Do Isomorphic Graphs Induce
Homeomorphic Topological Spaces?

SERGIO R. CANOY, JR.

iven two graphs H = (X, E;) and G = (X3,F;), we say that H
and G are identical in the graph theory’s point of view if there
exists a bijective function f : X, — X such that / preserves
adjacency, i.e., [ad] € E, if and only if [fa)A(b)] € E,. In this case we
call f an isomorphism and say that H and G are isomorphic.
Recall that an arbitrary finite graph G* = (X,E) induces a topology
Ts» on X with a base consisting of the sets F(4) = X'\ N(4) where

NA)= AU {x: [xa]l e E forsome ac A }

and A ranges over all subsets (finite) of X' (see [1] and [2]). From this fact,
two natural interesting questions arise.

Question 1. Do isomorphic graphs induce homeomorphic topolo-
gical spaces?

Question 2. Can one find two non-isomorphic graphs that induce
homeomorphic topological spaces?

In this short note, we shall give positive answers to both questions.
Thus, while isomorphic graphs induce homeomorphic topological spaces, .
the converse is not necessarily true.

We need to recall some basic definitions.

Definition 1. A mapping / (X,T)) = (Y. T,) is said to be conti-
nuous if and only if /(0) € T, forevery O € Ty,

Definition 2. A mapping f: (X,T)) — (¥,T2) is said to be open
if and only if f(V) € T, forevery Ve T,.
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Definition 3. Two spaces (X, T:) and (¥,T2) are homeomorphic
if there exists a bijective (one-one and onto) and bicontinuous (open and
continuous) function f : (X;Ty) — (¥,T2). The function f is called a

homeomorphism.
We need the following lemma.

Lemma 4. Let H = (X,,E) and G = (X2,£3) be isomorphic
graphs and f: X,— X; an isomorphism. Then

() AF(4)) = F(lA)) for every A < Xi, and

(i) S (F(B)) = F('(B)) for every B Xa.

Proof (i) Let A < X, and y € fiIF(4)). Then there exists x «
F(A) such that fix) =y. Hence, by definition, x ¢ A and [x.a] ¢ E, for
alla e A. Thus,y ¢ fid) and [y,z] ¢ E; for all z € f4). This shows
that y € F(f{4)).

Conversely, let y € F(fid)). Theny & fA4) and [y.f] & E; for all ¢
€ fld). Since fis onto there exists x € X; such that fix)=y. Also, since y
g fi4), it follows that x € 4. Now, suppose that [x,a] € E, for some a e
A. Then [fix)fa)] = [vAa)] € E; where fla) € f4). This is a contradic-
tion. Thus, [x,a] # E; forall a € A This shows that x € F(4) and
hence, y € AF(4)).

(ii) Let Bc Xzand x € f'(F(B)). Then fix) € F(B). This means
that fix) & Band [fx), y] € E; forally € B. Sincef{x) ¢ B, x ¢ f(B).
Also, [x.z] ¢ E, for all z € f'(B). For if [xz] € E, for some z e f(B),
then [Ax)Az)] € E; where fiz) € B, a contradiction. Hence x & f(F(B)).

Next, let x € F(f"(B)). Then x ¢ f(B) and [x.1] ¢ E, for all
t € f(B). Hence, fix) ¢ B. Suppose there exists € B such that [Ax),u]
€ Ep. Let z € X; with fiz) = . Then z € £'(B) and [Ax)z)]  E,. Hence,
[x.z] € E,, a contradiction. Thus, [f{ix),u] ¢ E; forall v € B Therefore,
fix) € F(B) and hence, .x € f'(F(B)). Accordingly, (i) and (i) hold, [

The next result answers the Question 1.

| Theorem 5. If H=(X,,E\) and G = (Xo,E,) are isomorphic, then
the induced topological spaces (X,,Ty) and (X2,T5) are homeomorphic.
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Proof. Let f: X, > X; be an isomorphism. Then by definition, f
is bijective. Hence, it remains to show that fis bicontinuous (with respect
to Ty and Tg).

Tothisend, let O € Ty and y € AO). Then there exists x € O
s_uch that flx) =y. Also, there is 4 — X, such that x € F{4) c O
since
{Ff{4) - A c X} is a base for Ty. Clearly, y € AF(A)) c AO). By
Lemma 4(i), fiF(4))eTs since F(fA)) € {(F(B) : B c X2} whichis a
base for Tz, Thus, AOQ) € Tg and hence, f is open.

Now, let ¥ € T; and x € F'(V). Then fix) € V. Hence, there
exists B < X; such that Ax) e AB)c V. Thusx € f WRBY) < f'(V). By
Lemma 4(ii), /'(¥(B)) is a basic element of Ty Hence f"'(¥) is an
open subset of X1, Therefore, f is continuous.

Combining the above results, we then obtain the desired result. [

Example 6. Let X, be the graph consisting of a single vertex,
say v, and G any graph. Then (X;, Ty and (X3 Tg) are
homeomorphic, where H = K,[(], the composition of X, and G. For a
thorough discussion of the graph A, see [4].

Proof. It is easy to show that the function f:X; — X) defined
by Ax) = (v,x) is an isomorphism of the graphs G and . Thus, by
Theorem 5, the induced topological spaces are homeomorphic. |

We shall now answer the Question 2 by constructing two non-
isomorphic graphs A and ¢ which induce homeomorphic topological
spaces.

Consider the star graph H = K;; and the wheel graph G = W,

given below:

Y3

*3

X1 Q X4
H=K4 G=W,

Then F({xl}) = @, }“({'Xj;, X4, xS}) = {IZ}’ F({xio Xs, xS}) 33 (13},
Fl{xy, x3, %s}) = {xa}, F({x2, x3, xs}) = {x5}. Observe that there exists no
subset A of the vertex set of # with /(4) = {x1}. Therefore, .if we
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set X 3'{X1, X2, X3, X4, X's}, then
T”={X1}U{A(;X12 x1eA}.

Sim““'}" if X2= {)’l,yz,)’ss)'h}'s}, then
Te= (X} U (BcXi: neB}

Deﬁmf: (XltTﬂ)_)(thTG) bY.,(xi)‘:yi for i= 1’ 2: 3’43 53 Thenfis
bijective. Now, let O € Tx. Then O =X, or x; € O. Hence, f0)=
X; or y € f0). Thus, f0) € Tg and hence, f is open. On the other
hand, if V' € Tg, then V'=2X; or )1 € V. Hence f'(V) =X orxy & /(1.
This shows that f (V) € Ty Thus, f is continuous. Therefore, f is a
homeomor-phism and the two spaces are homeomorphic. However, it is
obvious that H and G are not isomorphic. "
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