Full Covering in \mathbb{R}^n

Rolito G. Eballe

Abstract

Given a connected graph G and a non-empty subset W of V(G), a Steiner W-tree is a tree of minimum order that contains all of W. Let S(W) denote the set of all vertices of G that lie on any Steiner W-tree. If S(W) = V(G), then W is said to be a Steiner set of G. The Steiner number st(G) of G is defined as the minimum cardinality of a Steiner set of G. In this paper we characterize the Steiner sets in the composition G[H] of a non-trivial connected graph G and a disconnected graph H. We then present a formula that can be used to determine the Steiner number st(G[H]).

Keywords: graph, Steiner W-tree, Steiner set, Steiner number, composition

1 Introduction

Given a connected graph G and a nonempty subset W of V(G), a Steiner W-tree is a tree of minimum order that contains all of W. Let S(W) denote the set of all vertices of G that lie on any Steiner W-tree; the set S(W) is referred to as the Steiner interval of W. If S(W) = V(G), then W is said

A ROLITO G. EBALLE is an Associate Professor of Mathematics in the Department of Mathematics, Central Mindanao University, Musuan, Bukidnon. He holds a Ph.D. in Mathematics from MSU-Iligan Institute of Technology, Iligan City. This research was supported by the Commission on Higher Education of the Philippines - Mindanao Advanced Education Project, and the Central Mindanao University Faculty Development Program.

to be a Steiner set of G. Accordingly, a Steiner set of minimum cardinality is called a minimum Steiner set and this cardinality is the Steiner number st(G) of G. Since every connected graph G contains a spanning tree, V(G)is always a Steiner set of G. Therefore, if G is connected of order $n \ge 2$, then $2 \le st(G) \le n.$

Steiner sets and Steiner numbers have been studied recently in [2] and [4]. A more recent investigation is in [1], where the authors characterized the Steiner sets in the join G + H and composition G[H] of two nontrivial connected graphs G and H. One of the formulas obtained there can be stated as follows: $st(G[H]) = \min\{|V(H) \setminus S'| : S' \text{ is a cutset of } H \text{ and no proper}$ subset of S' disconnects H if H is non-complete and G has a vertex of degree |V(G)| - 1; otherwise, $st(G[H]) = st(G) \cdot |V(H)|$. Although descriptions of Steiner sets of G + H with either G or H (or both) disconnected can be found in [1], the equally challenging task of describing the Steiner sets of G[H] with H disconnected has been postponed.

In this paper, we shall characterize the Steiner sets in the composition G[H] of a nontrivial connected graph G and a disconnected graph H. Our main objective is to obtain a formula that can be used to determine the Steiner number st(G[H]) of the composition G[H]. (Note that graphtheoretic terms not specifically defined here may be found in [3].)

Results 2

The composition of two graphs G and H, denoted by G[H], is the graph with write with vertex set $V(G[H]) = V(G) \times V(H)$ and edge set E(G[H]) whose elements set inferror ments satisfy the adjacency condition: (u_1, v_1) is adjacent to (u_2, v_2) if and

JUNE 2005

only if $u_1u_2 \in E(G)$, or $u_1 = u_2$ and $v_1v_2 \in E(H)$. Note that even if H is disconnected, the composition G[H] is always connected provided G is connected.

Let $W \subseteq V(G[H])$. The *G*-projection W_G of *W* and the *H*-projection W_H of *W* are defined as follows:

 $W_G = \{u : (u, v) \in W \text{ for some } v \in V(H)\},\$ $W_H = \{v : (u, v) \in W \text{ for some } u \in V(G)\}.$

Theorem 2.1 Let G be a nontrivial connected graph and H a disconnected graph. Let $W \subseteq V(G[H])$ such that $|W_G| = 1$. Then W is a Steiner set of G[H] if and only if the following conditions hold:

(i) $W_G = \{u\} \text{ for some } u \in V(G) \text{ with } \deg_G(u) = |V(G)| - 1;$

(ii)
$$W_H = V(H)$$
.

Proof: Assume that W is a Steiner set of G[H]; let $W_G = \{u\}$ and let $a \in V(G)$ such that a is adjacent to u. Clearly, $W = \{u\} \times W_H$. Since W is a Steiner set of G[H] and G is nontrivial, it follows that $\langle W \rangle$ is disconnected; hence, any Steiner W-tree must have at least |W| + 1 vertices. But the adjacency of the vertices in V(G[H]) immediately shows that for any $b \in V(H)$, the subgraph $\langle W \cup \{(a,b)\}\rangle$ is connected. Therefore, thinking of any spanning tree of $\langle W \cup \{(a,b)\}\rangle$, we can now conclude that every Steiner W-tree has exactly |W| + 1 vertices. Since W is a Steiner set of G[H], by definition every vertex of G[H] is in some Steiner W-tree. Consequently, u must be adjacent to all the other vertices of G, or $deg_G(u) = |V(G)| - 1$.

Next, we show that $W_H = V(H)$ by contradiction. Assume that W_H is a proper subset of V(H). Since W is a Steiner set of G[H], every vertex of G[H] is in some Steiner W-tree (whose order is |W| + 1); thus, the subgaph $\langle W \cup \{(u, y)\}\rangle$ is connected for every $y \in V(H) \setminus W_H$. Since $W = \{u\} \times W_H$, it follows that the subgraph $\langle W_H \cup \{y\}\rangle$ is connected in H for every $y \in$ $V(H) \setminus W_H$. Consequently, $\langle W_H \cup (V(H) \setminus W_H) \rangle = \langle V(H) \rangle$ is connected, a contradiction to the hypothesis that H is disconnected. Therefore, we must have $W_H = V(H)$.

The converse is straightforward.

The following result is a consequence of the above theorem.

Corollary 2.2 Let G be a nontrivial connected graph and H a disconnected graph. Then G has no spanning star subgraph if and only if $|W_G| \ge 2$ for every Steiner set W of G[H].

Proof: Suppose G has no spanning star subgraph. Suppose further that G[H] has a Steiner set W with $|W_G| = 1$. Then $W_G = \{u\}$ for some $u \in V(G)$ with deg(u) = m = |V(G)| - 1. This implies that G has a spanning subgraph $K_{1,m}$, contrary to our assumption. Thus, $|W_G| \ge 2$ for every Steiner set W of G[H].

Conversely, suppose $|W_G| \ge 2$ for every Steiner set W of G[H]. Assume, to the contrary that G has a spanning subgraph $K_{1,n-1}$, where n = |V(G)|. Let $K_{1,n-1} = \langle u \rangle + \overline{K}_{n-1}$, where \overline{K}_{n-1} is the empty graph of order n-1, and $u \in V(G)$. Then $W^* = \{u\} \times V(H)$ is a Steiner set of G[H], by Theorem 2.1. This clearly contradicts our assumption of the Steiner sets of G[H]. Therefore, G does not have a spanning star subgraph.

Lemma 2.3 Let G be a nontrivial connected graph and H a disconnected graph. Let $W \subseteq V(G[H])$ such that $|W_G| \ge 2$, and let T^* be a Steiner W-tree. If T is a spanning tree of the subgraph $\langle (V(T^*))_G \rangle$, then T is a Steiner W_G -tree. Moreover, $|V(T^*)| = |W| + |V(T) \setminus W_G|$.

Proof: The fact that T^* is connected in G[H] implies that the subrgaph $\langle (V(T^*))_G \rangle$ is connected in G, and hence has a spanning tree. Let T then be a spanning tree of $\langle (V(T^*))_G \rangle$. Since $V(T^*)$ contains W, it follows that V(T) contains W_G . Furthermore, $|V(T^*)| \geq |W| + |V(T) \setminus W_G|$.

Assume for contradiction that T is not a Steiner W_G -tree. Then there exists a tree T' in G containing all of W_G such that |V(T')| < |V(T)|. If $V(T') = W_G$, then $\langle W_G \rangle$ is connected. Since $|W_G| \ge 2$, it follows that $\langle W \rangle$ is connected also. Consequently, $|W| = |V(T^*)|$ and $|W_G| = |V(T)|$. From |V(T)| > |V(T')|, we obtain a contradiction $|W_G| > |V(T')|$. Thus, $V(T') \setminus$ W_G is nonempty. Moreover, from the argument leading to the contradiction, the subgraph $\langle W \rangle$ must be disconnected and so is the subgraph $\langle W_G \rangle$ (note that W_G is not a singleton).

Let R_1, R_2, \cdots be the vertex sets of the components of $\langle W_G \rangle$. We propose to show that we can form a tree in G[H] containing W such that its order is smaller than that of T^* . To do this, consider all vertices of the form (x, z)where z is a fixed element of V(H) and $x \in V(T') \setminus W_G$. If $\langle W \cap (R_i \times V(H)) \rangle$ is connected, take a spanning tree T_i^* . (Note that if $\langle W \cap (R_j \times V(H)) \rangle$ is disconnected, then necessarily R_j is a singleton.) By using the adjacency relation of the vertices of the tree T' in G, form a tree T^{**} in G[H] in the following manner: connect each T_i^* , through one of its vertices, to any appropriate vertex $(x, z), x \in V(T') \setminus W_G$; if $\langle W \cap (R_j \times V(H)) \rangle$ is disconnected, disregard all its edges and then connect all its vertices to any appropriate vertex $(x, z), x \in V(T') \setminus W_G$. Furthermore, include in T^{**} any edge connecting (x, z) and (x', z) whenever $x, x' \in V(T') \setminus W_G$ and $xx' \in E(T')$. Now the tree T^{**} obviously contains W, and that $|V(T^{**})| = |W| + |V(T') \setminus W_G|$. Since $|V(T') \setminus W_G| < |V(T) \setminus W_G|$, it follows that $|V(T^{**}| < |V(T^*)|$, a contradiction to the hypothesis that T^* is a Steiner W-tree. This contradiction finally implies that T must be a Steiner W_G -tree.

Now let us consider the possibilities for W_G . If $W_G = V(T)$, then $\langle W_G \rangle$ is connected. Since $\langle W \rangle$ must be connected also, it follows that $V(T^*) = W$, and hence the equation $|V(T^*)| = |W| + |V(T) \setminus W_G|$ holds. On the other hand, if W_G is a proper subset of V(T), then $\langle W_G \rangle$ is necessarily disconnected. Using a similar argument as in the preceding paragraph, we can form a tree T_{Δ} in G[H] containing W and with exactly $|W| + |V(T) \setminus W_G|$ vertices. Combining this with the inequality in the first paragraph and the fact that T^* is a Steiner W-tree, we obtain $|V(T^*)| = |W| + |V(T) \setminus W_G|$. This completes the proof.

Theorem 2.4 Let G be a nontrivial connected graph and H a disconnected graph, and let $W \subseteq V(G[H])$ such that $|W_G| \ge 2$. If W is a Steiner set of G[H], then the G-projection W_G of W is a Steiner set of G. Moreover, $W = W_G \times V(H)$.

Proof: To show that $S(W_G) = V(G)$, let $u \in V(G)$. Let $v \in V(H)$ and let x = (u, v). Since W is a Steiner set of G[H], there exists a Steiner W-tree T^x containing x as a vertex. Now if T is a spanning tree of $\langle (V(T^x))_G \rangle$, then T is a Steiner W_G -tree by Lemma 2.3. Since $u \in V(T)$, it follows that every vertex of G is in some Steiner W_G -tree. Consequently, $V(G) \subseteq S(W_G)$. But the other inclusion $S(W_G) \subseteq V(G)$ is obvious. Therefore, $S(W_G) = V(G)$ and, hence, W_G is a Steiner set of G

To show that $W = W_G \times V(H)$, it suffices to show that $W_G \times V(H) \subseteq W$. For contradiction, suppose there exists a vertex $(x, y) \in W_G \times V(H)$ such that $(x, y) \notin W$. Let T^* be a tree in G[H] such that $W \cup \{(x, y)\} \subseteq V(T^*)$. If T' is a spanning tree of $\langle (V(T^*))_G \rangle$, then $|V(T^*)| \geq |W| + 1 + |V(T') \setminus W_G|$. By Lemma 2.3, T^* cannot be a Steiner W-tree. Consequently, $(x, y) \notin S(W)$, a contradiction to the assumption that W is a Steiner set of G[H]. Hence, every vertex in $W_G \times V(H)$ is in W, or $W_G \times V(H) \subseteq W$.

Theorem 2.5 Let G be a nontrivial connected graph and H a disconnected graph, and let $W \subseteq V(G[H])$ such that $|W_G| \ge 2$. Then, W is a Steiner set of G[H] if and only if $W = Q \times V(H)$, where Q is a Steiner set of G.

Proof: Suppose W is a Steiner set of G[H]. If we take $Q = W_G$, then by Theorem 2.4, Q is a Steiner set of G and that $W = Q \times V(H)$.

Conversely, suppose $W = Q \times V(H)$ where Q is a Steiner set of G. If Q = V(G), then obviously $Q \times V(H)$ is a Steiner set of G[H]. So assume that Q is a proper subset of V(G). Necessarily, $\langle Q \rangle$ is disconnected. As a consequence, all Steiner Q-trees are of order |Q| + k for some positive integer k. By Lemma 2.3, every Steiner W-tree has an order $(|V(H)| \cdot |Q|) + k$. Let $V(G) = \{u_1, u_2, \dots, u_{|V(G)|}\}$ and $V(H) = \{v_1, v_2, \dots, v_{|V(H)|}\}$. For an arbitrary element $(u_i, v_j) \in V(G[H])$, let T^{u_i} be a Steiner Q-tree containing u_i . Moreover, denote by R_1, R_2, \dots the vertex sets of the components of $\langle Q \rangle$. Clearly $\langle R_s \times V(H) \rangle$ is connected if and only if R_s is not a singleton. Now if R_α is not a singleton, take a spanning tree T_α of $\langle R_\alpha \times V(H) \rangle$ such that $(u_i, v_j) \in V(T_\alpha)$ in case $u_i \in R_\alpha$. By using the adjacency of the vertices of the tree T^{u_i} in G, form a tree $T^{(u_i,v_j)}$ in G[H] in the following manner: connect each T_α , through one of its vertices, to any appropriate vertex $(x, v_j), x \in V(T^{u_i}) \setminus Q$; if R_β is a singleton, disregard all the edges of $\langle R_\beta \times V(H) \rangle$ and then connect all its vertices to any appropriate vertex $(x, v_j), x \in V(T^{u_i}) \setminus Q$. In addition, include in $T^{(u_i,v_j)}$ any edge connecting (x, v_j) and (x', v_j) whenever $x, x' \in V(T^{u_i}) \setminus Q$ and $xx' \in E(T^{u_i})$. The vertex set of the constructed tree $T^{(u_i,v_j)}$ has the following properties: $W \subseteq V(T^{(u_i,v_j)}), (u_i, v_j) \in V(T^{(u_i,v_j)})$ and $|V(T^{(u_i,v_j)})| = (|V(H)| \cdot |Q|) + k$. So $T^{(u_i,v_j)}$ must be a Steiner W-tree. Consequently, $(u_i, v_j) \in S(W)$, or $V(G[H]) \subseteq S(W)$. Since $S(W) \subseteq V(G[H])$, we have S(W) = V(G[H]). Therefore, W is a Steiner set of G[H].

Our final result is a consequence of Theorem 2.1, Corollary 2.2 and Theorem 2.5. This result gives the Steiner number of the composition G[H], where G is nontrivial and connected while H is disconnected.

Theorem 2.6 Let G be a nontrivial connected graph and H a disconnected graph. If G has a vertex of degree |V(G)| - 1, then st(G[H]) = |V(H)|; otherwise, $st(G[H]) = st(G) \cdot |V(H)|$.

Proof: Suppose G has a vertex of degree |V(G)| - 1. By Theorem 2.1, the Steiner sets of G[H] whose G-projections are singletons are exactly those of the form $W = W_G \times V(H)$, where $W_G = \{u\}$ for some $u \in V(G)$ with $deg_G(u) = |V(H)| - 1$. On the other hand, by Theorem 2.5, the Steiner sets **JUNE 2005**

of G[H] whose G-projections are not singletons are exactly those of the form $W = Q \times V(H)$, where Q is a Steiner set of G. As a consequence, we have st(G[H]) = |V(H)|.

JRARY

Suppose now that G does not have a vertex of degree |V(G)| - 1. Then by Corollary 2.2, the G-projections of the Steiner sets of G[H] have cardinalities greater than one. So by applying Theorem 2.5, we obtain $st(G[H]) = st(G) \cdot$ |V(H)|.

We end this paper with a sample of specific situations where Theorem 2.6 can be applied. Note that by inspection the Steiner number of the path P_n , where $n \ge 2$, is 2, while the Steiner number of the cycle C_n is either 2 or 3, depending on whether n is even or odd.

Corollary 2.7 Let H be a disconnected graph. Let K_n be the complete graph of order n; let F_n and W_n be the fan and wheel of order n + 1, respectively. Also, let P_n and C_n be the path and cycle of order n, respectively. Then the following hold:

- (i) $st(K_n[H]) = |V(H)|$, where $n \ge 2$;
- (ii) $st(F_n[H]) = |V(H)|$, where $n \ge 2$;
- (iii) $st(W_n[H]) = |V(H)|$, where $n \ge 3$;
- (iv) $st(P_n[H]) = 2 \cdot |V(H)|$, where $n \ge 2$;
- (v) $st(C_n[H]) = r \cdot |V(H)|$, where r is 2 or 3 depending on whether n is even or odd.

ì

References

- S. R. Canoy, Jr., R. G. Eballe, Steiner sets in the join and composition of graphs, *Congressus Numerantium*, 167 (2004) 65-73.
- [2] G. Chartrand, P. Zhang, The Steiner number of a graph, Discrete Math., 242 (2002) 41-54.
- [3] F. Harary, Graph Theory. Addison-Wesley, Reading MA, 1969.
- [4] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo, C. Seara, On the Steiner, geodetic and hull numbers of graphs, *Discrete Math.*, (In Press).