Bilinear Henstock - Stieltjes Integral in Banach Spaces

SERGIO R. CANOY, JR.

FC] defined the Henstock-Stieltjes integral of a real-valued function with respect to a function of bounded variation on the compact interval [a,b]. This integral turned out to be equivalent to the Perron-Stieltjes integral [W].

In this paper, we shall define a more generalized concept of the Henstock-Stieltjes integral. We shall investigate its simple properties and formulate some convergence theorems.

Throughout this paper, all functions considered are bounded and are defined on the closed interval [a,b]. The letters X, Y, and Z are used to denote Banach spaces over the field **R** of real numbers.

Definition 1. A transformation $A: X \times Y \rightarrow Z$ is said to be bilinear if it satisfies the following properties:

- (i) $A(x_1 + x_2, y) = A(x_1, y) + A(x_2, y)$
- (ii) $A(x, y_1 + y_2) = A(x, y_1) + A(x, y_2)$
- (iii) $A(\alpha x, y) = \alpha A(x, y)$
- (iv) $A(x, \alpha y) = \alpha A(x, y)$

for all $x_1, x_2, x \in X$, $y_1, y_2, y \in Y$, and $\alpha \in \mathbf{R}$.

Definition 2. A bilinear transformation $A: X \times Y \rightarrow Z$ is said to be bounded if there exists a positive constant M such that

$$\|A(x, y)\|_{\mathbb{Z}} \leq M \|x\|_{\mathbb{X}} \|y\|_{\mathbb{Y}}$$

for all $x \in X$ and for all $y \in Y$. Furthermore, we have

 $||A|| = \inf \{M : ||A(x, y)||_Z \le M ||x||_X ||y||_Y, \text{ for all } x \in X \text{ and all } y \in Y \}.$

SERGIO R. CANOY, JR. is an Associate Professor of Mathematics at MSU-IIT. He obtained his PhD in Mathematics at the University of the Philippines, Diliman, Quezon City. His work interests include Integration Theory, Topology, and Graph Theory.

We denote by L(X,Y;Z) the space of all bounded bilinear transformations $A: X \times Y \rightarrow Z$:

Definition 3. A function $f: [a,b] \rightarrow Y$ is said to be of bounded variation on [a,b] if

$$V(f, [a,b]) := \sup (D) \sum ||f(v) - f(u)||_Y$$

is finite, where the supremum is over all divisions $D = \{[u,v]\}$ of [a,b].

In what follows, $f_1: [a,b] \to X$ and $f_2: [a,b] \to Y$.

Definition 4. Let $C = (c_1, c_2)$ be an ordered system, where $c_j \in \{0,1\}$ for j = 1, 2 and let $A \in L(X,Y;Z)$. Further, we write

$$d_j f_j = f_j$$
 if $c_j = 0$ and $d_j f_j = df_j$ if $c_j = 1$.

We say that the **Henstock-Stieltjes**, or simply **HS**, integral exists if there is a vector $J \in Z$ satisfying the following property: For every $\varepsilon > 0$, there exists a positive function δ on [a,b] such that for every δ -fine division $D = \{([u,v];\xi)\}$ of [a,b], we have

$$\|(\mathbf{D})\sum A(f_1(u,v), f_2(u,v)) - J\|_Z < \varepsilon,$$

where

$$f_i(u,v) = f_i(\xi)$$
, if $c_j = 0$, and $f_j(u,v) = f_j(v) - f_j(u)$, if $c_j = 1$.

Recall that a division $D = \{([u,v];\xi)\}$ is δ -fine if

$$\xi \in [u, v] \subseteq (\xi - \delta(\xi), \xi + \delta(\xi)).$$

In Definition 4, we write

(HS)
$$\int_{a}^{b} A(d_{1}f_{1}, d_{2}f_{2}) = J.$$

If $X = Y = \mathbf{R}$, f_2 is of bounded variation on [a,b], $A(r_1,r_2) = r_1r_2$ and C = (0,1), then Definition 4 reduces to the Henstock-Stieltjes integral

by Francisco and Chew in [FC]. Also, it is easy to show that if the HS integral exists, then it is unique.

The following theorem is known as the Cauchy criterion for the existence of the integral.

Theorem 5. Let $C = (c_1, c_2)$ and $A \in L(X, Y; Z)$. Then

(HS)
$$\int_a^b A(d_1f_1, d_2f_2)$$

exists if and only if for every $\varepsilon > 0$, there exists a function $\delta(\xi) > 0$ on [a,b] such that for any two δ -fine divisions $D_1 = \{([u,v];\xi)\}$ and $D_2 = \{([u',v'];\xi')\}$ of the interval [a,b],

$$\|(\mathbf{D}_1)\sum A(f_1(u,v), f_2(u,v)) - (\mathbf{D}_2)\sum A(f_1(u',v'), f_2(u',v'))\|_Z < \varepsilon.$$

Proof. (\Rightarrow): Suppose that the HS integral exists and is equal to $J \in Z$. Then given $\varepsilon > 0$, there exists $\delta(\xi) > 0$ such that for any δ -fine divisions D_1 and D_2 of [a,b].

$$\| (D_1) \sum A(f_1(u,v), f_2(u,v)) - J \|_Z < \varepsilon/2 \text{ and} \\ \| (D_2) \sum A(f_1(u,v), f_2(u,v)) - J \|_Z < \varepsilon/2.$$

Thus,

$$\| (\mathbf{D}_1) \sum A(f_1(u,v), f_2(u,v)) - (\mathbf{D}_2) \sum A(f_1(u,v), f_2(u,v)) \|_{\mathbb{Z}} < \varepsilon.$$

(\Leftarrow): For each positive integer *n*, there exists a $\delta_n(\xi)$ such that

$$\|(D_1)\sum A(f_1(u,v), f_2(u,v)) - (D_2)\sum A(f_1(u,v), f_2(u,v))\|_Z < 1/n$$

whenever D_1 and D_2 are δ_n -fine divisions of [a, b]. We may assume that $\delta_{n+1}(\xi) \leq \delta_n(\xi)$ for all *n*. Now, for each *n*, fix a δ_n -fine division D_n and put

$$s_n = (D_n) \sum A(f_1(u, v), f_2(u, v)).$$

Let *n*, *m* be positive integers with n < m. Then D_m is both a δ_m -fine and δ_n -fine division of [a,b]. Thus,

$$\|s_n - s_m\|_Z < 1/n$$

and hence, $\{s_n\}$ is a Cauchy sequence in Z. Since Z is complete, there exists a vector J in Z such that

$$\lim_{n\to\infty} s_n = J.$$

Thus, given $\varepsilon > 0$, there is a positive integer N such that for all $n \ge N$,

$$\|s_n - J\|_Z < \varepsilon/2.$$

Choose $N^* \ge N$ such that $1/N^* < \epsilon/2$. Define $\delta(\xi) = \delta_{N^*}(\xi)$ for each ξ in [a,b]. Then for any δ -fine division D of [a,b], we have

$$\| (D) \sum A(f_1(u,v), f_2(u,v)) - J \|_{\mathbb{Z}} \le \| (D) \sum A(f_1(u,v), f_2(u,v)) - s_{N^*} \|_{\mathbb{Z}} + \| s_{N^*} - J \|_{\mathbb{Z}} \le 1/N^* + \varepsilon/2 < \varepsilon.$$

Therefore, the HS integral exists and

(HS)
$$\int_{a}^{b} A(d_{1}f_{1}, d_{2}f_{2}) = J. \Box$$

Theorem 6. Let $A \in L(X,Y;Z)$. If f_1 is continuous and f_2 is of bounded variation on [a,b], then,

(i) (HS) $\int_{a}^{b} A(f_{1}, df_{2})$ exists; (ii) (HS) $\int_{a}^{b} A(df_{1}, df_{2})$ exists and is equal to θ_{z} , the zero vector.

Proof. (i) Since f_1 is continuous on [a, b], it is uniformly continuous there. Hence given $\varepsilon > 0$, there exists $\eta > 0$ such that for all $t, t \in [a, b]$,

 $|t-t| < \eta$ implies $||f_1(t) - f_1(t)||_z < \varepsilon$.

Define $\delta(\xi) = \eta/2$ for all $\xi \in [a, b]$. Let D_1 and D_2 be two δ -fine divisions of

[a,b]. Then there exists a δ -fine division D₃ of [a,b] which is finer than both D₁ and D₂. Now, let [u,v] be an interval division in D₁. Then there exist division points $z_0, z_1, ..., z_r$ in D₃ such that $u = z_0 < z_1 < ... < z_r = v$. Consider the following difference:

$$\Delta(u,v) = A(f_1(\xi), f_2(v) - f_2(u)) - \sum_{k=1}^r A(f_1(\xi_k), f_2(z_k) - f_2(z_{k-1}))$$
$$= \sum_{k=1}^r A(f_1(\xi) - f_1(\xi_k), f_2(z_k) - f_2(z_{k-1})).$$

Then

$$\|\Delta(u,v)\|_{Z} \leq \sum_{k=1}^{r} \|A\| \|f_{1}(\xi) - f_{1}(\xi_{k})\|_{X} \|f_{2}(z_{k}) - f_{2}(z_{k-1})\|_{Y}$$

$$\varepsilon \in ||A|| \nabla (f_2; [u, v]).$$

It follows that

$$\| (D_1) \sum A(f_1(\xi)_v f_2(v) - f_2(u)) - (D_3) \sum A(f_1(\xi)_v f_2(v) - f_2(u)) \|_Z \le$$

$$\leq (\mathbf{D}_1) \sum \|\Delta(u,v)\|_Z \leq \varepsilon \|A\| \mathbf{V}(f_2; [a,b]).$$

Similarly,

$$\| (\mathbf{D}_2) \sum A(f_1(\xi), f_2(\mathbf{v}) - f_2(u)) - (\mathbf{D}_3) \sum A(f_1(\xi), f_2(\mathbf{v}) - f_2(u)) \|_{\mathbb{Z}} \le$$

 $\leq \varepsilon \|A\| \mathbf{V}(f_2; [a, b]).$

Therefore,

$$\| (D_1) \sum A(f_1(\xi), f_2(v) - f_2(u)) - (D_2) \sum A(f_1(\xi), f_2(v) - f_2(u)) \|_{\mathcal{I}} \le \\ \le 2e \|A\| V(f_2; [a, b]).$$

By the Cauchy criterion (Theorem 5), we have the desired result.

(ii) As in (i), define $\delta(\xi) = \eta/2$. Let $\mathbf{D} = \{([u,v],\xi)\}$ be a δ -fine division of [a,b]. Then

$$\|(D)\sum A(f_1(v) - f_1(u), f_2(v) - f_2(u))\|_2 \leq \varepsilon \|A\| \mathbf{V}(f_2; [a, b]).$$

This shows that

(HS)
$$\int_{a}^{b} A(df_{1}, df_{2}) = \theta_{Z}.$$

Simple Properties

We shall show that the HS integral has the usual properties of integrals.

Theorem 7. Let $A, B \in L(X, Y, Z), f_1, f : [a, b] \to X$ and $g_1, g : [a, b] \to Y$.

(i) If (HS) $\int_{a}^{b} A(f, dg)$ exists, then (HS) $\int_{c}^{d} A(f, dg)$ exists for every subinterval [c, d] of [a, b].

(ii) If $\lambda \in \mathbf{R}$ and the integral (HS) $\int_{a}^{b} A(f, dg)$ exists, then the integrals (HS) $\int_{a}^{b} A(\lambda f, dg)$ and (HS) $\int_{a}^{b} A(f, d[\lambda g])$ exist. Moreover, (HS) $\int_{c}^{b} A(\lambda f, dg) = \lambda$ (HS) $\int_{a}^{b} A(f, dg)$ and (HS) $\int_{c}^{b} A(f, d[\lambda g]) = \lambda$ (HS) $\int_{a}^{b} A(f, dg)$.

(iii) If the integrals (HS) $\int_{a}^{b} A(f,dg)$ and (HS) $\int_{a}^{b} A(f_{1},dg)$ exist, then the integral (HS) $\int_{a}^{b} A(f+f_{1},dg)$ also exists and

(HS)
$$\int_{a}^{b} A(f+f_{1},dg) =$$
 (HS) $\int_{a}^{b} A(f,dg) +$ (HS) $\int_{a}^{b} A(f_{1},dg)$.

(iv) If the integrals (HS) $\int_{a}^{b} A(f,dg)$ and (HS) $\int_{a}^{b} A(f,dg_{1})$ exist, then the integral (HS) $\int_{a}^{b} A(f,d[g+g_{1}])$ also exists and

$$(\text{HS})\int_{a}^{b} A(f,d[g+g_{1}]) = (\text{HS})\int_{a}^{b} A(f,dg) + (\text{HS})\int_{a}^{b} A(f,dg_{1}).$$

Proof. (i) By the Cauchy criterion, there exists $\delta_1(\xi) > 0$ on [a,b] such that for any δ_1 -fine divisions D and D' of [a,b], we have

$$\| (D) \sum A(f(\xi), g(u,v)) - (D') \sum A(f(\xi'), g(u',v')) \|_{Z} < \varepsilon.$$

Let $\delta(\xi) = \delta_1(\xi)$ for all $\xi \in [c,d]$. Let D_1 and D_2 be any δ -fine divisions of [c,d]. Let E_1 and E_2 be fixed δ_1 -fine divisions of [a,c] and [d,b], respectively. Consider $D = E_1 \cup D_1 \cup E_2$ and $D' = E_1 \cup D_2 \cup E_2$. Then D and D' are δ_1 -fine divisions of [a,b] and

$$(D)\sum A(f(\xi),g(u,v)) - (D')\sum A(f(\xi'),g(u',v')) =$$
$$= (D_1)\sum A(f(\xi),g(u,v)) - (D_2)\sum A(f(\xi'),g(u',v')).$$

Thus,

$$\|(D_1)\sum A(f(\xi),g(u,v)) - (D_2)\sum A(f(\xi'),g(u',v'))\|_Z < \varepsilon.$$

By the Cauchy criterion applied to [c,d], it follows that the integral

$$(HS)\int A(f, dg) = exists.$$

(ii) Let $\varepsilon > 0$ and $\lambda \varepsilon \mathbf{R}$. Since $\int_{a}^{b} A(f, dg) = J$ exists, there exists $\delta_{1}(\xi) > 0$ such that for any δ_{1} -fine division $D_{1} = \{([u, v]; \xi)\}$ of [a, b],

$$\|(\mathbf{D}_1)\sum A(f(\xi),g(v)-g(u))-J\|_Z < \varepsilon.$$

Let $\delta(\xi) = \delta_1(\xi)$ for all $\xi \in [a,b]$. Then for any δ -fine division $D = \{([u,v];\xi)\}$ of [a,b],

$$\|(\mathbf{D})\sum A(\lambda f(\xi), g(v) - g(u)) - \lambda J\|_{Z} \leq \\ \leq |\lambda| \|(\mathbf{D})\sum A(f(\xi), g(v) - g(u)) - J\|_{Z} < |\lambda|\varepsilon, \text{ and} \\ \|(\mathbf{D})\sum A(f(\xi), \lambda(g(v) - g(u)) - \lambda J\|_{Z} \leq \\ \|(\mathbf{D})\sum A(f(\xi), \lambda(g(v) - g(u)) - \lambda J\|_{Z} \leq \| \mathbf{D}\|_{Z} \leq \| \mathbf{D}\|_$$

$$\leq |\lambda| \| (\mathbf{D}) \sum \mathcal{A}(f(\xi), g(\nu) - g(u)) - J \|_{\mathcal{I}} \leq |\lambda| \varepsilon.$$

Therefore,

$$(HS)\int_{a}^{b} A(\lambda f, dg) = \lambda(HS)\int_{a}^{b} A(f, dg) \text{ and}$$
$$(HS)\int_{a}^{b} A(f, \lambda dg) = \lambda(HS)\int_{a}^{b} A(f, dg)$$

(iii) Let $\varepsilon > 0$. Let J and J_1 be the respective integrals. Then there exists a common $\delta(\xi) > 0$ such that for any δ -fine division $D = \{([u, v]; \xi)\}$ of [a, b],

$$\|(D)\sum A(f(\xi),g(v) - g(u)) - J\|_{Z} < \varepsilon/2 \text{ and}$$
$$\|(D)\sum A(f_{1}(\xi),g(v) - g(u)) - J_{1}\|_{Z} < \varepsilon/2.$$

Thus if $D = \{([u, v]; \xi)\}$ is a δ -fine division of [a, b], then

$$\|(\mathbf{D})\sum A(f(\xi)+f_{1}(\xi),g(v)-g(u))-(J+J_{1})\|_{Z} \leq \\ \leq \|(\mathbf{D})\sum A(f(\xi),g(v)-g(u))-J\|_{Z} + \\ + \|(\mathbf{D})\sum A(f_{1}(\xi),g(v)-g(u))-J_{1}\|_{Z} \\ < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Therefore (iii) holds.

(iv) This is proved as in (iii) (since A is also linear in the second component).

Convergence Theorems

We shall now turn our attention to the convergence theorems.

Theorem 8. Let $\{f_n : [a,b] \to X\}$ be a sequence of bounded functions which converges uniformly to the function $f : [a,b] \to X$ and let $g : [a,b] \to Y$ be a function bounded variation on [a,b]. If $A \in L(X,Y;Z)$ and the integrals

$$J_n = (\text{HS}) \int_a^b A(f_n, dg)$$
 and $J = (\text{HS}) \int_a^b A(f, dg)$

exist for all n, then

$$\lim_{n \to \infty} J_n = J_n$$

Proof.: Let $\varepsilon > 0$. Then there exists a natural number N such that for all $n \ge N$ and for all $t \in [a,b]$, we have $\| f_n(t) - f(t) \|_X < \varepsilon$. Let $n \ge N$ be fixed. Since J_n and J exist, there exists a common $\delta(\xi) > 0$ on [a,b]such that for any δ -fine division $D = \{([u,v],\xi)\}$ of [a,b], we have

$$\|J_n - (D)\sum A(f_n(\xi),g(v) - g(u))\|_Z < \varepsilon \text{ and}$$
$$\|J - (D)\sum A(f(\xi),g(v) - g(u))\|_Z < \varepsilon.$$

It follows that

$$J_n - J \le 2\varepsilon + \varepsilon A V(g,[a,b]).$$

Accordingly,

$$\lim_{n \to \infty} J_n = J. \quad \Box$$

Definition 9. Let $A \in L(X,Y;Z)$ and $g : [a,b] \to Y$ be a function of bounded variation. We say that $f : [a,b] \to X$ is A-integrable with respect to g on [a,b] if

$$(\mathrm{HS})\int_{a}^{b}A(f,dg)$$
 exists.

From this point on , all integral are, unless otherwise specefied, HS integrals.

Definition 10. Let $g: [a,b] \to Y$ be a function of bounded variation and $A \in L(X,Y;Z)$. Let $\{f_n : [a,b] \to X\}$ be a sequence of A-integrable functions with respect to g on [a,b]. We say that $\{f_n\}$ is $\gamma(A)$ -convergent to $f: [a,b] \to X$ with respect to g if for every $\varepsilon > 0$, there exists a natural number N_{ε} such that if $k \ge N_{\varepsilon}$ there exists $\gamma_k(\xi) > 0$ defined on [a,b] such that for any γ_k -fine division $D = \{([u,v],\xi)\}$ of [a,b],

$$\|(\mathbf{D})\sum A(f_k(\xi) - f(\xi), g(\nu) - g(u))\|_Z < \varepsilon.$$

Example 11. Let $A \in L(X,Y;Z)$ and $g : [a,b] \to X$ be a function of bounded variation on [a,b]. If $\{f_n\}$ is a sequence of X-valued continuous functions that converges uniformly to $f : [a,b] \to X$, then $\{f_n\}$ is $\gamma(A)$ -convergent to f on [a,b] with respect to g.

Proof. First, we note that in view of Theorem 6(i) the integral $\int_{a}^{b} A(f_{n}, dg)$ exists for each n. Now, let $\varepsilon > 0$. Since $f_{n} \to f$ uniformly on [a,b] as $n \to \infty$, there exists a natural number $N(\varepsilon) = N$ such that if $k \ge N$ and $t \in [a,b]$, then

$$\|f_k(t) - f(t)\|_X \leq \varepsilon.$$

Let $D = \{([u,v];\xi)\}$ be any interval-point pair division of [a,b]. Then

$$\|(\mathbf{D})\sum A(f_{k}(\xi)-f(\xi),g(v)-g(u))\|_{z} \leq \|A\|(\mathbf{D})\sum \|f_{k}(\xi)-f(\xi)\|\|g(v)-g(u)\|_{z}$$
$$\leq \varepsilon \|A\|\mathbf{V}(g;[a,b]).$$

Therefore $\{f_n\}$ is $\gamma(A)$ -convergent to f with respect to f. \Box

Theorem 12. Let $A \in L(X,Y;Z)$ and $g : [a,b] \to Y$ a function of bounded variation. Then the sequence $\{f_n : [a,b] \to X\}$ of A-integrable functions with respect to g is $\gamma(A)$ -convergent to $f : [a,b] \to X$ with respect to g if and only if

$$\int_a^b A(f,dg) \text{ exists and } \lim_{n \to \infty} \int_a^b A(f_n,dg) = \int_a^b A(f,dg).$$

Proof. (\Rightarrow) Let $\varepsilon > 0$ and let $N(\varepsilon) = N$ be as in Definition 10. If h, $k \ge N$, then there exists a $\gamma(\xi) > 0$ (depending on h and k) such that if $D_1 = \{([u,v];\xi)\}$ is a γ -fine division of [a,b], then

$$\|(\mathbf{D}_{1})\sum \mathcal{A}(f_{k}(\xi), g(v) - g(u)) - (\mathbf{D}_{1})\sum \mathcal{A}(f(\xi), g(v) - g(u))\|_{2} < \varepsilon \text{ and}$$
$$\|(\mathbf{D}_{1})\sum \mathcal{A}(f_{k}(\xi), g(v) - g(u)) - (\mathbf{D}_{1})\sum \mathcal{A}(f(\xi), g(v) - g(u))\|_{2} < \varepsilon.$$

Since f_k and f_k are A-integrable with respect to g on [a, b], there exists $\delta(\xi) > 0$ such that if $D_2 = \{([u, v]; \xi)\}$ is any δ -fine division of [a, b],

$$\|(\mathbf{D}_2)\sum A(f_h(\xi),g(v)-g(u))-\int_a^b A(f_k,dg)\|_Z \leq \varepsilon \text{ and}$$
$$\|(\mathbf{D}_2)\sum A(f_h(\xi),g(v)-g(u))-\int_a^b A(f_h,dg)\|_Z \leq \varepsilon.$$

Put $\eta(\xi) = \min \{\gamma(\xi), \delta(\xi)\}$ for every $\xi \in [a, b]$. Therefore if $D = \{([u, v], \xi)\}$ is an η -fine division of [a, b], then

$$\begin{split} \|\int_{a}^{b} A(f_{k}, dg) - \int_{a}^{b} A(f_{k}, dg) \|_{Z} &\leq \\ &\leq \left\| \int_{a}^{b} A(f_{k}, dg) - (D) \sum A(f_{k}(\xi), g(v) - g(u)) \right\|_{Z}^{+} \\ &+ \left\| (D) \sum A(f_{k}(\xi), g(v) - g(u)) - (D) \sum A(f(\xi), g(v) - g(u)) \right\|_{Z}^{-} + \\ &+ \left\| (D) \sum A(f(\xi), g(v) - g(u)) - (D) \sum A(f_{k}(\xi), g(v) - g(u)) \right\|_{Z}^{-} + \\ &+ \left\| (D) \sum A(f(\xi), g(v) - g(u)) - \int_{a}^{b} A(f_{k}, dg) \right\|_{Z}^{-} \\ &+ \left\| (D) \sum A(f_{k}(\xi), g(v) - g(u)) - \int_{a}^{b} A(f_{k}, dg) \right\|_{Z}^{-} \\ &\leq \epsilon + \epsilon + \epsilon + \epsilon = 4\epsilon \;. \end{split}$$

Since ε is arbitrary, it follows that the sequence $\left\{\int_{a}^{b} A(f_{n}, dg)\right\}$ is a Cauchy sequence in Z. Hence there exists $J \in Z$ such that

$$J = \lim_{n \to \infty} \int_a^b A(f_n, dg).$$

73

Claim: J is the A-integral of f with respect to g on [a,b]. Let $\varepsilon > 0$. Then there exists a natural number $N^*(\varepsilon) = N^*$ such that for all $k \ge N^*$,

$$\left\|\int_a^b A(f_k, dg) - J\right\|_Z < \varepsilon.$$

Set $M = M(\varepsilon) = \max\{N, N^*\}$, where $N = N(\varepsilon)$ is as in Definition 10. Then for $k \ge M$ there exists $\gamma_k(\xi) > 0$ such that if $D^* = \{([u, v]; \xi)\}$ is a γ_k -fine division of [a, b], then

$$\|(\mathbf{D}^*)\sum A(f_k(\boldsymbol{\xi}) - f(\boldsymbol{\xi}), g(\boldsymbol{v}) - g(\boldsymbol{u})\|_{\boldsymbol{z}} \leq \varepsilon.$$

Also, there exists $\delta_k(\xi) > 0$ such that if $D^{**} = \{([u, v]; \xi)\}$ is a δ_k -fine division of [a, b], then

$$(\mathbf{D}^{**})\sum A(f_k(\xi),g(v)-g(u)) - \int_a^b A(f_k,dg) < \varepsilon.$$

Define $\eta_k(\xi) = \min\{\gamma_k(\xi), \delta_k(\xi)\}$ for every $\xi \in [a, b]$. Therefore if $D = \{([u, v]; \xi)\}$ is a η_k -fine division of [a, b], then

$$\begin{aligned} \|(\mathbf{D}) \sum A(f(\xi), g(v) - g(u)) - J\| &\leq \\ &\leq \|(\mathbf{D}) \sum A(f(\xi), g(v) - g(u)) - \mathbf{D}) \sum A(f_k(\xi), g(v) - g(u))\| \\ &+ \|(\mathbf{D}) \sum A(f_k(\xi), g(v) - g(u)) - \int_a^b A(f_k, dg)\| + \\ &+ \|\int_a^b A(f_k, dg) - J\| \end{aligned}$$

 $< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$

Therefore f is A-integrable with respect to g on [a, b].

(\Leftarrow): Let $\varepsilon > 0$. Then there exists a natural number $N = N(\varepsilon)$ such

that if $k, h \ge N$ then

$$\left|\int_a^b A(f_k, dg) - \int_a^b A(f_k, dg)\right| < \varepsilon.$$

Let $k \ge N$ be fixed (but arbitrary). Since f_k and f are A-integrable with respect to g on [a,b], ther exists a common $\delta_k(\xi) > 0$ on [a,b] such that if $D^* = \{([u,v];\xi)\}$ is a δ_k -fine division of [a,b], then

$$\|(\mathbf{D}^*)\sum A(f_k(\xi),g(v) - g(u)) - \int_a^b A(f_k,dg) \| < \varepsilon \text{ and}$$
$$\|(\mathbf{D}^*)\sum A(f(\xi),g(v) - g(u)) - \int_a^b A(f,dg) \| < \varepsilon.$$

Define $\gamma_k(\xi) = \delta_k(\xi)$ for $\xi \in [a, b]$. Then for any γ_k -fine division $D = \{([u, v]; \xi)\}$ of [a, b],

$$\begin{split} \| (\mathbf{D}) \sum A(f_{k}(\xi) - f(\xi), g(v) - g(u)) \| &\leq \\ &\leq \| (\mathbf{D}) \sum A(f_{k}(\xi), g(v) - g(u)) - \int_{a}^{b} A(f_{k}, dg) \| + \\ &+ \| \int_{a}^{b} A(f_{k}, dg) - \int_{a}^{b} A(f, dg) \| + \\ &+ \| \int_{a}^{b} A(f, dg) - (\mathbf{D}) \sum A(f(\xi), g(v) - g(u) \| < 3\epsilon. \end{split}$$

Therefore $\{f_n\}$ is $\gamma(A)$ -convergent to f with respect to g.

We now use the above theorem to prove our last result.

Theorem 13. Let C([a,b],X) be the space of X-valued continuous functions on [a,b] with the uniform norm. Let $g: [a,b] \rightarrow Y$ be function of bounded variation on [a,b] and $A \in L(X,Y;Z)$. Then

$$T(f) = \int_a^b A(f,dg), \quad f \in C([a,b],X),$$

defines a continuous linear operator on C([a,b],X) into Z.

Proof. First, note that the above integral exists in view of Theorem 6. Now linearity of T follows from Theorem 7(ii) and (iii). It remains to show that T is continuous.

To this end, let $f, f_n \in C([a,b],X)$ for n = 1, 2, ..., and

$$||f_n - f||_{\infty} \to 0 \text{ as } n \to \infty.$$

By Example 11, the sequence $\{f_n\}$ is $\gamma(A)$ -convergent to f with respect to g. Thus, by Theorem 12, we have

$$\lim_{n\to\infty}\int_a^b A(f_n,dg)=\int_a^b A(f,dg).$$

It follows that $||T(f_n) - T(f)|| \to 0$ as $n \to \infty$. This shows that T is continuous on C([a,b],X). \Box

References

- [B] Bartle, R. G., A convergence theorem for generalized Riemann integrals, Real Analysis Exchange, 20(1), 1994-95.
- [FC] Francisco, F. and Chew, T. S., The Henstock-Stieltjes integral and convergence theorems, Lee Kong Chian Centre for Math'l Research, Research Report No. 370, NUS, 1989.
- [H] Hallilovic, A., Multilinear (Riemann) Stieltjes integral in Banach spaces, Radovi Matematicki, 7(2), 1991.
- [W] Ward, A. J., The Perron-Stieltjes integral, Mathematische Zeitschrift, 1936, 576-604.