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Abstract 
In this paper, the unit dimension of a graph with respect to a 

metric d on the space Rn is defined. This generalizes the concept of 
the Euclidean unit dimension of a graph in the space Rn as defined 
by various authors in [1], [2], [3], and [4]. It is also shown that two 
equivalent metrics in ]Rn may yield different unit dimensions of some 
complete graphs. 
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1 Introduction 

The Euclidean unit dimension of graphs had been defined and studied by 

various authors in (1], [2], [3], and [4]. In this paper, we make an initial step 

to generalize the said concept by using an arbitrary metric d on the space }Rn. 

We shall consider two particular metrics on IR.n which are equivalent to the 

Euclidean ( or usual) metric on Rn and see that these metrics yield different 

unit dimensions of some complete graphs. 

Throughout this paper, any graph G = (V(G), E(G)), where V(G), and 

E( G) are, respectively, the vertex set and the edge set of G, is a simple graph 
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and d is a metric on Rn• 

Definition 1.1 A graph G = (V(G), E(G)) is a d-unit gn h. 

. 
ap in ]Rk if I 

there exists a one-to-one mapping¢: V(G) JRk such that d(¢(x), ¢(y))::::: 
1 

} 

whenever [x, y] E E(G). Such a mapping is called ad-unit repres t . 
en ation or 

d-unit embedding of G in JRk. 

Note that if¢ is a d-unit embedding of G in JRk, then we may look at 

G as the graph ¢(G), where V(¢(G)) = { </J(x) : x E V(G)} and E(G) == 

{[¢(x), </J(y)]: [x, y] E E(G)}, in JRk. 

Remark 1.2 For each n > l, there exists a metric d* on Rn such thq,t 

if G = (V(G), E(G)) is a graph with E(G) =f 0, then G has no d*-unit 

representation on Rn. 

To see this, let n > l and consider the trivial metric d* on Rn defined by 

d*(x, y) = l if x = y and d*(x, y) = O otherwise. If E(G) =f 0, then G has 

at least two distinct vertices v1 and v2 such that v1 v2 is in E( G) • If ¢ is a 

one-to-one mapping from V(G) into lRn, then ¢(v1) i= ¢(v2). It follows that 

d*(¢(vi), </>(v2)) -f l. This implies that G cannot have a d*-unit embedding 

in Rn. 
. f G with 

Definition 1.3 Let d be a metric on Rn. The dimension ° 

respect to the metric d, denoted by d-Dim(G) is given by 

. 
. dd' in JR"}· 

d-Dim(G) = min{n EN u {0}: G has a d-un1t embe ing 
't 

. 
t G bas a d-u111 

Notice that if there exists a natural number k such tha • ts 
. (G} eXlS • 

representation in JRk' then by the Well Ordering Principle, d-Dim 
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On the 0ther hand, if G has nod-unit embedding in Rn for every non-negative 

integer n, then d-Dim( G) does not exist. This brings us to the next remark 

which easily follows from the first and Definition 1.3. 

Remark 1.4 If G = (V(G), E(G)) is a graph with E(G) =f 0 and d* is 

the trivial metric on Rn, then d* -Dim( G) does not exist. 

Theorem 1.5 If d1 is the usual metric on IRn (for all n} and G 

(V(G), E(G)) is a graph of order k, then d1-Dim(G) exists. 

Proof: For convenience, we let V(G) = {1, 2, 3, ... , k}. For each j E 

V(G), let Pi = (0, 0, ... , 12, 0, ... , 0) be in JRk, where the jth component is 

and O elsewhere. Clearly, d1(Pi,Pi) = 1 for all pairs (i,j) with i =f j. 

Define ¢ : V ( G) --t JRk by ¢(j) = Pi. Then ¢ is a unit embedding of G in Rk. 

By Definition 1.3, it follows that d1-Dim(G) exists. 

Theorem 1.6 Let G be a graph and H a subgraph of G. If d-Dim(G) 

exists, then .d-Dim(H) exists and d-Dim(H) < d-Dim(G). 

Proof: Suppose d-Dim(G) = n. Let¢: V(G) --t IRn be a unit embedding 

of Gin Rn. Since His a subgraph of G, V(H) C V(G). Let a: V(H) --t Rn 

be the restriction of¢ to V(H), i.e., a= <PIV(H) (the restriction of¢ to V(H)). 

Then a is ad-unit embedding of Hin Rn. By Definition 1.3, d-Dim(H) exists 

and d-Dim(H) < n = d-Dim(G). 

Theorem 1. 7 If H and G are isomorphic graphs and at least one of them 

has ad-unit embedding in JRk for some k, then d-Dim(H) and d-Dim(G) both 

exist and are equal. 
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Proof: We may suppose without loss of generality that H h 
as a d~unit 

en1bedding ¢: V(H) JRk for some k. Since Hand Gare isomor h' 
p ic, there 

exists a bijective mapping a : V(G) V(H) which preserves adJ' 
acency. The 

composition mapping ¢ o a : V ( G) JRk is a bijective mapping. Als . 
0 , since 

d((¢ o a)(u), (¢ o a)(v)) = d(¢(a(u)), cp(a(v)) = 1 

for all distinct vertices u and v in G, it follows that ¢ o a is a unit embedding 

of Gin JRk. By Definition 1.3, d-Dim(H) and d-Dim(G) both exist. 

Now, let d-Dim(H) = q and d-Dim(G) = p. Then H has unit embedding 

in 1Rq. As shown above, G has also a unit embedding in 1Rq. By Definition 

1.3, p < q. Interchanging the roles of H and Gin the above proof yields the 

inequality q < p. Thus, d-Dim(H) = d-Dim(G). D 

Next, we show that equivalent metrics on Rn (for all n) may induce 

different dimensions of a certain graph. In what follows, d1 is the usual 

(Euclidean) metric on Rn, d2 and d3 are the metrics on 1Rn defined by 

d2(x, y) = max{lxi - xii : i = 1, 2, 3, ... , n}, 

n 

i=l 

where x = (x1, X2, ... , Xn) and y = (Y1, Y2, • • •, Yn). 

Theorem 1.8 ((1],(3]) For all n > I, d1(Kn) = n - 1. 

d. of 
t embed zn9 

Lemma 1.9 Let n > I and¢ : V(Kn) JRk be a d2-uni h t the 

. . . ·n IRk such t a 
Kn in JRk. Then there exists a d2-unit embedding of Kn i 

. d ones only. 
images are points whose components consist of zeros an 
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Proof: Let V(Kn) = {1, 2, .· .. ,n} and suppose that for each j E V(Kn), 

<j)(j) = Pj = (f3j1, /312 , ... , /3Jk). By definition of d2 , we may assume that the 

components of ¢(j) are all integers for each j E V(Kn)- Define 7r : V(Kn) 

JRk by 1r(j) = QJ = (/3j1 (mod 2), f312 (mod 2), ... , f]Jk (mod 2)). Clearly, 7r is a 

well-defined function. Let r, s E V(Kn) and suppose that 1r(r) = 1r(s). Then 

f3rm(mod 2) = !3sm(mod 2) for all m = 1, 2, ... , k. This means that for all 

m, 2 divides l.6rm - !3sml• If r =I= s, then since ¢ is a drunit embedding, 

d2(Pr,Ps) = 1, i.e., there exists a natural number t, where 1 < t < k, such 

that lf3rt - f3stl = 1. This is contrary to an earlier statement. Therefore r = s 

and hence, 1r is one-to-one. 

Further, if r =I= s, then there exists a natural number t, where 1 < t < k,. 

such that lf3rt - f3sd = 1. Consequently, l!3rt( mod 2) - f3st( mod 2) I = 1 and 

d2(qr, qs) = 1. Thus, 7r is a desired drunit embedding of Kn in JRk. D 

Lemma 1.10 Let n, k E N be such that n < 2k. Then there exists a 

d2-unit embedding of Kn in JRk the images of which are in S, where S is the 

subset of 'IRk consisting of points (f31, /32, ... , /Jk), where /Jj is O or 1 for all 

j = 1,2, ... ,k. 

Proof: Using a combinatorial technique,. it can be shown that S has 2k 

elements. Also, if x and y are distinct elements of S, then d2 ( x, y) = 1. 

Therefore, since n < 2k, a d2-unit embedding can be constructed. 

Corollary 1.11 If G = (V(G), E(G)) is a graph of order n, then d2-

Dim( G) exists. 

P,,..oo1·. Suppose the order of G is n. Since n < 2n K }1as d • 
I' , n a 2-umt 
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embedding in !Rn by Lemma 1.10. By Definition 1 3 d D. • , 2- im(K ) . Theorem 1. 7, since G is a subgraph of K d -D. (G) . n exists. By n, 2 im exists. 

0 Theorem 1.12 For all n > 1 - ' 
drDim(Kn) = min{m EN: n < 2m}. 

Proof: Suppose d2-Dim(Kn) = k. Then Kn has a d2-unit embedd' . k 
ing1n IR . By Lemma 1.9, we must haven< 2k. Hence k > r - • { - .' - -mmmEN· n < 2m}. Since n < 2r, Kn has a d2-unit embedding in Rr wh • • ose images 

are in S (the set in Lemma 1.10) by Lemma 1.10. Hence, by Definition 1,3, 
d2-Dim(Kn) = k < r. D 

Corollary 1.13 Let n EN U {O} and m E: N with O < m < 2n. Then 

Proof: Since n = min{m E N : V(K2n) = 2n < 2m}, the first result 
follows from Theorem 1.12. Also, since O < m < 2n, it follows that 2n < 
2n + m = \K2n+ml < 2n+l. Thus, by Theorem 1.12, d2-Dim(K2n+m) == n+l. 
D 

2 . c 11 th t d -Dim(K32) == Example 1.14 Since 32 = 25 and 7 = 2 +3, 1t 10 ows a 2 
. (K ) - 31 and 5 and d2-Dim(K7) = 3. Note that by Theorem 1.8, dl-Dim 32 -

dl-Dim(K1) = 6. 
• ts a 

k Then there exis Theorem 1.15 Let n, k E N be such that n < 2 • 
t Further, d3-unit embedding of Kn in JRk and d3 -Dim(K - n) exis s. 
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Proof: Let n, k EN be such that n < 2k. Denote by T1 the set consisting 

of all points (0, ... , 0, 1/2, 0, ... , 0) in JR.k, where the jth component is 1/2 

and 0 elsewhere, and by T2 the set of all points -p, where p E T1, Then 

the set T = T1 U T2 has 2k distinct elements. Therefore, since n < 2k, we 

can construct a one-to-one function <p from V(Kn) into T. Further, since 

d3(P1, P2) = 1 for any two distinct elements p1 and p2 of T, it follows that the 

function <pis a d3-unit embedding of Kn in JRk._ Consequently, by Definition 

1.3, d3-Dim(Kn) exists and d3-Dim(Kn) < min{k EN: n < 2k}. D 

Corollary 1.16 If G = (V(G), E(G)) is a graph of order n, then d3-

Dim( G) exists. 

Proof: Suppose the order of G is n. By Theorem 1.15, d3-Dim(Kn) exists. 

By Theorem 1.7, since G is a subgraph of Kn, d3-Dim(G) also exists. D 

Corollary 1.17 Let n EN U {O} and m EN with O < m < 2n. Then 

d3-Dim(K2n) < n 

d3-Dim(K2n+m) < n + 1. 

Proof: Since n = min{m E N : IV(K2n)I = 2n < 2m}, the first result 

follows from Theorem 1.15. Also, since 0 < m < 2n, 2n < 2n + m = 
1 r<

2
n+ml < 2(n + 1). Thus, by Theorem 1.15, d3-Dim(K2n+m) = n + 1. 

j 

Example 1.18 Since 32 = 2(16) and 7 = 2(3) + 1, it follows that d3-

D · (K ) < 16 and drDim(I<1) = 4. 
im 32 -
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Remark 1.19 The upper bounds obtained in Theorem 1.15 and Corol-

lary 1.17 are best possible. This author conjectured that the given bounds are 
the exact values of the dimensions. 
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