Applications of Cousin's Lemma

HARRY M. CARPIO

Completeness Axiom and the Heine-Borel Theorem. It is a

profound idea, but it can be stated in simple terms, and it is a
powerful and elegant tool in the proofs of real analysis theorems. This
lemma was discovered in 1894 (see [ST; p. 645]), but it has remained
obscure until quite recently when it was found to be essential in the study
of the Henstock and other Riemann-type integrals. The lemma has a
curious habit of rediscovery. Several authors, e.g., see [B1], [B2], [F], [J],

Cousin’s Lemma is one of the many equivalent formulations of the

[Li], [MR] and [S], have found different versions with similar applications.

In this paper we shall give a fairly detailed account of the same applications
using Cousin’s Lemma. Introducing this lemma in real analysis courses
opens the possibility for a unified and simplified approach to the study of
analvsis.

Assumptions. A closed interval [a,b] is fixed throughout. The
letter & will always denote a positive function defined on R. In defining 8, it
is enough to specify 8(x) when x is in [a,b]. For convenience, we shall
assume that 8(x) = 1 outside [a,b]. When () is given, we put the interval

O(x) = (x-3(x),x+3(x))

for each x € R. The letter I or the interval [#,v] will always denote a closed
subinterval of [a,b]. The Lebesgue measure of a set S is denoted by [S|; in
particular the length of an interval I is denoted by {I.

1.0 Definition. Let &(x) be a positive function defined on R. A
partial division of [a,0] is a collection D = {I;, I, ..., L} of finitely

n
many non-overlapping closed subintervals of [a,b]. If [a,6] = |J I, , we say
k=1

that the collection D is a division of [a,b]. For any closed subinterval I of

[a,b] in D, if there is § € I Such that
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[ coE)=(-86)E+3E),

called the tag of the Subintery :
ay that D is a 6—fine divisigp , .
s, we denote the division by or

(1.1) |
we say that I is &-fine. The element & 18
If all subintervals I in D are S-ﬁn.e, we §
partial division) of [a,b]. Following other

D = {((uV6)},

where [u,v] is a typical tagged interval in D, and &, its tag.
The symbol (D)Z ... means that the sum ranges over all mepy, -

of the collection D.

2.0 Cousin’s Lemma. Let & : R — (0,%0) be a positive function ,
R. Then every finite interval [a,b] has a 5—fine division.
Proof. Our proofis based on the Completeness Axiom. Consider

the set ,
S={x e [a,b] : there s a 6fine division of [a,x] }.
Since 8(a) > 0, there is a closed subinterval [a,x] O(a)[a 5]
Hence the interval [a,x] is 5—fine, and it follows that [a,x]  S.
Since S # &, and S is bounded above by b, it follows from the
Completeness Axiom that S has a least upper bound . Clearlya <o < p
Claim: 6 € S and 6 = b. Since O(c) is open, there is an element
of § such that a <x < ¢ and [x,6] c O(c). Thus the interval [x,6] is §-
fine. Because x € §, it follows that ¢ € S. |
| To prove that 6 = b, suppose, to get a contradiction, that ¢ <
Now let 6 < < b such that [c,s] < O(c). Then [o,s] is 5—fine. Since o is
in 8, it follows that s € S. But this contradicts the definition of o.
Therefore we must have ¢ = 4. This proves that 5 € § and, hence, by
definition of S, there is a 5—fine division of the interval [a,b]. O

As illustration of the technique in the use of Cousin’s Lemma, we
shall prove theorems from elementary real analysis including the Heine-
Borel, and the Bolzano-Weierstrass Theorems.

3.0 Theorem. If £ is continuous on [a,b], then f is bounded.

N Proof. Let x € [a,b]. Since Jf is continuous at x, there exists a
positive number §(x) such that ) -fx)| < 1 forally € O(x)[a,d],
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where O(x) = (x—8(x),x+3(x)). Hence, if y € O(x)[a,b], then
(3.1) fx) - 1 <Ay) <Ax) +.1.

By Cousin’s Lemma, let D = {(Ix;£) : 1 < k < n} be a 5—fine division of
[a,b]. 1t follows from (3.1) that if y € I, then RE) — 1 <Ay) <f&)+ 1.

Thus if y € [a,b], then, with the maximum and minimum taken over all %,
for 1 <k <n, we have '

min fi&) — 1 S Ay) < max, &) + 1.
This shows that fis bounded on [a,b]. [

4.0 Heine—Borel Theorem. An open cover C of [a,b] has a finite
subcover.

Proof. Let C be an open cover of [a,b]. By hypothesis there is for
each x in [a,b] an open set G(x) in C containing x. Hence there is a 3(x) > 0
such that O(x) c G(x). This defines a positive function 3 on [a,b].

By Cousin’s Lemma, let D = {(I.&) : 1 <k <n} be a d—fine divi-
sion of [a,b]. Then each I  O(£x) < G, where Gy € C. Hence

[a,6] = Uik € UiGr.
The class {G1, Gz, ..., G»} is a finite subcover of [a,b]. O
5.0 The Intermediate Value Theorem. If fis continuous on [a,b],

and we have fla)f(b) < 0, then there exists x, in (a,b) such that f{x,) = 0.

Proof. The proof is by contraposition. We shall assume that f is
continuous and is never 0 on [a,b], and prove that fa)b) > 0. This ine-
quality holds, if f has only one sign on [a,b].

1 ; . ;
Let-x € [a,b] and suppose that € = 5\ f(x)\ > 0. Since fis conti-

nuous at x, there is a 8(x) > 0 such that if y € [a,b] and |x — y| < 8(x), then
we have |fix) - fiy)| <e. Thusify € [a,b] and |[x — y| < 8(x), then

fx) —e <fy) <Ax) + &, or

A= L7} <) <)+ 51
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Hence for each x € [a,8], depending on whether f{x) > 0, or flx) <0,
(5.1) either f> 0, or < 0 throughout o(x)|[a,b].
_fine division D = {([u,v];€)} of

by (5.1), it follows that f has only one sign in
D. Since two consecutive subintervals have a

y one sign throughout [a,0]. U

By Cousin’s Lemma, there is a 0

[a,5]. Since [u,v] < O6),
each subinterval [#,V] in
common endpoint, then f has onl

orem. IfSisa bounded, infinite set

lation point.
at S has no accumulation point.
finite. Recall that x is an accumu-

6.0 Bolzano-Weierstrass The
of real numbers, then S has an accumu

Proof. Let S C [a,b]. Assume th

We shall prove that the bounded set S is
lation point of S if and only if GNS is infinite, for each open set G

containing X. Now let x € R. Since x is not an accummulation point of S,
there is a 8(x) > 0 such that O(x)S is finite. This defines a positive
function & on R. By Cousin's Lemma there is a —fine division D = {(TE0)
. 1 <k < n} of [a,b], such that el C O(&n)[a,b] for each k. Hence,

S =Sn[a,b] = Uk(ShIk) c UKOENNS)

is finite. [
7.0 Theorem. If f is continuous on [a,b], then f is uniformly con-

tinuous on [a,b].

Proof. Lete >0 and le
such that for each y-€ O(x)[a,
and v are in O(x)[a,b], then
(7.1) ) —f)] < ) — R0 + ) ~ fl <.
LetD = {(I€k) : 1 < k < n} be a 8—fine division of [a,b]. Let .

n=min {[l|: (&) €D }.
uch that [x — y| <n. Then there are two possibilities.
I, for some k. Thenx,y € O(&x)[a,b], hence by

t x € [a,b]. By hypothesis there is a S(x) >0
b], we have [fix) — Ay)| <e/2. Thus if u

Suppose x, y € [a;b] s
Casel. x,y €

(7.1), [fx) - <e.

Case 2. x and y respective

ly belong to consecutive intervals I and
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L. with common endpoint &. Then we have

Ax) =S) < [fx) - RE)| + IRE) - Al < 2e.

Tl.lus if x and y are in [a,b] and |x — y| <, then [Ax) — Ay)| < 2¢. This im-
plies that fis uniformly continuous on [a,b]. 'O

8.0 Cantor's Intersection Theorem. Let {F,} be a decreasing
sequence of closed sets in [a,b], i.e., [a,] 2 F1 2 F> © ... , such that
N, F, =&. ThenF, = &, for some n.

Proof outline. Let x € [a,b]. Then x ¢ F,, for some n. Since F, is
closed, there is a 8(x) > 0 such that O(x)~F, = &. This defines a positive
function 8. Now apply Cousin's Lemma. [

9.0 Dini's Lemma. Let (f,) be a sequence of continuous functions
on [a,b] that decreases to O, i.e., fu(x) d 0, for all x in [a,b]. Then the
sequence (f,) converges to 0 uniformly.

Proof. Let € > 0 and let x € [a,b]. Since f,(x) 0, there is a positive
integer # such that 0 < f,(x) <&/2. By the continuity of f, there isa
positive number 8(x) such that if y € [a,b], and [x — y| < 3(x), then we have

fux) =SoD)| < /2.

Thus for each x there is an n and a 8(x) > O such that if y is in
O(x)N[a,b], then f,(y) < €. By Cousin's Lemma we can find a d—fine
division D = {(I;£x)} of [a,b]. Since I  O(&y), it follows that for each £,
there is an 7 such that if y € L, then f, (¥) <€, Now let N = max {m}.

then we have fv < f, . for all k. Thus if y € [a,b], theny € I, for some &,
hence fl(y) < fn, (v) < &. Therefore (f,) converges to 0 uniformly. O

10 0 Remark. The next two theorems, i.e., Theorems 11.0 and
12.0, are two versions of the standard calculus theorem which says that if
the derivative of f is nonnegative throughout [a,b], thenf is nonde-
creasing on [a,b]. (See also Theorem 13.0) With Thomson's Lemma,
Botsko [B1] proves this theorem using lower derivatives instead of
derivatives. The lower derivative of f at x is defined by
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Df(x) = lim inf ———f(")'i(y’
o

as y tends to x. A lower derivative always exists, because it is defined in
terms of the limit infimum. In Theorem 13.0, we shall rewrite Botsko's

proof using the language of Cousin's Lemma.
Cousin's Lemma is also useful in extending theorems that use the

‘everywhere’ condition to theorems that use the ‘almost everywhere’
condition. In Theorem 12.0, we extend Theorem 11.0 by assuming that the

derivatives exist almost everywhere.

11.0 Theorem. If f'(x) = 0, for all x in [a,b], then fis a constant.

Proof. Let € > 0 and let x € [a,5]. Then there is 2 8(x) > 0 such
that y € O(x)[a,b] implies |{x) — Ay)| < elx — y|. Apply Cousin's Lemma.
For the rest of the argument see the proof of Theorem 12.0. We can also
deduce this theorem as a corollary of Theorem 13.0. [

12.0 Theorem. If '(x) = 0, almost everywhere in [a,b], and fis ab-
solutely continuous, then f is constant on [a,b].

Proof. Lete>0. Let D = {xe[ab]:f'(x)=0}, and let E =
[a,b] \ D. Then for each x in D there exists a 8(x) > 0 such that if y is in
O(x)[a,b], then [fx) — A¥)| < €lx — y|. This defines a function 6(x) on D.
Observe further that if x € D and x € [#,v] € O(x)[a,b], then

[fv) - fu)| < [fv) - fx)| + [fx) = Aw)l.
Therefore, we have
(12.1) V) - flw)| < €lv — x| +elx —u| =&(v - u).
Next, since f is absolutely continuous, there exists n > 0 such that for
every (finite or infinite) sequence ([ax,bi]) of disjoint subintervals of [a,b],
(12.2) Slbe — a <m implies 2fbi) —faw) <e.

Since E has measure 0, there is an open set G of measure |G| < 7 such
that E c G. For each x in E there is a 3(x) > 0 such that O(x) < G. This
extends the function 8(x) to all of [a,6]. By Cousin's Lemma, there is a d-
fine division Do = {([#,v];€)} of [a,b], where § € [1,v].c O(x)[a,b]. We
write Dy = D;UD,, where
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D; ={([uV]£) €eDy: € € D} and D, =Dy \D;.

In view of (12.1) and the fact that the disjoint subintervals in D, have
total length < 7, being all in G, it follows that
fB) - fa)| < Do)ZIAY) - )
= (D)XIAY) - flw)| + O)LI) - Aw)
<g(b-a)+te=¢gb-at]l)

Since € is arbitrary this implies that fa) = f(0). In the same manner we can
show that if a < o < B < b, we have fla)) = f(B). Therefore fis constant on
the interval [a,b]. U

13.0 Theorem. If DAx) > 0 everywhere on an interval [a,b], then ki
is nondecreasing on that interval. .

Proof. Let € > 0 and let x € [a,b]. Since Df(x) > 0, there exists a
8(x) > 0 such that whenever y € O(x)[a,d], and y # x,

(13.1) () - foNx-y) 2 -&.

This defines a positive function & on [a,b].
Now let x € [u,v] € O(x)[a,b]. Then u, v are in O(x)[a,d].
Since u < x < v, it follows from (13.1) that

(13.2) fx) - flu) = - e(x — u) and Av) - fix) > —e(v—x). |
Adding the two inequalities in (13.2), we obtain
(13.3) V) —fu) 2—e(v—u).

By Cousin's Lemma, there is a 6-fine division D = {([#,v],€)} of
[a,b]. It follows from (13.3) that

fb) - fla) = D)L(A) - fw))
> —g(D)X(v — u) = —&(b — a).
Since ¢ is arbitrary, we have f{b) - fla) > 0. Hence fib) 2fla). U

14.0 The Mean Value Theorem. If F is differentiable on [a,b] and
m < F'(x) <M for all x in [a,b], then
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m(b — a) < F(b) - F(a) <M(b - a).

Proof. Let € > 0 and let x € [a,b]. Then there is a 5(x) > 0, sycp

that if x € [u,v] C O(x)[a,b], then
IF(v) — F(u) - F ")(v—u)| <elv—u.

It follows from this that if x € [#,v] O(x), then
(14.1) (m—)(v—u) <F() - Fu) <M +e)(v—u).

By Cousin's Lemma, there is a 5—fine division D = {([#,v];£)} of
[a,b]. Since & € [u,v] < O(E), it follows from (14.1) that

(D)X (m — €)(v — u) < (D)LF(v) - F(u) < D)X M +€)(v - u).

s (m-¢g)b-a)<F(b)-Fla)sM+ e)(b —a).

Since ¢ is arbitrary the desired conclusion follows immediately. U

15.0 Definition. A function f : [a,b] — R satisfies the strong
Lusin condition, if for each € > 0 and for each subset E c [a,b] of
measure 0, there is a posifive function 3(x) on R such that for every partial
5—fine division D = {([#,v];£)} of [a,b] with & € E, we have the
inequality (D)2 |Av) — Au)| <e. Here f is called a strong Lusin function.

16.0 Theorem. If f is a strong Lusin function on [a,b], g is non-
decreasing on [a,b], and |[f'(x)| < g'(x) a.e. on [a,b], then we have

I(b) - fa)| < g(b) — g(a).
Proof. Lete >0 and let
D ={xead]:[f'®)<gX}

Then for each x in D, there is a positive number 8(x) such that if y
isin O(x)[a,b] and y # x, we have

) - fx)| < 1g() — g(x)| +ely — x|.
Thus if x € [u,v] € O(x)[a,b], then
(16.1) ) - )] < g(v) - g(w) + &(v — 1),

On the other hand, let E = [a,5] \ D. Then [E| = 0. Since fis 2
strong Lusin function, for eachx € E, there exists 6(x) > 0 such that for
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any d—fine partial division D = {([u,v];£)} of [a,b] with § € E we have
(16.2) (D)2IAY) - flw)| <e.

Having defined & there is, by Cousin's Lemma, a d—fine division
Do = {([u,v];£)} of [a,b]. Since D, is d—fine, & € [u,v]  O(x)[a,b].
Let Dy = D,UD, a disjoint union, where
Dy = {([,v];£) : £ € E} and
D, =Dy \D; = {([#,v];§) : € € D}.
Hence we have from (16.1) and (16.2) that
IfB) - f@)| = D)ZIY) - )| + D)LIAY) - fw)
<g+(D2)2( &) - gw)) + D) Le(v - u)
< &+ g(b) - g(a) +£(b - d)
Since ¢ is arbitrary, we have |{b) — fla)| < g(b) — g(a). U

17.0 Lemma. Let f be a real-valued function on [a,b] and let B be
a positive real number. Suppose fis continuous on X c [a,b]. Then there
is a positive function 8(x) defined on R such that for each x € X and for
any S c O(x)[a,b], we have

sups f —infs f< B.

Proof. By continuity, for each x in X there is a 3(x) > 0 such
" that if y is in Q(x)[a,b], then fix) — B/2 < fy) <fix) + B/2. Thusif S ¢
O(x)[a,b], then we have

fix) - B2 <infs f< sups f<fx) + BI2. O

18.0 Theorem. If fis bounded on [a,b] and continuous almost eve-
rywhere, then fis Riemann integrable on [a,b].

Proof. There exists M > 0 such that |fx)| < M for all x in [4,5]. Let
D = { x € [a,b] : fis continuous at x } and let E =[a,b] \ D Then |E| =0.

Let£>0and define a positive real number B so that 2B(b —a) =¢.
Then by Lemma 17.0; there is a positive function 5(x) on D such that if x i
in D and S ¢ O(x)[a,b].
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(18.1) sups f— infs f < B.

On the other hand, since E is of measure 0, there is an open set
G containing E and is of measure |G| > 0, such that 4M|G| < &. Then fy;
each x € E there is a §(x) > 0 such that O(x) c G. This extends the
definition of § to all of [a,d].

By Cousin's Lemma, let Do = {([#,V]; £)} = {(I€)} be a §—fine
division of [a,b]. Let D, = D;UD; be a disjoint union, where

Dy = {([u,v];€) € Dy : £ € D} and
D, =Do\D; = {([u,v];€) € Dy : € € E}.

For each £, let M, = sup f{x) and m, = inff{x) for all x in L. If§, e
D, then it follows from (18.1) that M, —m; < B. On the other hand, if &,
€ E, then I c G. Hence, since the I}'s are non-overlapping, we have

(18.2) (D2)2[I] < |G| <e/aM.

Since M. — m; < 2M for all £, the difference of the upper sum and the ldwer
sums is

S(£.Do) - (Do) = D)ZMi~ m)[l| + (DT My ~ my)|I
< (D)2ZBIL + (D;)2Z2MIy|
< B(b - a) + 2M|G|

< €/2+2M (e/AM) =¢. (by (18.2))
Therefore, f is Riemann integrable on[ab]. O

The next result is a direct consequence of Theorem 18.0.

19.0 Theorem. If f is a continuous real-valued function on [a,b],
then fis Riemann integrable on [a,5]." : Lt

Proof outline. To prove this theorem from the definition, we musf,
as in Theorem 18.0, show that for some division D of [a,b], we can make
the difference of the upper and lower sums small, i.e; given € > 0,

S(fD)- S(D) = YuMy - me )l <c,

where M; = sup f(x) and m; = inf f{x) for all x in I;: Using Lemma 17.0, we
can find a positive function 5 on R and hence a corresponding &-fine
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division D = {(I;;€4)} of [a,b] so that if &, € I, = O(E)[a,b], then
M,—m, < 8/(b - a). 0

Our final theorem is another generalization of Theorem 13.0. See
[L, Th. 6.11] for an analogous result.

20.0 Theorem. If F is a strong Lusin function and F''(x) > 0 a.e.
on an interval [4,B], then F is nondecreasing on that interval.

Proof. Let a and b belong to [4,B] with a < b. We will show that
F(a) < F(b). This will follow if we can show that given ariy € > 0, we have
F(b) — F(a) > —¢(b - a).

Let. € > 0. Let D be the set of all pomts of [a,b] such that F'(x)
does not exist, or if it does, F '(x) < 0. Let E = [a,5] \ D. Then [D| = 0. If x
e E, then corresponding to the given € >0, thereisa &(x) > 0 such that
whenever x € [u,v] < O(x)[a,b], we have

[F(v) - F(u) - F'(x)(v - u)| <elv—u.
Therefore, we have
F'(xX)(v-u)—e(v—u) <F(v)-Fu).

Hence, if x € E, there is a §(x) such that if x € [u,v] C O(x)[a,b],
(20.1) F(v) - F(u) 2-¢(v-u).

On the other hand, since |D| = 0 and F is a strong Lusin function,
there is a positive function &; such that for any 3,~fine partial division D =
{([u,v];£)} of [a,b] with & € D we have (D)2|F(v) — F(u)| <e.

Hence, we have
(20.2) _& <— (D)LIFW) - Fw)| < @)ZFW) - Fw)).

Now extend the function & to R by defining §(x) = 8,(x) for all x
not in E. By Cousin’s Lemma, let Do = {([#,v];§)} be a d—fine division of
[a,b]. Hence € € [4,v] < O(x)[a,b].

Let Dy = D;uUD; be a disjoint union, where

Dy = {([u,v];€) : £ € D} and
D; =D\ D1 = {([#,v],€) : € € E}.

Hence, we have
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F(b) - F(a) = (D) ZF(v) - F(u) +(D2)LF(v) - F(u)
> —g +—g(Dy)2(v - u) (by(20.1) and (20.2))
>-g(b-a+]l)

Since ¢ is arbitrary, we have F(b) — F(a) 2 0. Thus F(b) 2 F(a). O

21.0 Remark. Unlike the Heine-Borel Theorem and the Bolzang-
Weierstrass Theorem, Cousin’s Lemma does not extend easily to higher
dimensions or to topological spaces. This is probably the main reason why
it attracted little attention. However recent developments have shown that
in the real line, this versatile lemma has proved to be quite useful.
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