € R, there corresponds a nonempty S(z) C 2R
such that

4 JULIUS V. BENITEZ and SERGIO R. CANOY, JR. are both connected with
the Department of Mathematics, College of Science and Mathematics, MSU-Iligan Insti-
tute of Technology, Iligan City.
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1. {z} ¢ S(x);
2. z € 0 whenever o € S(z);

3. 01 € S(z) and o, C 0, implies that o, € S(z)

4. 0 € S(z) and § > 0 implies that (x—=9d,z+d8)No e S(z).
Then S = {S(z): = € R} is called alocal system. S is said to be bilatera]
if every o € S(x) contains points on both sides of z. It is filtering if for every
z € R, 01 Noy € S(z) whenever 01,0, € S(z). Further, it is said to have the
intersection condition if for every collection of sets {o(z): z € R}, called

a choice from S, where o(z) N S(z), there is a positive function § such that

if 0 <y — 2z < min{é(z),d(y)}, then o(z) No(y) N [z,y] # ..

Definition 1.2 A family C of finite closed intervals is called an S-cover

of R if for every x € R, the set
o(z)={y: y==z, ory >z and [z,y] € C, or y < z and [y,z] € C}

belongs to S(z).

The following results are proved in [1].

rof R if

Lemma 1.3 A family C of finite closed intervals is an S-cove

and only if there exists a choice {o(z): = € R} of S such that
(@) fy € o(z) and y > z, then [z,y] € C and
(b) ify € o(z) and y < z, then [y,z] € C
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Lemma 1.4 Let {o(z): z ¢ R} be choice from S and

C={lu,v] CR: uer(@) orve 7(u)}.

Then C' is an S-cover of R.

In view of Lemma 1.3, it follows that every S-cover C' of R has a cor-
responding choice from S. Conversely, every choice from S can be used to

define an S-cover for R. These facts will be frequently used in the next

section.

Definition 1.5 Let S = {S(z) : z € R} be a local system which
is bilateral and has the intersection condition and C' an S-cover for R. A
tagged division D = {([u,];£)} is called a C-partition of an interval [a, b]
if each [u,v] belongs to C. The associated or tag point is § = u if v € o(u)
or € = v if u € o(v) or either one when both occur, where {o(z) : z € R} is

the choice from S corresponding to C.

The following result guarantees the existence of a C-partition of an inter-

val for every given S-cover C of R. See [4] for its proof.

Theorem 1.6 (Thomson’s Lemma) Let S = {S(z) : z € R} be a
local system which is bilateral and has the intersection condition. If C is an

S-cover of R, then there is a C-partition of any interval [a, b).

Henceforth, S = {S(z) : = € R} is a fixed local system that is bilateral,

filtering and satisfies the intersection condition.
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Definition 1.7 The real number L is the S-limit of a function p .
a,b] > Rasz — ¢, if for every € > 0, there exists a 0 (£) € S(€) such that
|F(z) — L| <€ whenever z € a(€) N [a,b] and = # {. In this case, we write

S-lim F(z) =L .

z—E

Theorem 1.8 [1] If lin% F(z) = L, then S- lin:_ F(z)= L.

Definition 1.9 A function F : [a,b] — R is S-differentiable at £ € [a, b]

if
F(z) — F(§)

S- lim exists.

We denote this limit by SDF(€) and call it the S-derivative of F at &. F
is S-differentiable on [a, b] if it is S-differentiable at every point in [a, b].

Corollary 1.10 If F : [a,b] — R is differentiable on [a,b], then i s
S-differentiable there. Moreover, F’ () = SDF(x) for every x € [a, b].

Proof: This follows from Definition 1.9 and Theorem 1.8. R
Definition 1.11 A function F : [a,b] — R is S-continuous at £ € [a, 0]

if for every ¢ > 0, there exists o(£) € S(§) such that |F(x) - F)l <€
nuous at

whenever z € o(€) A [a,b]. F is S-continuous on [a, b] if it is contl

every point in [a, b].

Theorem 1.12 If F : la,b] — R is S-dzﬂerentz’able on |

S-continuous there.
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Proof: Let € € [a,b] and let € > 0. By assumption, corresponding to
¢/(b — a), there exists a o(§) € S(€) such that

|F'(z) — F(§) — SDF(€)(z - €)| <

whenever z € o(§) N [a,b] and z # €. Set

T(€) =a(§)N(€—-5,€+9),

where

6 =¢/(1+|SDF(€))) .

By Property (4) in Definition 1.1, it follows that 7(§) € S(£). Now, if

z € 7(€) N [a, b], then we have

|F(z) — F(€)] < |F(z)— F(&§) — SDF(&)(z —&)|+ [SDF(§)||x — &

This shows that F' is S-continuous at £&. Therefore F' is S-continuous on

[a, b)]. O
Lemma 1.13 If¢ € R and § > 0, then (§ —6,€ +9) € S(€).

Proof : By Property (3) of Definition 1.1, the real line R is in S(€). Thus,
by Property (iv),

(§—0,6+0)=(-0E+0)NReS(E). O

Theorem 1.14 If F : [a,b] — R is continuous on [a,b], then it is S-

continuous there.
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Proof: Let £ € [a,b] and let € > 0. By continuity of F g £, th .
) €re ay:

a d > 0 such that |F(z) — F(£)| < € whenever ¢ ¢ e\, " l’E}ust a

i . n ] .

— _— [ g

Put o(§) = (€ — 9, +0). Then o(¢) € S(¢) by Lemma 1.13 Further, i :

z € 0(§) N [a,b], then |F(z) — F(€)| < €. This proves the theorem. .

Definition 1.15 A real-valued function f defined on

[a,b] s S-integrapye | :
to the number A if for every € > 0 there exists an S-cover C' of R such that :

:
for any C-partition D = {([u,v];€)} of [a, b], |

(D)X f©)w-w) - 4] <.

The S-integral A of f, if it exists, is unique. In symbols we write

5 [ twya=©[r=a

It is shown in [1] and [5] that the set of all S-integrable real-valued func-
tions defined on [a,b] is a real vector space and that S-integrability over
the whole interval implies S-integrability on every subinterval. Further, the

following results were also proved.

Theorem 1.16 If f(z) = 0 almost everywhere in [a,b] then f e

integrable to zero on [a,b].

If f 18
Corollary 1.17 Let f and g be real-valued functions o [a, bl- fi

a,t], then 9 15 7

S-integrable on [a,b] and f = g almost everywhere on

S-integrable on [a,b]. Moreover,

S)f:f=(5')f:9
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Theorem 1.18 (Henstock’s Lemma) If f - la,b] — R is S-integrable

on [a,b] with S-primitive F defined by

F(z) = (5) ] " SDF(t) dt F(z) - F(a)

for every x € [a, b], then for every ¢ > 0, there exists an S-cover C of R such
that for any C-partition D = {([w,v];€)} of [a,8),

(D)3 £(€)(0 — u) - Fw) + Fu)| <e
2 Main Results

The first result says that the S-integral recovers a function (an S-continuous

function) from its S-derivative.

Theorem 2.1 (Fundamental Theorem) Let F : [a,b] — R be S-
continuous on [a,b]. If F' is S-differentiable nearly everywhere on [a, b] (i.e.

except for a countable set), then SDF is S-integrable on [a, b] and
(S)/ SDF(t) dt = F(z) — F(a)

for every z € [a, b)].

Proof: Let E = {z, € [a,b] : SDF(z,) does not exist}. Define G -
la,b] — R by
G(z) = SDF(z)
if z € [a,0) \ E and G(z) = 0if z € E. Then G(z) = SDF(x) nearly

everywhere. We shall show that G is S-integrable on [a, b).
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So. let € > 0. By S-differentiability of F' on [a, b \ E, there gy
\ Xists

o(z) € S(z) for each z € la,b] \ E such that if y € o(2) N [a,b] ang y o
x?

then
|F(y) — F(z) - SDF(@)(y — 2)| < € |y — 2],

For & = z,, use S-continuity of F' at  to choose 7(z) € S(z) so that
y € 7(z) N [a,b] implies |F(y) — F(z)| < €-27".

Next, define v(z) = o(z) if z € [a,b]\E, v(z) = 7(z) if z € E, and v(z) =R
if otherwise. Then v(z) € S(z) for every real number z and M = {u(g) -
z € R} is a choice from S. Let C be an S-cover of R corresponding to M
and D = {([u,v];§)} a C-partition of [a,b]. Write D = D; U D,, where

D, = {([u,v];€) € D: & € E} and Dy = {([u,v];€) € D: € € [a,b]\E}.
Then

(D) 2G(E)(v —w) — F(b) + F(a)|
< (D) ) G(&)(v —u) - F(b) + F(a)]

+(D2) 3" G(€)(v — u) — F(8) + F(a) |
< (D)) IGE)(w - u) - F(v) + F(w)| + (Do) Y IF() - Fl |

< f-(b—a)+i€-2_n
= (b-a+ l)e.n=1
This shows that G is S-integrable on [a,b] and
(S) f bG(t) dt = F(b) — F(a).
Therefore, by Theorem 1.18, SDF is S-integrable and

(5) /b SDF(t) dt = F(b) — F(a).
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The above argument can be applied to any interval la,z] Vz € [a,b]. O

Lemma 2.2 Suppose that (S / f(t) dt exists for every z € (a,b). Then
for every € > 0, there ezists an S-cover C' of R such that if ¢ € (a,b) and
D = {([u,v];€)} is a C-partition of [c,b], then

(DY 7€) - ) - (5) f:f] <e.

Proof: Let {a,} be a decreasing sequence in (a,b) that converges to a.
Set ap = b and let € > 0. For each n, there exists an S-cover C, of R such

that if D = {([u,v];€)} is a Cp-partition of [a,, an_,], we have

(D s@w-w- [ 1

For each n, let {o,(z) : = € R} be a choice from S corresponding to C,.
Define

o1(z) N (a1 + (a0 — a1),a0+ Hao—a1)) ,ifz=ag=0

r(z) = on(z) N (an,an-1) , if ap < 2 < a,_; for some n
O'n(fL‘) n (an+1:an—1) , o= a, for some n
R , elsewhere.

Then {7(z) : = € R} is a choice from S. Let
C={w,v]CR: uer(v)orver(u)}.

Then by Lemma 1.2, C'is an S-cover of R. Let ¢ € (a,b) and D = {([u, v];€)}

a C-partition of [c, b]. Choose an integer m such that
Qm+1 <Cc< U .

Note that by definition of 7(z), a, is an associated point of D for every

n=12,...,m. Also, for every interval-point pair ([u,v];€) in D, there
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ny @n_1]. For such g,
n

let D, denote the set of pairs ([u,v];€) in D such that 4, V] ¢ ’ . ],
ny <1l

hat

‘ exlsts Some n = 1, 2, PR ,m ‘+' ]. SllCh th&t [u, ’U] c [G’,

Note that D, is a partial Cy,-partition of [a,, a,_4]. Also, observye ¢

Dm+1=D\CJDn

n=1

is a partial Cp1-partition of [ap11,a.,]. Thus,

(DY FEw—w) - (S) f bf\ = DY {r©w®-u) - (s) |8

m+1
< 2|0 {EOw-uw - (s [ 4}
n=1 u
< Z Ee 2 =g ,
n=1
This completes the proof of the theorem. 0O |
We now prove the Cauchy Extension Theorem.

Theorem 2.3 (Cauchy Extension) (i) If f : a, b] —>b]R is S-integrable §
on each interval [z,b] for every z € (a,b] and (S) lin}jb / f exists, then  §
‘ f is S-integrable on [a,b] and

b b
) [ r=©mm [ s

(1) If f : [a,b] — R 4s S-integrable on each interval [a, x) for every T € [a,0)
and (S) im}; / [ exists, then f is S-integrable on [a,b] and

(S)/a"fz(s)%/:f_

b
L =(8) lim/ f

r—a

Proof: Let

220



JUNE 2005  THE FUNDAMENTAL THEOREM AND THE CAUCHY EXTENSION...

and let € > 0. By Lemma 2.2, there exists an S-cover C* of R such that if

z € (a,b) and D = {([u, v];£)} is a Cx-partition of [z, b], then
b
DY s@e-u-©) [ f]<c

Let {o * (z) : = € R} be a choice corresponding to C*. Since (S) lim / f

exists, there exists o(a) € S(a) such that whenever z € o(a)N|a,b], we have

|(S)/:f—L'<f.

Define
ox(z)N(a,z+e) , if z € (a, b]
T(ﬂ:) = U(G)ﬂ(a— 1+|;(a”;a+ 1+|f( )|) § lf$=a
R , elsewhere

Let C = {[u,v] C R: u € 7(v) orv € 7(u)}. Then by Lemma 1.2, Cis
an S-cover of R. Let D = {([u,];€)} a C-partition of [a,b]. There exists a
¢ such that ([a,d;€) is in D. Since a ¢ 7(c), it follows that £ = a. Write

D = Dy U D, where D; = {([a,¢];a)} and Dy = D\Ds. Then
(DY @@-0-L = [P fO0-w)+f@)e—a)-L
< [0y 1©0-w-®) [ ]

b
5) [ -] +1@le-a)
& €teteE

= 3.

This proves that f is S-integrable on [a,b]. Part (ii) can be proved using a

similar argument. 0
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