
Applications of Cousin's Lemma 

HARRY M. CARPIO 

ousin's Lemma is QDe of the many equivalent formulations of the 
Completeness Axiom and the Heine-Borel Theorem. It is a 
profound idea, but it can be stated in simple terms, and .it is a 

powerful and elegant tool -in the proofs of real analysis theorems. This 
lemma was discovered in 1894 (see [ST; p. 645]), but it has remained 
obscure until quite recently when it was found to be essential in the study 
of the Renstock and other Riemann-type integrals. The lemma has a 
curious habit of rediscovery. Several authors, e.g., see [BI], [B2], [F], [J],, 
[Li], [MR] and [SJ~ have found different versions with similar applications. 
In this paper we shall give a fairly detailed account of the same applications 
using Cousin's Lemma. Introducing this lemma in real analysis courses 
opens the possibility for a unified and simplified approach to the study of 
analvsis. 

Assumptions. A cf osed interval [ a,b] is fixed thr~ghout. The 
letter 6 will always denote a positive function defined on R. In defining 6, it 
is enough to specify 6(x) when x is in [a,b]. For convenience, we shall 
assume that o(x);; 1 outside [a,b]. When o(x) is given, we put the inter.val 

O(x) = (x--o(x),x+o(x)) 

for each x E R. The letter I or the interval [ u, v] will always denote a closed 
subinterval of [a,b]. :fhe Lebesgue measure of a set Sis denoted by ISi; in 
particular .the length of an interval I is denot~d by ill. 

1.0 Definition. Let o(x) be a positive function defined on R. ·A 
partial diyision of [a,b] is a collection D = {l1, l2, ... , t,} of finitely-

" many non-overlapping closed subintervals of [a,b]. If [a,b] =· U It, we say 
k=l 

that the collection D is a division of [ a,b]. For any closed subinterval I of 
[a,b] in D, if there is~ E I Auch that 
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I c 0(~) = (~ - 6(~).~ + O(~) ), (I.I) -• . 6 fi The element is called the tag of the subinterval 1 we say that I ts. • 1?e·
0 6 fine we say that D is a o-fine division ( • If all subintetvals I m are - ' d h d" • • or . . . . ) f [ b] Foil owing others, we enote t e 1vis1on D by partial d1V1s1on o a, • 

D == {([u,v];~)}, 
where (u,v] is a typical tagged interval in D, and~. its tag. 

b I (D)" means that the sum ranges over all membe Thesymo L.J... rs 
of the collection D. 

2.0 Cousin's Lemma. Let 6 : R (0,~)_b_e a positive function on 
It. Then every finite interval [a,b] has a 6-fine d1v1s1on. 

Proof Our proof is based on the Completeness Axiom. Consider 
the set 

S = { x E [ a,b] : there is a 6-fine division of [ a,x] } . 
Since 6(a) > O, there is a closed subinterval [~,x] O(a)n[a,b]. 

Hence the interval [a,x] is 6-fine, and it follows that [a,x] c S. 
Since S :t 0 and S is bounded above by· b, it follows from the • ' 

Completeness Axiom that S has a least upper bound cr. Clearly a < a < b. 
Claim: cr E S and cr = b. Since O(cr) is open, there is an element x 

of S such that a< x < cr and [x,cr] c O(cr). Thus the interval [x,cr] is 6-
fine. Because x E S, it follows that cr E S. . 

To prove t~at cr = b, suppose, to _ge~ a con~radiction, that o < b. Now let cr < s < b such that [cr,s] c O(o). Then [a,s] is 6--efine. Since a is 
in S, it follows that s E S. But this contradicts the definition of a. 
Therefore w~ must have o = b. This proves that b E S and, .h~nce, by 
definition of S, there is a 6-fine division of the interval [ a, b]. . 

• As illustration of the technique in the use of Cousin's Lemma, we shall prove theorems from elementary r~al analysis including the Heine-Borei and the Bolzano-Weierstrass Theorems. 

3.0 Theorem. If/ is continuous on [a,b], tlien / is bounded. 
Proof Let x E .[ a,b]. Since / is continuous at x there exists a . . ' pos1t1ve number 6(x) such that j/(y) - ./(x)I < I for ally E O(x)n[a,b ], 
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where O(x) = (x-o(x),x+o(x)). Hence, if ye O(x)n[a,b], then 

(3.1) .l{x) - 1 </{y) <.l{x) +. 1. 

By Cousin's Lemma, let D = {(I.~~) : 1 k < n} be a 6-fine division of 
[ a,b]. _It follows from (3 .1) that if y e i., then ./{~) - 1 < /{y) < /(9c) + 1. 
Thus if Y e [ a,b ], then, with the maximum and minimum taken over all k, 
for 1 < k < n, we have • 

mi111c./{~) - 1 </{y) < maX!c./{~) + 1. 

This shows that/ is bounded on [a,b]. 

4.0 Heine-Borel Theorem. An open cover C of [a,b] has a finite 
subcover. 

Proof Let C be an open cover of [a,b]. By hypothesis there is for 
each x in [a,b] an open set G(x) in C containing x. Hence there is a 6(x) > 0 
such that O(x) c G(x). This defines a positive function 6 on [a,b]. 

By Cousin's Lemma, let D = {(1,c,~): 1 < k < n} be a 6-fine divi-
sion of [ a,b]. Then each l,c c O(~) c Gk, where Gk e C. Hence. 

The class { G1, Gi, ... , Gn} is a finite subcover of [ a,b] .. 

5.o·-The Intermediate Value Theorem. If/ is continuous on [a,b], 
and we havej{a)/(b) < 0, then there exists Xo in (a,b)·such that.f{xo) = 0. 

. Proof The proof is by contraposition. We shall assume that f is 
continuous and is never O on [a,b], and prove thatj{a)/(b) > 0. This ine-
quality holds, if/ has only one sign on [a,b]. 

Let· x e [a,b] and suppose that e = ! \J(x)\ > 0. Since J is conti-

nuous at x, there is a 6(x) > 0 such that if y E [a,b] and Ix - YI< 6(x), then 
we have lt(x) - J(y)I < e. Thus if y E [a,b] and Ix - YI< 6(x), then 

j{x) - e <j(y) <j{x) + E, or 

1 1 
j{x)-:- 2\J(x)\ <j(y) <j{x) + 2 \f(

x" . 
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Hence for each x e [a,b], depending on whether/{x) > 0, orft.x) < 0, 

(5.1) either/> 0, or/< 0 throughout O(x)n[a,h]. 

By Cousin's Lemma, there is a o-fine division D = { ([ u, v ];~)} of 

[ a,h]. ~ince [ u, v] c O(~), by ( 5 .I), it follows that ( has ?nly one sign in 

each subinterval [u,v] in D. Since two consecut1v~ subintervals have a 

common endpoint, then / has only one sign throughout [ a,h]. 

6.0 Bolzano-Weierstrass Theorem. If Sis a bounded, infinite set 

of real numbers, then S has an accumulation point. • 

Proof Let Sc [a,h]. Assume that S has no accumulation point. 

We shall prove that the ~ounded set S is finite. Recall that x is an accumu-

lation p_~~nt of S if and only if GnS is infinite, for each open set G 

C?ntaining x. Now let x_ E R. Since x is not an accummulation point of. S, 

there is a o(x) > 0 such that O(x)nS is finite .. This defines a_ posi~ive 

function o on R .. By Cou_sin's Le~a there is a o-fine divis~on D = { (lt;~) 

: 1 < k < n} of [a,h], such that~ E Ik c O(~)n[a,h] for each k. Hence, 

S = Sn[a,h] =· Uk(Snlt) c Uk(O(~)nS) 

is finite. D 

1:0 Theorem. If/ is continuous on [ a,h ], then / is unifonnly con-

tinuous on [a,h ]. 

Proof Let e > 0 and let x E [a,h]. By hypoth_esis there is a o(x) > 0 

such that for each y•E O(x)n[a,h], we have 1/{x) -.t(y)I < s/2. Thus if11 

and v are in O(x)n[a,h], then 
. . 

(7.1) JI{~) - j{u)I < 11{~) _:_ j{x)I + lf{x) - ft.u)I < e." . 

. Let n {(h;~) :' 1 < k.<-n} be a o-fine division of[a,b]. Let'. 

TJ = min { ILi : (h;~) E D } . 
' 

. 

Suppose x, y E [a,h] such that Ix - YI< f). Then there are two possibilities. 

Case 1. x, y E h, for some k. Then x, y E O(~)n[ a,h ], hence by 

(7. I), 1/{x) -j(y)I < e. 
Case 2. x and y respectively belong to consecutive intervals IA, .• and 
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h with common endpoint ~: Then we have 

lt(x) - j(y)I < lt(x) - ./{~)I + 11(~) - j(y)I < 26. 

Thus if x and y are in [a,b] and Ix - YI< TJ, then lt{x) - j(y)I < 2s. This im-
plies that f is uniformly continuous on [ a,b]. • 

8.0 Cantor's Intersection Theorem. Let {Fn} be a decreasing 
seauence of closed sets in [a,b], i.e., [a,b] ::) F1 ::) F2 ::) ... , such that 
nn Fn = 0. Then F n = 0, for some n. 

Proof outline. Let x E [a,b]. Then x Fn, for some n. Since Fn is . . 
closed, there is a 6(x) > 0 such that O(x)nFn = 0. This defines a positive 
function 6. Now apply Cousin's Lemma. 

9.0 Dini's Len1ma. Let (f,,) be a sequence of continuous functions 
on [a,b] that decreases to 0, i.e., f,,(x) J, 0, for .all x in [a,b]. Then the 
sequence (f,,) ~onverges to O uniformly. 

Proof Let 6 > 0 and let x e [a,b]. Sincef,,(~) J, 0, there is a positive 
integer n such that O < f,,(x) < 6/2. By the continuity off,,, there is a 
positive number o(x) such that ify e [a,b], and Ix - YI< o(x), then we have 

lfn(x) - fn(y)I < 6/2. 

Thus for each x there is an n and a 6(x) > 0 such that if y is in 
O(x)n[a,b], then f,,(y) < 6. By Cousin's Lemma we can find a 6-fine 
division D = { (Ik;9')} of [a,b ]. Since lrc c O(~k), it follows that for each k, 
there is an nk such that if y E Ik, then fnk (y) < E, Now let N = max {nk}. 

then we have IN < In , for all k. Thus if y e [ a,b ], then y E Ik, for some k, 
k . _, 

hence IN01) < Ink (y) < 6. Therefore (f,,) converges to O uniformly. 

10.0 Remark. The next two theorems, i.e., Theorems 11.0 and 
12.0, are two versions of the standard calculus theorem which says that if 
the derivative of J is nonnegative throughout [a,b], then/ is nonde-
creasing on [a,b]. (See also Theorem 13.0) With Thomson's Lemma, 
Botsko [BI] proves this theorem using lower derivatives instead of 
derivatives. The lower derivative of / at x is defined by • 
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nn ) 1· ·nr /(x) - f (y) ~,x = 1m 1 -.---
~- y 

as y tends to x. A lower derivative always exists, because it is defined in 
terms of the limit infimum. In Theorem 13.0, we shall rewrite Botsko's 
proof ~sing the language of Cousin's Lemma. 

Gousin's Lemma is also useful in extending theorems that use the 
'everywhere' condition to theorems that use the 'almost ev~rywhere' 
condition. In Theorem 12.0, we extend Theorem 11.0 by assuming that the 
derivatives exist almost everywhere. 

11.0 Theorem. If/ '(x) = 0, for all x in {a;b], then/ is a constant. 

Proof Let e > 0 and let x E [a,b]. Then there is a o(x) > 0 such 
thaty E O(x)n[a,b] implies lt(x) - fiy)I < e/x - yj. Apply Cousin's Lemma. 
For the rest of the argument see the proof of Theorem 12. 0. We can also 
deduce this theorem as a corollary of Theorem 13. 0. 

12.0 Theorem. If/'(x) = 0, almost everywhere in [a,b], and/ is ab-
solutely continuous, then / is constant on [ a,b]. 

Proof Let e > 0. Let D = { x E [a,b] :f '(x) = 0 }, and let E = 
[a,b] \ D. Then for each x in D there.exists a 6(x) > 0 such that if y is in 
O(x)n[a,b], then j/{x) - fiy)I < elx - yj. This defines a function 6(x) on D. 

Observe further that ifx ED and x E [u,v] O(x)n[a,b], then 

1/(v) - .f{u)I < j/{v) - .f{x)I + 1/(x) -j{u)I. 

Therefore, we have 

(12.1) lt(v) - .f{u)I < elv - xi+ elx - ul = e(v - u). 

Next, since f is absolutely continuous, there exists 11 > 0 such that for 
every (finite or infinite) sequence ([ ak,bk]) of disjoint subintervals of [ a,b ], 

(12.2) ·Lklbk - akl < 11 implies Lkl/(bk) - .f{ak)I < e. 

Since E has measure 0, there is an open set G of measure IGI < rJ such 
that E c G. For each x in E there is a 6(x) > 0 such that O(x) c G. This 
extends the function 6(x) to all of [a,b]. By Cousin's· Lemma, there is a o-
fine division Do= {([u,v];~)} of [a,b], where~ E [u,v]..c O(x)n[a,b]. We 

write Do = D1uD2, where 
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D1 = { ([u,v];~) e Do:~ e D} and D2 =Do \D1. 

In view of (12.1) and the fact that the disjoint subintervals in D2 have 
total length< 11, being all in G, it follows that 

1/{b) -j(a)I < (Do)Ll/{v) -j(u)I 

= (D1)L1/{v) - J(u)I + (D2)L1/{v) - fiu)I 

< e(b -a) +·e = e(b- a+ 1). 

Since Eis arbitrary this implies thatj(a) = j(h). In the same manner we can 
show that if a< a<~< b, we have./(a) = j(B). Therefore/ is constant on 
the interval [ a,h]. 

13.0 Th~orem. IfQt{x) > 0 everywhere on_ an interval [a,h], then/ 
is nondecreasing on that interval. 

Proot Let e > 0 and let x E [a,b]. Since W(x} > 0, there exists a_ 
o(x) > 0 such that whenever y E O(x)n[a,b ], and y x, 

(~~. l) (j{x)- fty))l(x -y) > - e. 

This defines a positive function o on [ a,b]. 
Now let x. E [u,v] c O(x)n[a,b]. Then u,· v are in O(x)n[a,b]. 

Since u < x < v, it follows from ( 13 .1) that 

(13.2) fix) - fiu) > - a(x - u) and fiv) - fix)> -·e(v x). 
, 

Adding the two ineqtJalities in ( 13. 2 ), we o~tain 

(13.3) fiv) - fiu) > - a(v - u). 

By Cousin's Lemma, there is a o-fine division D = { ([ u, v ];~)} of 
[a,b]. It follows from (13.3) that 

fib) - fia) = (D)L(f{v)°~ fiu)) • 

>-e(D)I:(v- u) = -e(h-a). 

Since a is arbitrary, we have fib) - .f( a) > 0. H;ence fib) >ft.a). D 

14.0 The Mean Value Theorem. If Fis differentiable on [a,b] and 
m < F '(x) < M for all x in [a,b], then 
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m(b-a) <F(b)-F(a) ~M(b-a). 

Proof Let 6 > O and let x e [a,b]. Then there is a 6(x) > o, such 

that ifx e [~,v] c O(x)n[a,b], then 

1F(v) -F(u) -F '(x)(v- u)I < elv - ul. 

It follows from this that if x e [u,v] c O(x), then 

(14.1) (m - e)(v - u) < F(v)-F(u) < (M + e)(v - u). 

By Cousin's Lemma, there is a 6-fine division D = { ([ u, v ];~)} of 

[ a,b]. Since e [ u, v] 0(~), it follows from ( 14. 1) that 

(D)L(m - e)(v - u) < (D)LF(v) - F(u) < (D)L(M + e)(v - u) . 

. •. (m - e)(b - a)< F(b) -F(a) < (M + e)(b - a). 

Since e is arbitrary the desired conclusion follows immediately. 

15.0 Definition. A function / : [ a,b] R satisfies the strong 
• 

Lusin condition, if for each e > 0 and for each subset E c [ a,b] of 
measure 0, there is a positive function 6(x) on R such that for every partial 

6-fine division D = { ([ u, v ];~)} of [ a,b] with e E, we have the 

inequality (D)Ll/{v) - j(u)I < e. Here/ is called a strong Lusin function. 

1,.0 Theorem. If/ is a strong Lusin function on [ a,b ], g is non-

decreasing on [a,b], and lf'(x)I $ g'(~) a.e. on [a,b], then we have 

ll{b) - .f(a)I < g(_b) - g(_a). 

Proof Let e > 0 and let 

D = { x e [a,b]: lf'(x)I <g'(x) }. 

Then for each x in D, there is a positive number 6(x) such that if Y 
is in O(x)n[a,b] andy :t: x~ we have 

J/(y) - .f(x)I < lg(y) - g(_x)I + e[y - xi. 

Thus ifx e [u,v] c O(x)n[a,b], then 

(16.1) 1/{v) - j(u)I < g{v) - g(_u) + e(v - u). 

On the other hand, let E = [a,b] \ D. Then IEI = 0. Since/ is a 

strong Lusin function, for each x e E, there exists 6(x) > 0 such that for 
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any 6-fine partial division D = { ([ u, v ];~)} of [ a,b] with e E we have 

(16,2). . (D)LJ/{v) - j{u)I. < e. 

Having defined 6 there is, by Cousin's Lemma, a 6-fine division 
Do.= {([u,v];~)} of [a,b]. Since Do is 6-fine, e [u,v] c O(x)n[a,b]. 

Let Do= D1uD2, a disjoint union, where 

D1 == {([u,v];~) : e E} and 
.. 

D2--: Do\ D1 = l([u,v];_~): e D}. 

Hence we have from (16.1) and (16.2) that 

J/{b) - fia)I = (D1)LJ/(v) - fiu)I + (D2)LJ/(v) - fiu)I 

< E + (D2)L( g(v) - g(u)) + (D2)Ie(v - u) 

< e + g(b)-g(a) + e(b-a) 

Since e is arbitrary, we have J/{b) - fia)I < g(b)- g(a). 

17.0 Lemma. Let/be a real-valued function on [a,b] and let B be 
a positive real number. Suppose/·is continuous on X c [a,b]. Theh there 
is a positive function o(x) __ defined ·on R such that for each x· E X and for 
any Sc O(x)n[a,b], we have , 

sups/- -infs/ < B. 

Proof By continuity, for each x in X then~ is a ~(x) > 0 such 
• that ify is in O(x)n[a,b], then.f{x) -B/2 <f(y) <j{x) + B/2. Thus if Sc 

O(x}r)[a,b], then we have 

fix) - B/2 < infs/ < sups/ <fix) + B/2. 

18.0 Theorem. If/is bounded on [a,b] and continuous almost eve-
rywhere, then/is Riemann integrable on [a,b]. 

-Proof There existsM> 0 such that jf(x)I <Mfor all x in [a,b]. Let 
D = { x e [a,b] :/is continuous at x} and let E = [a,b] \ D Then IEI = 0. 

Let e > 0 and define a positive real number B so that 2B(b - a)= e. 
Then by Lemma l 7. 0; there is a positive function o(x) on D such that if x is 
in D and Sc O(x)n[a,b]. 

49 



Tiffi MJNDANAO FORUM 

(18.1) sups/ - infs/ < B. 
On the other hand, since E is of measure 0, there is an open set 

G containing E and is of measure IGI > 0, such that 4M]GI < &. Then for 
each x e E there is a 6(x) > 0 such that O(x) c G • This extends the 
definition of o to all of [a,b ]. 

By Cousin's Lemma, let Do = { ([u, v ]; ~)} = { (h;~)} be a 6-fine 
. division of[a,b]. Let Do =·01uD2 be a disjoint union, where 

D1 = {([u,v]; ~) e Do:~ e D} and 
D2 =Do \D1 = {([u,v];~) e Do:~ EE} . . 

For each k, let Mk= supj{x) and mk.~ infj{x) for all x in h. If~ e 
D, then it follows from (18.1) that Mk - mk < B. On the other hand, if~ 
e E, then I.t c G. Hence, since the h's are non-overlapping, we have 
(1_8.2) (D2)Llltl < IGI < e/4M. 
Since Mk - mk < 2M for all k, the difference of the upper sum and the lower . sums 1s . 

S(f,Do)- S(f,Do) = (D1)L(Mk- mk)lhl + (D2)L(Mk- mk)lhl . . 
< (D1)Dl1.tl + (D2)I2M11.tl 
< B(b - a)+ 2MIGI 
< e/2 + 2M (e/4M) = &. (by (18.2)) 

Therefore,/ is ~emann integrable .on [a,b]. 

The next result is a direct consequence of Theorem 18.0. 

19.0 Theorem. If/ is a continuous real-valued function on [a,b], 
then/is Riemann integrable on [a,b]. • . • . . . Proof outline. To prove this theorem from the definition, we must, 
as in Theorem 18.0, show that for some division D of [a,b], we can make 
the difference of the upper and lower sums small, i.e.7 given & > 0, 

_ S (f,D)- S(f,D). = • "ik(Mk- mk )lhl <·s, 
where Mk= supj{x) and mk = infj{x) for all x in~ .. Using Lemma 17.0, we 
can find a positive function o on R and hence a corresponding &-fine 
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division D = { (1.tc;~)} of [ a,b] so that if~ e I.tc c O(~)n[ a,b ], then 

Mk - mk < el(b - a). 

Our final theorem is another generalization of Theorem 13. 0. See 
[L, Th. 6.11] for an analogous result. 

20.0 Theorem. If Fis a strong Lusin function and F '(x) > 0 a.e. 
on an interval [A,B], then Fis nondecreasing on that interval. 

Proof Let a and b-belong to [A,B] with a< b. We will .show that 
F(a) < F(b). This will follow ifwe can show that given ariy e > (), we·have 
F(b) -F(a) > -e(b - a). 

Let. e > 0. Let D be the set of all points of [a,b] such that F '(x) 
does not exist, or if it does, F '(x) < 0. Let E = [a,b] \ D. Then !DI= 0. If x 
E E, then corresponding to the given e > 0, there is a o(x) > 0 such that 
whenever x E [u,v] c O(x)n[a,b], we have 

IF(v) - F(u) - F '(x)(v - u)I < sjv - uj. 

Therefore, we have 

f '(x)(v - u) - e(v - u) < F(v) - F(u). 

Hence, ifx EE, there is a o(x) such that ifx E [u,v] c O(x)n[a,'b], 

(20. I) F(v) -F(u) > - s(v- u). 

On the other hand, since IDI = 0 and F is a strong Lusin function, 
there is a positive function 01 such that for any 01-fine partial division D • 
{([u,v];~)} of [a,b] with~ ED we have (D)LIF(v)-F(u)I < 6. 

Hence, we have 
• 

(20.2) -6 < - (D)LIF(v) - F(u)I < (D)L(F(v) - F(u)). 

Now extend the function o to R by defining o(x:) = 01(x) for all x 
not in E. By Cousin•s Lemma, let Do= {([u,v];~)} be a 6-fin~ division of 
[a,b]. Hence~ E [u,v] c O(x)n[a~b]. 

Let Do= D1uD2 be a disjoint union, where 

D1 = {([u,v];~): e D} and 

D2 =Do\ D1 = {([u,v];~): e .E}. 
' ' 

Hence, we have 
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F(b) - F(a) = (D1)D°(v) -F(u) +. (D2)D°(v)- F(u) 

> -E + -E(D2)L(v - u) (by (20.1) and (20.2)) 

> -E( b - a + 1). 
Since Eis arbitrary, we have F(b) - F(a) > 0. Thus F(b) > F(a). 

21.0 Remark. Unlike the Heine-Borel Theorem and the Bolzano-
Weierstrass Theorem, Cousin's Lemma does not extend easily to higher 
dimensions or to topological spaces. This is pr9bably the main reason why 
it attracted little attention. However recent developments have shown that 
in the real line, this versatile lemma has proved to be quite useful. 

We gratefully acknowledge the financial support extended by MSU-
llT OVCRE in the. preparation of this paper. 
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