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Abstract

Given a connected graph G and a non-empty subset W of V(G),
a Steiner W-tree is a tree of minimum order that contains all of W.
Let S(W) denote the set of all vertices of G that lie on any Steiner
W-tree. If S(W) = V(G), then W is said to be a Steiner set of G.
The Steiner number st(G) of G is defined as the mimimum cardinality
of a Steiner set of G. In this paper we characterize the Steiner sets
in the composition G[H] of a non-trivial connected graph G and a
disconnected graph H. We then present a formula that can be used
to determine the Steiner number st(G[H]).
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1 Introduction

Given a connected graph G and a nonempty subset W of V(G), a Steiner
W-tree is a tree of minimum order that contains all of W. Let S(W) denote
the set of all vertices of G that lie on any Steiner W-tree; the set S(W) is
referred to as the Steiner interval of W. If S(W) = V/(G), then W is said
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to be a Steiner set of G. Accordingly, a Steiner set of minim
um Cardin 3
alit

is called a minimum Steiner set and this cardinality is the Ste;
3 €lne
st(G) of G. Since every connected graph G contains a spannin I Numpg,
g tree, y(q
 V1G)

is always a Steiner set of G. Therefore, if G is connected of order n, >
L 21 then

2 < st(G) < n.

Steiner sets and Steiner ngmbers have been studied recently in [2] and
[4]. A more recent investigation is in [1], where the authors characterizeq
the Steiner sets in the join G + H and composition G[H] of two nontrivial

connected graphs G and H. One of the formulas obtained there can be stated

as follows: st(G[H]) — min{|V(H) \ &) & S’ is a cutset of H and no proper

subset of S’ disconnects H }if H is non-complete and G has a vertex of degree

st(G[H]) = st(G) - |[V(H)I- Although descriptions of
disconnected can be found
ts of G[H] with

V(G)| — 15 otherwise,
H with either G or H (or both)
ging task of describing the Steiner se

Steiner sets of G+
in [1], the equally challen

H disconnected has been postponed.

erize the Steiner sets in the composi-

In this paper, We shall charact
ph G and a disconnected graph H-

tion G[H] of a nontrivial connected gra
a that can be used to determine

n objective is to obtain a formul
(Note that graph

of the composition G|H].
be found in 3]

Our mai

the Steiner number st(G[H])

theoretic terms not specifically defined here may

2 Results
h
X tle graP
The composition of two graphs G and H, denoted by G[H), ; e €lE”
0
with vertex set V(G[H]) = V(G) x V(H) and edge set BGH) Y )i and
('U:2av2

ments satisfy the adjacency condition: (t1; vp) 18 adjacent ¥
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only if uyu, € E(G), or u; = u, and v,v, € E(H). Note that even if H
is disconnected, the composition G[H] is always connected provided G is

connected.

Let W C V(G[H]). The G-projection Wg of W and the H-projection Wi
of W are defined as follows:

We {u: (u,v) € W for some v € V(H)},

Wy = {v:(u,v) €W for someu € V(G)}.

Theorem 2.1 Let G be a nontrivial connected graph and H a discon-
nected graph. Let W C V(G[H]) such that |Wg| = 1. Then W is a Steiner
set of G[H| if and only if the following conditions hold:

(i) Wg = {u} for some u € V(G) with dege(u) = [V(G)| — 1;
(it) Wy =V (H).

Proof: Assume that W is a Steiner set of G[H]; let W = {u} and let
a € V(G) such that a is adjacent to u. Clearly, W = {u} x Wy. Since W is
a Steiner set of G[H] and G is nontrivial, it follows that (W) is disconnected;
hence, any Steiner W-tree must have at least |W| + 1 vertices. But the
adjacency of the vertices in V(G[H]) immediately shows that for any b €
V(H), the subgraph (W U{(a,b)}) is connected. Therefore, thinking of any
spanning tree of (W U {(a,b)}), we can now conclude that every Steiner W-
tree has exactly |W|+ 1 vertices. Since W' is a Steiner set of G[H], by
definition every vertex of G[H] is in some Steiner W-tree. Consequently, u

must be adjacent to all the other vertices of G, or degg(u) = V(G)| - 1.
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Next, we show that Wy = V(H) by contradiction. Assume t},
at W, i

H). Since W is a Steiner set of G[H)]

every Vertey f

a proper subset of V(
tree (whose order is |W/|+1); thus, the g,
’ T8aph

G|[H] is in some Steiner W-

(WU {(u, y)}) is connected for every y € V(H)\Wy. Since W = e,
= U} x

H,

it follows that the subgraph (Wg U {y}) is connected in H for ever
Yye
V(H) \ Wha. Consequently, (WH U (V(H) \ Wr)) = (V(H)) is connected
y &

contradiction to the hypothesis that H is disconnected. Therefore, we m
) ust

have Wy = V (H).

The converse is straightforward. 0

ing result is a consequence of the above theorem.

The follow.

2 Let G be a nontrivial connected graph and H a discon-

Corollary 2.
if and only if |Wel| > 2

nected graph. Then G has no spanning star subgraph

for every Steiner set W of G[H].
further that

panning star subgraph. Suppose
(G)

Proof: Suppose G has no s
| = 1. Then Wg = {u} for someu € 4

G[H] has a Steiner set W with |[We
G)|—1. This implies that G has a span

with deg(u) = m = |V (
Thus, |[Wal = 2 for every S

Km, contrary to our assumption.
of G[H].

Conversely, suppose [Wg| = 2 for every
to the contrary that G has a spanning subgraph Kin-1 where = ek
Let Kin-1 = (u) + Kn_1, where K, _; is the empty graph of ord
u € V(G). Then W* = {u} X V(H) is a Steiner seb of G[H) . |

2.1. This clearly contradicts our assumption of the Gteiner S ]

teiner set W

Therefore, G does not have a spanning star subgraph-
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Lemma 2.3 et g be a nontrivial connected graph and H a disconnected
graph. Let W C V(G[H]) such that |Wgl| > 2, and let T* be a Steiner W-
iree. If T is q spanning tree of the subgraph ((V (T*))e), then T is a Steiner
We-tree. Moreover, [V (T*)| = |W|+ |V(T) \ Wg|.

Proof: The fact that T* is connected in G [H] implies that the subrgaph
((V(T*))g) is connected in G, and hence has a spanning tree. Let 7' then
be a spanning tree of ((V(T*))g). Since V(T*) contains W, it follows that
V(T) contains Wy. Furthermore, |V (T*)| > |W| + |V(T) \ Wg|.

Assume for contradiction that T is not a Steiner Wg-tree. Then there
exists a tree T" in G containing all of Wg such that |V(T")| < \V(T)|. If
V(T") = W, then (Wg) is connected. Since |[Wg| > 2, it follows that (W)
is connected also. Consequently, |W| = |V(T*)| and [Wg| = |V(T)|. From
[V(T)| > [V(T")|, we obtain a contradiction |Wg| > |V(T")|. Thus, V(T \
We is nonempty. Moreover, from the argument leading to the contradiction,
the subgraph (W) must be disconnected and so is the subgraph (Wg) (note
that W¢ is not a singleton).

Let Ry, R, - be the vertex sets of the components of (Wg). We propose
to show that we can form a tree in G[H] containing W such that its order is
smaller than that of 7*. To do this, consider all vertices of. the form (z, 2)
where z is a fixed element of V(H) and z € V(T")\Wg. If (W N (R; x V(H)))
is connected, take a spanning tree T;". (Note that if (W N (R; x V(H))) is
disconnected, then necessarily R; is a singleton.) By using the adjacency
relation of the vertices of the tree 7" in G, form a tree T** in G[H] in the
following manner: connect each T, through one of its vertices, to any appro-

priate vertex (z,2), = € V(T') \ We; if (WN (R; x V(H))) is disconnected,
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all its edges and then connect all its vertices to any
4PPropri
ate

vertex (z,2), T € v(T') \ We- Furthermore, include in T** ap
y ed
z) and (&, z) Whenever &, 7' € V(T")\ Wg and z2' € E(T’fie o

disregard

necting (T,
T+ obviously contains W, and that |V/(T*)| = [W|+ |V(T’)§ b
Wel.

\ Wel < |V(T) \ Wgl|, it follows that [V(T*| < |V(T*)|, 2
. y 4 COn-

the tree
Since |V (T")

tradiction to is a Steiner W-tree. This contradict;
ction

the hypothesis that T

finally implies that T must be a Steiner Wg-tree.

Now let us consider the possibilities for We. If Wg = V(T), then (W)
: G

(W) must be connected also, it follows that V(T*) =W

and hence the equation |V(T*)| = W+ [V(T) \ Wg| holds. On the other

r subset of V(T'), then (Wg) is necessarily disconnected.

nt as in the preceding paragraph, we can form a tree

h exactly |[W/|+ V(T) \ Wel vertices.
aph and the fact that

(Ty'\ Wg| This

is connected. Since

hand, if Wg is a prope
Using a similar argume
Tx in G[H] containing W and wit

Combining this with the inequality in the first paragr
we obtain [ = |w|+ [V

T* is a Steiner W-tree,
completes the proof. O
Theorem 2.4 Let G be a nontrivial connected graph and H o 450"
a Steine”

| > 2. IfWis

w < V(G[H]) such that |We
¢ of G. More™®"

nected graph, and let
rojection Wa of W is a Steiner S€

set of G[H), then the G-p
W = Wg X V(H)

)
Proof : To show that S(Wg) = V(G), let v € v(G) Lt ) V(W"ee
. | r -
let z = (u,v). Since W is a Steiner set of G[H ], there R Stem;) ) ther
T%))6r
g tree O (( ¢ e\ver}’

T* containing = as a vertex. Now if T 1s a spannin g
(T), it follows ¥

T is a Steiner We-tree by Lemma 2.3. Since u €V
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sertex of G is in some Steiner Wg-tree. Consequently, V(G) C S(Wg). But
ihe other inclusion S(Wg) C V(G) is obvious. Therefore, S(Ws) = V(G)
und, hence, We is a Steiner set of G

To show that W = Wg X V(H), it suffices to show that Wg x V(H) C W.
For contradiction, suppose there exists a vertex (z,y) € Wg x V(H) such
that (z,y) € W. Let T* be a tree in G[H] such that W U {(z,y)} C V(T*).
[f T' is a spanning tree of ((V(T™))g), then [V(T*)| > |W|+1+|V(T")\ Wg|.
By Lemma 2.3, T* cannot be a Steiner W-tree. Consequently, (z,y) ¢ S(W),
a contradiction to the assumption that W is a Steiner set of G[H]. Hence,

every vertex in Wg x V(H) isin W, or Wg x V(H) C W. O

Theorem 2.5 Let G be a nontrivial connected graph and H a discon-
nected graph, and let W C V(G|[H]|) such that |Wg| > 2. Then, W is a
Steiner set of G[H] if and only if W = Q x V(H), where Q is a Steiner set
of G.

Proof: Suppose W is a Steiner set of G[H]. If we take @Q = W, then by
Theorem 2.4, Q is a Steiner set of G and that W = Q x V(H).

Conversely, suppose W = Q x V(H) where Q is a Steiner set of G. If
Q= V(G), then obviously @ x V(H) is a Steiner set of G[H]. So assume
that @ js proper subset of V(G). Necessarily, (@) is disconnected. As a
“onsequence, all Steiner Q-trees are of order |Q|+ k for some positive integer
i'etBVY((I;)emma 2.3, every Steiner W-tree has an order (|[V(H)| - |Q]) + k.
hitrary e;e e il B T(EG = i PR (5 an

ment (u;,v;) € V(G[H]), let T be a Steiner Q-tree contain-

ing u;,
Moreover, denote by R;, R,.--- the vertex sets of the components
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of (Q). Clearly (Rs X V/(H)) is connected if and only if R, is oy , iy

ton. Now if Ry is not a singleton, take a spanning tree T}, of (R, x Vi )
such that (ui,v;) € V(Tu) in case u; € R,. By using the adjacency of the
vertices of the tree T% in G, form a tree T"+*) in G[H] in the folloing
manner: connect each T,, through one of its vertices, to any aPPIopriate
vertex (z,v;), ¢ € V(T™)\ Q; if Rp is a singleton, disregard all the edges
of (Rg x V(H)) and then connect all its vertices to any appropriate v
tex (z,v;), ¢ € V(T™)\ Q. In addition, include in T®™%) any edge cop.
necting (z,v;) and (z’,v;) whenever z,z' € V(T™)\ Q and zz’ € E(T),
The vertex set of the constructed tree 7(“%) has the following properties:
W C V(T®)), (u;,v;) € V(T®*)) and [V(T®*)| = (V(H)| - Q1) ++.
So T®i¥) must be a Steiner W-tree. Consequently, (u;,v;) € S(W), or
V(G[H]) € S(W). Since S(W) C V(G[H]), we have S(W) = V(G[H]).
Therefore, W is a Steiner set of G[H]. O

Our final result is a consequence of Theorem 2.1, Corollary 2.2 and The-
orem 2.5. This result gives the Steiner number of the composition G[H),

where G is nontrivial and connected while H is disconnected.

Theorem 2.6 Let G be a nontrivial connected graph and H @ discon-
nected graph. If G has a vertez of degree |V (G)|—1, then st(G[H]) = [Vl
otherwise, st(G[H]) = st(G) - |V (H)|.

2.1
Proof: Suppose G has a vertex of degree |V (G)| — 1. By Theorelt

the Steiner sets of G[H] whose G-projections are singletons are exactly thoh
it
of the form W = Wy x V(H), where Wg = {u} for some v € V(G) ™
I
dege(u) = [V(H)| — 1. On the other hand, by Theorem 2.5, the Steiner
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of GH] whose G-projections are not singletons are exactly those of the form
W= Q x V(H), where @ is a Steiner set of G. As a consequence; we have
st(G[H]) = [V(H).

Suppose now that G does not have a vertex of degree [V/(G)|—1. Then by |
Corollary 2.2, the G-projections of the Steiner sets of G[H] have cardinalities
greater than one. So by applying Theorem 2.5, we obtain st(G[H]) = st(G)-

|V (H)|. O

We end this paper with a sample of specific situations where Theorem
2.6 can be applied. Note that by inspection the Steiner number of the path
P,, where n > 2, is 2, while the Steiner number of the cycle C,, is either 2 or

3, depending on whether n is even or odd.

Corollary 2.7 Let H be a disconnected graph. Let K, be the complete
graph of order n; let F, and W, be the fan and wheel of order n + 1, re-
spectively. Also, let P, and C, be the path and cycle of order n, respectively.
Then the following hold:

(i) st(Kn|H)) = |V(H)|, where n > 2;
(i) st(Fa[H]) = |V(H)|, where n > 2;
(i) st(Wn[H]) = |V (H)|, where n > 3;
() st(P,[H]) =2 |V (H)|, where n >2;

(v) st(C,[H]) = r - |V(H)|, where r is 2 or 3 depending on whether n is

even or odd.
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