On *d***-Unit** Graphs in \mathbb{R}^n

Sergio R. Canoy, Jr.

Abstract

In this paper, the unit dimension of a graph with respect to a metric d on the space \mathbb{R}^n is defined. This generalizes the concept of the Euclidean unit dimension of a graph in the space \mathbb{R}^n as defined by various authors in [1], [2], [3], and [4]. It is also shown that two equivalent metrics in \mathbb{R}^n may yield different unit dimensions of some complete graphs.

Keywords: Euclidean, unit, dimension, graph, metric, representation

1 Introduction

The Euclidean unit dimension of graphs had been defined and studied by various authors in [1], [2], [3], and [4]. In this paper, we make an initial step to generalize the said concept by using an arbitrary metric d on the space \mathbb{R}^n . We shall consider two particular metrics on \mathbb{R}^n which are equivalent to the Euclidean (or usual) metric on \mathbb{R}^n and see that these metrics yield different unit dimensions of some complete graphs.

Throughout this paper, any graph G = (V(G), E(G)), where V(G), and E(G) are, respectively, the vertex set and the edge set of G, is a simple graph

SERGIO R. CANOY, JR. is a Professor of Mathematics in the Department of Mathematics, College of Science and Mathematics, MSU-IIT, Iligan City.

and d is a metric on \mathbb{R}^n .

Definition 1.1 A graph G = (V(G), E(G)) is a *d*-unit graph in \mathbb{R}^k if there exists a one-to-one mapping $\phi: V(G) \to \mathbb{R}^k$ such that $d(\phi(x), \phi(y)) = 1$ whenever $[x, y] \in E(G)$. Such a mapping is called a *d*-unit representation or d-unit embedding of G in \mathbb{R}^k .

Note that if ϕ is a *d*-unit embedding of G in \mathbb{R}^k , then we may look at G as the graph $\phi(G)$, where $V(\phi(G)) = \{\phi(x) : x \in V(G)\}$ and E(G) = $\{ [\phi(x), \phi(y)] : [x, y] \in E(G) \}, \text{ in } \mathbb{R}^k.$

Remark 1.2 For each $n \ge 1$, there exists a metric d^* on \mathbb{R}^n such that if G = (V(G), E(G)) is a graph with $E(G) \neq \emptyset$, then G has no d^{*}-unit representation on \mathbb{R}^n .

To see this, let $n \ge 1$ and consider the trivial metric d^* on \mathbb{R}^n defined by $d^*(x,y) = 1$ if x = y and $d^*(x,y) = 0$ otherwise. If $E(G) \neq \emptyset$, then G has at least two distinct vertices v_1 and v_2 such that v_1v_2 is in E(G). If ϕ is a one-to-one mapping from V(G) into \mathbb{R}^n , then $\phi(v_1) \neq \phi(v_2)$. It follows that $d^*(\phi(v_1), \phi(v_2)) \neq 1$. This implies that G cannot have a d^* -unit embedding in \mathbb{R}^n .

Definition 1.3 Let d be a metric on \mathbb{R}^n . The dimension of G with respect to the metric d, denoted by d-Dim(G) is given by

 $d\text{-}Dim(G) = \min\{n \in \mathbb{N} \cup \{0\} : G \text{ has a } d\text{-}unit \text{ embedding in } \mathbb{R}^n\}.$

Notice that if there exists a natural number k such that G has a d-unit representation in \mathbb{R}^k , then by the Well Ordering Principle, d-Dim(G) exists. On the other hand, if G has no d-unit embedding in \mathbb{R}^n for every non-negative integer n, then d-Dim(G) does not exist. This brings us to the next remark which easily follows from the first and Definition 1.3.

Remark 1.4 If G = (V(G), E(G)) is a graph with $E(G) \neq \emptyset$ and d^* is the trivial metric on \mathbb{R}^n , then d^* -Dim(G) does not exist.

Theorem 1.5 If d_1 is the usual metric on \mathbb{R}^n (for all n) and G = (V(G), E(G)) is a graph of order k, then d_1 -Dim(G) exists.

Proof: For convenience, we let $V(G) = \{1, 2, 3, ..., k\}$. For each $j \in V(G)$, let $p_j = (0, 0, ..., \frac{1}{\sqrt{2}}, 0, ..., 0)$ be in \mathbb{R}^k , where the *j*th component is $\frac{1}{\sqrt{2}}$ and 0 elsewhere. Clearly, $d_1(p_i, p_j) = 1$ for all pairs (i, j) with $i \neq j$. Define $\phi : V(G) \to \mathbb{R}^k$ by $\phi(j) = p_j$. Then ϕ is a unit embedding of G in \mathbb{R}^k . By Definition 1.3, it follows that d_1 -Dim(G) exists.

Theorem 1.6 Let G be a graph and H a subgraph of G. If d-Dim(G) exists, then d-Dim(H) exists and d-Dim(H) $\leq d$ -Dim(G).

Proof: Suppose d-Dim(G) = n. Let $\phi : V(G) \to \mathbb{R}^n$ be a unit embedding of G in \mathbb{R}^n . Since H is a subgraph of G, $V(H) \subseteq V(G)$. Let $\alpha : V(H) \to \mathbb{R}^n$ be the restriction of ϕ to V(H), i.e., $\alpha = \phi_{|V(H)}$ (the restriction of ϕ to V(H)). Then α is a d-unit embedding of H in \mathbb{R}^n . By Definition 1.3, d-Dim(H) exists and d-Dim $(H) \leq n = d$ -Dim(G).

Theorem 1.7 If H and G are isomorphic graphs and at least one of them has a d-unit embedding in \mathbb{R}^k for some k, then d-Dim(H) and d-Dim(G) both exist and are equal. *Proof*: We may suppose without loss of generality that H has a *d*-unit embedding $\phi: V(H) \to \mathbb{R}^k$ for some k. Since H and G are isomorphic, there exists a bijective mapping $\alpha: V(G) \to V(H)$ which preserves adjacency. The composition mapping $\phi \circ \alpha: V(G) \to \mathbb{R}^k$ is a bijective mapping. Also, since

$$d((\phi \circ \alpha)(u), (\phi \circ \alpha)(v)) = d(\phi(\alpha(u)), \phi(\alpha(v)) = 1$$

for all distinct vertices u and v in G, it follows that $\phi \circ \alpha$ is a unit embedding of G in \mathbb{R}^k . By Definition 1.3, d-Dim(H) and d-Dim(G) both exist.

Now, let d-Dim(H) = q and d-Dim(G) = p. Then H has unit embedding in \mathbb{R}^q . As shown above, G has also a unit embedding in \mathbb{R}^q . By Definition 1.3, $p \leq q$. Interchanging the roles of H and G in the above proof yields the inequality $q \leq p$. Thus, d-Dim(H) = d-Dim(G).

Next, we show that equivalent metrics on \mathbb{R}^n (for all n) may induce different dimensions of a certain graph. In what follows, d_1 is the usual (Euclidean) metric on \mathbb{R}^n , d_2 and d_3 are the metrics on \mathbb{R}^n defined by

$$d_2(x,y) = \max\{|x_i - x_j| : i = 1, 2, 3, \dots, n\},\$$
$$d_3(x,y) = \sum_{i=1}^n |x_i - x_j|,$$

where $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$.

Theorem 1.8 ([1],[3]) For all $n \ge 1$, $d_1(K_n) = n - 1$.

Lemma 1.9 Let $n \ge 1$ and $\phi: V(K_n) \to \mathbb{R}^k$ be a d_2 -unit embedding of K_n in \mathbb{R}^k . Then there exists a d_2 -unit embedding of K_n in \mathbb{R}^k such that the images are points whose components consist of zeros and ones only.

Proof: Let $V(K_n) = \{1, 2, ..., n\}$ and suppose that for each $j \in V(Kn)$, $\phi(j) = p_j = (\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_k})$. By definition of d_2 , we may assume that the components of $\phi(j)$ are all integers for each $j \in V(K_n)$. Define $\pi : V(K_n) \to \mathbb{R}^k$ by $\pi(j) = q_j = (\beta_{j_1}(mod \ 2), \beta_{j_2}(mod \ 2), ..., \beta_{j_k}(mod \ 2))$. Clearly, π is a well-defined function. Let $r, s \in V(K_n)$ and suppose that $\pi(r) = \pi(s)$. Then $\beta_{rm}(mod \ 2) = \beta_{sm}(mod \ 2)$ for all m = 1, 2, ..., k. This means that for all m, 2 divides $|\beta_{rm} - \beta_{sm}|$. If $r \neq s$, then since ϕ is a d_2 -unit embedding, $d_2(p_r, p_s) = 1$, i.e., there exists a natural number t, where $1 \leq t \leq k$, such that $|\beta_{rt} - \beta_{st}| = 1$. This is contrary to an earlier statement. Therefore r = sand hence, π is one-to-one.

Further, if $r \neq s$, then there exists a natural number t, where $1 \leq t \leq k$, such that $|\beta_{rt} - \beta_{st}| = 1$. Consequently, $|\beta_{rt} (mod \ 2) - \beta_{st} (mod \ 2)| = 1$ and $d_2(q_r, q_s) = 1$. Thus, π is a desired d_2 -unit embedding of K_n in \mathbb{R}^k . \Box

Lemma 1.10 Let $n, k \in \mathbb{N}$ be such that $n \leq 2^k$. Then there exists a d_2 -unit embedding of K_n in \mathbb{R}^k the images of which are in S, where S is the subset of \mathbb{R}^k consisting of points $(\beta_1, \beta_2, \ldots, \beta_k)$, where β_j is 0 or 1 for all $j = 1, 2, \ldots, k$.

Proof: Using a combinatorial technique, it can be shown that S has 2^k elements. Also, if x and y are distinct elements of S, then $d_2(x, y) = 1$. Therefore, since $n \leq 2^k$, a d_2 -unit embedding can be constructed.

Corollary 1.11 If G = (V(G), E(G)) is a graph of order n, then d_2 -Dim(G) exists.

Proof: Suppose the order of G is n. Since $n \leq 2^n$, K_n has a d_2 -unit

embedding in \mathbb{R}^n by Lemma 1.10. By Definition 1.3, d_2 - $Dim(K_n)$ exists. By Theorem 1.7, since G is a subgraph of K_n , d_2 -Dim(G) exists.

Theorem 1.12 For all $n \ge 1$,

$$d_2 \text{-} Dim(K_n) = \min\{m \in \mathbb{N} : n \le 2^m\}.$$

Proof: Suppose d_2 -Dim $(K_n) = k$. Then K_n has a d_2 -unit embedding in \mathbb{R}^k . By Lemma 1.9, we must have $n \leq 2^k$. Hence, $k \geq r = \min\{m \in \mathbb{N} : n \leq 2^m\}$. Since $n \leq 2^r$, K_n has a d_2 -unit embedding in \mathbb{R}^r whose images are in S (the set in Lemma 1.10) by Lemma 1.10. Hence, by Definition 1.3, d_2 -Dim $(K_n) = k \leq r$.

Corollary 1.13 Let $n \in \mathbb{N} \cup \{0\}$ and $m \in \mathbb{N}$ with $0 < m \leq 2^n$. Then

$$d_2$$
- $Dim(K_{2^n}) = n$ and d_2 - $Dim(K_{2^n+m}) = n+1$.

Proof: Since $n = \min\{m \in \mathbb{N} : V(K_{2^n}) = 2^n \leq 2^m\}$, the first result follows from Theorem 1.12. Also, since $0 < m \leq 2^n$, it follows that $2^n < 2^n + m = |K_{2^n+m}| \leq 2^{n+1}$. Thus, by Theorem 1.12, d_2 - $Dim(K_{2^n+m}) = n+1$.

Example 1.14 Since $32 = 2^5$ and $7 = 2^2 + 3$, it follows that d_2 - $Dim(K_{32}) = 5$ and d2- $Dim(K_7) = 3$. Note that by Theorem 1.8, d1- $Dim(K_{32}) = 31$ and d1- $Dim(K_7) = 6$.

Theorem 1.15 Let $n, k \in \mathbb{N}$ be such that $n \leq 2^k$. Then there exists a d_3 -unit embedding of K_n in \mathbb{R}^k and d_3 -Dim(K - n) exists. Further,

$$d_3 - Dim(K_n) \le \min\{k \in \mathbb{N} : n \le 2^k\}.$$

Proof: Let $n, k \in N$ be such that $n \leq 2k$. Denote by T_1 the set consisting of all points $(0, \ldots, 0, 1/2, 0, \ldots, 0)$ in \mathbb{R}^k , where the *j*th component is 1/2and 0 elsewhere, and by T_2 the set of all points -p, where $p \in T_1$. Then the set $T = T_1 \cup T_2$ has 2k distinct elements. Therefore, since $n \leq 2k$, we can construct a one-to-one function φ from $V(K_n)$ into T. Further, since $d_3(p_1, p_2) = 1$ for any two distinct elements p_1 and p_2 of T, it follows that the function φ is a d_3 -unit embedding of K_n in \mathbb{R}^k . Consequently, by Definition $1.3, d_3$ - $Dim(K_n)$ exists and d_3 - $Dim(K_n) \leq \min\{k \in \mathbb{N} : n \leq 2k\}$.

Corollary 1.16 If G = (V(G), E(G)) is a graph of order n, then d_3 -Dim(G) exists.

Proof: Suppose the order of G is n. By Theorem 1.15, d_3 - $Dim(K_n)$ exists. By Theorem 1.7, since G is a subgraph of K_n , d3-Dim(G) also exists.

Corollary 1.17 Let $n \in \mathbb{N} \cup \{0\}$ and $m \in \mathbb{N}$ with $0 < m \leq 2n$. Then

$$d_3 \text{-} Dim(K_{2n}) \le n$$
$$d_3 \text{-} Dim(K_{2n+m}) \le n+1.$$

Proof: Since $n = \min\{m \in \mathbb{N} : |V(K_{2n})| = 2n \le 2m\}$, the first result follows from Theorem 1.15. Also, since $0 < m \le 2n$, $2n < 2n + m = |K_{2n+m}| \le 2(n+1)$. Thus, by Theorem 1.15, d_3 - $Dim(K_{2n+m}) = n + 1$.

Example 1.18 Since 32 = 2(16) and 7 = 2(3) + 1, it follows that d_3 - $Dim(K_{32}) \le 16$ and d_3 - $Dim(K_7) = 4$.

Remark 1.19 The upper bounds obtained in Theorem 1.15 and Corollary 1.17 are best possible. This author conjectured that the given bounds are the exact values of the dimensions.

References

- Baylon, R.T., On the geometric index of graphs, Masteral Thesis, MSU-Iligan Institute of Technology, February 1996.
- [2] Erdos, P., Harary, F., and Tutte, W., On the dimension of a graph, Matimyas Mathematika, 12 (1965) 118-122.
- [3] Gervacio, S.V., Unit embedding of graphs in the euclidean n-space, Plenary paper during the AMC, Suranaree University, Thailand, 1995.
- [4] Isla, R.T., On the dimension of graphs, Ph.D. Dissertation submitted to the School of Graduate Studies, MSU-IIT, 2000.