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SERGIO R. CANOY, JR. 

F
rancisco and Chew [FC] defined the Henstock-Stieltjes integral of a 

real-valued function with respect to a function of bounded variation 

on ·the compact interval [ a, b]. This integral turned out to be 

equivalent to the Perron-Stieltjes integral [W]. 

In this paper, we shall define a more generalized concept of the 

Henstock-Stieltjes integral. We shall investigate its simple properties and 

formulate some convergence theorems. 

Throughout this paper, all functions considered are bounded and 

are defined on the closed interval [ a, b]. The letters X, Y, and Z are used to 

denote Banach spaces over the field R of real numbers. 

Definition 1. A transformation A : X x Y Z is said to be bili-

near if it satisfies the following properties: 

(i) A(xi + X2, y) = A(xi, y) + A(x2, y) 

(ii) A(x, Yi + Y2) = A(x, Yi) + A(x, Y2) 

(iii) A(cu, y) = a.A(x, y) 

(iv) A(x, ay) = a.A(x, y) 

for all x1, x2, x E X, Yi, y2, y E Y, and a E R. 

Definition 2. A bilinear transformation A : Xx Y Z is said to 

be bounded if there exists a positive constant M such that 

If A(x, y) II z < Mllx llxllYII r 

for all x E X and for all y Y. Furthermore, we have 

11 A II = inf { M : II A ( x, y) II z •< MIi x 11 x IIY II r, for all x E X and ally E Y } . 
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We denote by L(X, Y;Z) the space of all bounded bilinear transf orrna-

tions A : X x Y Z: 

Definltion 3. A function f: [a,b] Y is said to be of bounded 

• variation on [ a, h] if 

V(f, [a,b]): = sup (D)Lflt(v) - J(u)llr 

is finite, where the supremum is over all divisions D = { [ u, v]} of [ a, b]. 

In what follows, Ji : [a,h] X and h: [a,h] Y. 

Definition 4. Let C = (c1,,c2) be an ordered system, where c
1 

e 

{ 0, 1} for J = I, 2 and let A e L(X, Y;Z). Further, we write 

djj = fj if c1 = 0 and djj = dfj if c1 = I. 

We say that die Henstock-Stieltjes, or simply HS, integral exists if there 

is a vector J e Z satisfying the following property: For every e > 0, there 

exists a positive function 5 on [a,h] such that for every 5-fine division D = 

{([u, vJ;~)} of [a,h], we have 

If (D)LAifi(u, v),Ji (u, v)) - J llz <e 
' 

where 

,t(u, v) = ,t(~), if~-= 0, and ,t(u, v) = ,t(v) - ,t(u), if c1 =I. 

Recall that a division D = { ([u, v];~)} is o-fine·if 

E [u, v] C (~- 0(~), + 0(~)). 

In Definition 4, we wijte 

• b 

(HS) t .A(d{i,difi) = J 

If ,X= Y= R, Ji is of bounded variation on [a,b], A(r1,r2) =. r1r2 and 

C • = (0, I), then Definition 4 reduces to the Henstock-Stieltjes integral 
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?Y Francisco and Chew in [FC]. Also, it is easy to show that if the HS 
integral exists, then it is unique. 

. The following theorem is known as the Cauchy criterion for the 
existence of the integral. 

Theorem 5. Let C = (c1,c2) and A E L(X,Y;Z). Then 

(HS) I: A(difi,d/2) 

exists if and only if for every e > 0, there exists a function o(~) > 0 on 

[ a, b] such that for any two o-fine divisions D1 = { ([ u, v ];~) } and D
2 

= 

{ ([ u', v'];~')} of the interval [ a, b ], 

II ( D1)L.4(fi(u, v),h(u, v)) - (D2)L A(/1(u', v'),f2(u', v')) II z <. e. 

Proof ( Suppose that the HS integral exists and is equal to J E 

tz. Then given E > 0, there exists o(~) > 0 such that for any o-fine divisions 
D1 and D2 of [a,b]. 

Thus, 

II (D1)LAif1 (u, v),h(u, v)) --:- J II z < e/2 and 

II (D2)LA(/1 (u, v),/2(u, v)) - .f 11 z < e/2. 

II (D1)LJ(f1(u, v),Ji(u, v)) - (D2) LAifi(u, v),h(u, v) llz < E: 

( <= ): For each positive integer n, there exists a On(~) such that 

_whenever D1 and D2 are On-fine divisions of [a,b]. We may assume that 

811+ 1(~) < 8n(~·) for all n. Now, for each n, fix a On-fine division D,. 

and put 

Let 11, n1 be positive integers with n < m. Then Dm is both a Om-fine and 

811-fine division of [ a, b]. Thus, 
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II Sn - Sm II z < 1 In 

{ } • s a Cauchy sequence in Z. Since Z is complet 
and hence, s,, 1 h e, there 
exists a vector J in Z such t at 

Jim Sn= J. 

. > o there is a positive integer N such that for all n , N 
Thus, given , c::: , 

II Sn - Jlf z < e/2. 

Choose 2! N such that 1/~ < e/2. Define 6(~) = ON•(~) for each 

in [a,b]. Then for any 6-fine division D, of [a,b], we have 

a (D)Difi<u,v),Ji(u,v))- J Hz < ll(D)L.4ifi(u,v),J2(u,v)) - sN-lz + 

+ lls~ - Jllz < 1//r + 8/2 < £. 

Therefore, the HS integral exists and 

b • 

(HS) f • A(dih, d-ifi) = J. 

Theorem 6. Let A e L(X, Y;Z). If Ji is continuous and .'2 is of 

bounded variation on [ a, b ], then, 

(i) (HS) 1: A(fi,dfi) exists; 

(ii) (HS) fa A(d.ft,dfi) exists and is equal to 8z, the zero vector. 

Proof (i) Since Ji is co~tinu~us on [ a, b ], it is uniformly continuous 

there. Hence given e > 0, there exists 1') >Osuch that for all t, f e [a,b], 

I I- I I < Tl implies lfi(t) - Ji(f) Oz < s. 

~e~e 6(~) = 11/2 for all~ E [a,h]. Let D1 
and D2 

be two 8-fine 

d1vis1ons of 
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[a,b]. Then there exists a 6-fine division 0 3 of [a,b] which is finer than 

both D1 and D2. Now, let [u, v] be an interval division in 0 1. Then there 

exist division points z 0, z 1, ... , Zr in 0 3 such that u = zo < z1 < ... < Zr = v. 

Consider the following difference: 

Then 

r 

A(u, v) = A(li(~)Ji(v) - h(u)) - LA (li(~),h(zk) - h(zk-1)) 

k=l 

r 

= LA (Ii(~) - fi(~),h(zk) - h(zk-1)). 

k=l 

r 

flA(u, v)flz < LIIAII II /1(~) - /1(~) llx II h(zk) - h(zk-1) llr 

k=l 

< ellAJIV(ti;[u,v]). 

It follows that 

II (D1)LJ(fi(~)Ji(v) - h(u)) - (03)LJ(li(~)ji(v) - h(u)) llz < 

< (D1)LII A(u,v)lfz < elfAIIV(ti; [a,b]). 

Similarly, 

II (D2)LJ(li(~)Ji(v) - h(u)) - (D3)LJ(li(~)Ji(v) - h(u)) llz < 

< e lfA II V(ti; [ a, b ]). 

Therefore, 

II (D1)LJ(ti(~)Ji(v) - h(u)) - (D2)LJ(li(~)ji(v) - h(u))llz < 

< 2eflA flV(ti;[a,b]). 

By the Cauchy criterion {Theorem 5), we have the desired result. 

(ii) As in (i), define cS(~) = ri/2. Let D = { ([u, v],~)} be a cS-fine 

division of [a,b]. Then 

ll(D)LJ(fi(v) - fi(u),h(v) - /2(u))llz < ellA IIV(ti;[a,b]). 
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This shows that 

(HS) J: A(df,,dfi) = 0z. D 

Simple Properties 

We shall show that the HS integral has the usual properties of integrals. 

Theorem 7. Let A, B E L(X,Y,Z), Ji, f: [a,b] X and g1, g: 

[a,b] Y. 

(i) If (HS) r A(f,dg) exists, then (HS) r A(f,dg) exists for every 

subinterval [ c, dJ of [ a, b]. 

(ii) If A, E R and the integral (HS) r A(f ,dg) exists, then the 

integials (HS) J: A("A,f,dg) and (HS) J: A(f,d[A.g]) exist. Moreover, 

(HS) r A('J..j,dg) = A. (HS) r. A(f,dg) and 

(HS) r. A(f,d[A.g]) = A. (HS)r. A (f,dg). 

(iii) If the integrals (HS) r. A(f,dg) and (HS) r A(fi,dg) exist, then 

the integral (HS) r A(f+Ji,dg) also exists and 

(HS) r A(f + /1,dg) = (HS) r. A(f,dg) + (HS) r A(/1,dg). 

(iv) If the integrals (HS) r A(f,dg) and (HS) r. A(f,dg1) exist, then 

the integral (HS) f. A(f,d[g+gi]) also exists and 
, 

(HS) r. A(f,d[g, + g1]) = (HS) f. A(f,dg) + (HS) f. A(f,dgi), 

Proof (i) By the Cauchy criterion, there exists 61(~) 0 on [a,b] 

such that for any 01-ftne divisions D and D' of [a,b], we have 

68 



SERGIO R. CANOY, JR. 

II (D)LJ(I(~), g(u, v)) - (D')LA(l(~'),g(u', v')) llz < E. 

•' 

Let o(~) = o1(~) for all E [c,d]. Let D1 and D2 be any 6-fine 

divisions of [c,d]. Let E1 and E2 be .fixed -61-fine divisions of [a,c] and 

[d,b], respectively. Consider D = E1 u D1 u E2 and D' = E1 u D2 u Ei. 

Then D _and D' are 61-fine divisions of [a,b] and 

(D)LA(l(~),g(u, v)) - (D')LA(l{~'),g(u', v')) = 

, 

= (D1)L A(l{~),g(u, v)) - (D2)LA(l{~'),g(u~, v')). 

Thus, 

II (D1)LJ(l(~),g(u, v)) - (D2)LA(l{~'),g(u~ v')) llz < E. 

By the Cauchy criterion applied to [ c,d], it follows that Jhe integral 

(HS) J:A(f, dg) exi~ts. 

(ii) Let e > 0 and A e R. Sin~e J:A(f ,dg) = J exists, there exists 

61(~) > 0 such that for any 61-fine division D1 = { ([u, v];~)} of [a,b ], 

ll(D1)LJ(t(~),g(v) - g(u)) -Jllz < E. 

Let 8(~) = 61(~) for. all E [a,b]. Then for any 6-fine division 

D = {([u, v];~)} of [a,b], 

fl(D)LA(A}(~),g(v) - g(u)) - Vflz < 

< IAI II (D)LA(f(~),g(v) - g(u)) - JII z < !Are, and 

II (D)LJ(f(~), A(g(v) - g(u)) - VII z < 

< l"-1 ll(D)L,4(1(~),g(v) - g(u)) -Jflz < IAle. 
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Therefore, 

(HS)Jb A('>../ ,dg) = A.(HS) t A(f ,dg) and 
a a 

b Ib (HS)L A(f,'),.dg) = A.(HS) a A(f ,dg) . 

(iii) Let e > o. Let J and ./1 be the respective integrals. Then there 
exists a common 8(~) >Osuch that for any 6-fine division D = {([u,vt~)} 
of [a,b], 

ll(D)L A(/{~),g(v) - g(u)) -Jllz < e/2 and 

ll(D)L A(/i(~),g(v) - g(u)) -11 llz < e/2. 

Thus ifD = { ([u, v];~)} is a 8-fine division of [a,b ], then 

ll(D)Lti(l{~)+Ji(~),g(v) - g(u)) - (J + 11 )llz < 

< ll(D)Lti(f(~),g(v) - g(u)) -Jllz + 

+ ll(D)Lti(f1(~),g(v) - g(u)) - Ji llz 

< e/2 + e/2 = e. 

Therefore (iii) holds. 
(iv) This is proved as in (iii) (since A is also linear-in the second 

component). 

Convergence Theorems 

We shall now tum our attention to the convergence theorems. 

Theorem 8. Let {f,, : [a,b] X} be er sequence of bounded 
functions which converges uniformly to the function f : [ a, b] X and let 
g : [ a, b] Y be a function bounded variation on [ a, b]. If A E L(X, Y; Z) 
and the integrals 
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J,, = CHS>( Af J,,,dg) and J = (HS) r A(/.dg) 

exist for all n, then 

lim J. = J_ 
n--+Xi 

Proof,: Let & > 0 _ Then there exists. a natural 11,oal>er N such that 

for all n N and for all t E [a,b 1~ we have I /.(t) - ,At) Ix< &. Let n > N be 

fixed_ Sinu J,, and J exist, there exists a common~)> 0-00 [~b] 

such that for any 6-fine division D = {([u,v],~)} of (a,bJ, we have 

It follows that 

Accordingly, 

I J,, - CD)Lti(f ,,(~),g(v) - g(u)) lz < & and 

I J - (D)LA(l{t),g(v)- g(u)) lz < &. 

I J,, - JI < 2& + & IA IV(g;[a,bD. , 

lim Jn = J. 

Definition 9. Let A e L(X,Y;Z) and g: [a,b] f be a function of 

bounded variatiol,l. We say that f: [ a, b] Xis A-integrable with respect 
tog on [a,b] if 

(HS)f: A(f ,dg) exists. 

From this point on, all integral are, unless-otherwise specefied, HS integrals. 

Definition 10. Let g : [ a, b] Y be a function of bounded variation 

and A e L(X, Y; Z). Let {/,, : [ a, b] X } be a sequence of A-integrable 

functions with respect to gt>n [a,b]. We say that {/,,} is y(A)-convergent 

to f : [ a, b] X with respect to g if for every & > 0, there exists a natural 

number Ne such that if k > Ne there exists yk(~) > 0 defined on [a,b] such 

that for anyy~fine division D = {([u,v],~)} of [a,b], 
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ll(D)Ui(fk(~) - ./(~), g(v) - g(u))llz < E. 

Example 11. Let A E L(X,~;Z) and g: [a,b] X be a fu_nction 
of bounded variation on [ a, b]. If ifn} 1s a sequence of X-valued continuous 
functions that converges uniformly to / : [ a, b] X, then ifn} is y(A )-
convergent to/ on [ a, b] with respect to g. 

Proof First, ~e note that in view of Theorem 6(i) the integral 

J: A(fn ,dg) exists for each n. Now, let E >O. Since fn f uniformly on 

[ a, b] as n oo, there exists a natural number N( E) = N such that if k > N 

and t E [a,b], then 

11/k(t) - flt) llx < E. 

Let D = { ([ u, v ];~)} be any interval-point pair division of [ a, b]. Then 

II (D)Ui(fJ~)-/(~),g(v)-g(u)) llz <IIA II (D)L 11/k(~)-./t~) 11 llg(v)-g(u) l\z 

< e IIA II V(g~[ a, b ]). 

Therefore {fn) is y(A )-convergent to/ with respect to f 

Theorem 12. Let A E L(X,Y;Z) and g : [a,b] Ya function of 
bounded variation. Then the sequence ifn : [ a, b] X} of A-integrable 
functions with respect to g is y(A )-convergent to f : [ a, b] X with respect 
to g if and only if . • 

r A(f,dg) exists and lim Jb Aifn,dg) = 1· b A(j,dg). 
a a a 

Proof Let e > 0 and let N(e) = Nbe as in Definition 10. If h, 
k > N, then there exists a y(~) > 0 (depending on hand k) such that if D1 == 

{ ([ u, v];~)} is a y-fine division of [ a, b ], then . 
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ll(D1)LJ({k(~), g(v) - g(u)) - (D1)L,A(/{~),g(v) - g(u))llz < e and 
I 

ll(D1)LJ(fh(~),g(v) - g(u)) - (D1)LJ(l{~),g(v) - g(u))llz < e. 

Since /k and J,, are A-integrable with respect to g on [ a, b ], there exists o(~) 

> 0 such that if D2 = { ( [ u, v] ;~)} is any 6-fine division of [ a, b ], 

ll(D2)LJ(fk(~),g(v) - g(u)) - f.A(fk,dg) llz < e and 

ll(D2)LJ(li,(~),g(v) - g(u)) - f.A(fh,dg) llz < e. 

Put 11(~) = min {y(~),o(~)} for every~ E [a,b]. Therefore ifD = {([u,v];~)} 

is an 11-fine division of [ a, b ], then 

II f. A (f k 'dg) - f. A (f h , dg) II z < 

< r A(fk,dg) - (D)LA(fk(~),g(v) - g(u)) + 
a z 

+ ll(D)D ¼(~),g(v) - g(u)) - (D)L,4(1{~),g(v) - g(u))llz + 

+ ll(D)2,A(l{~),g(v) - g(u)) - (D)L,A(t,,(~),g(v)-g(u))llz + 

+ II (0)2,A(li,(~),g(v) - g(u)) - f. A(fh ,dg) II z 

< e+e+e+e = 4e. 

Since e is arbitrary, it follows that the sequence {f. A(f. ,dg)} 

chy sequence in Z. Hence there exists J E Z such that 

J = lim rAUn,dg). 
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Claim: J is the A-integral of /with respect tog on [a,b]. Let E > 0. Then 

there exists a natural number ( E) = N* such that for all k > N*, 

fb A(fk,dg) - J < e. 

a z 

Set M=M(e)= max{N,N*}, where N=N(e)isasinDefinition 10. Then 

fork> M there exists Yk(~) > 0 such that if D* = { ([u, v];~)} is a Yk-fine 

division of [ a, b ], then 

Also, there exists ok(~) > 0 such that if D * * = { ([ u, v ];~)} is a Ok-fine 

division of [ a, b ], then 

(D**)LA(fk(~),g(v)-g(u)) - J: A(fk>dg) < E. 

Define 11k(~) = min { yk(~),ok(~)} for every E [ a, b]. Therefore if 

D = {([u, v];~)} is a llk-fine division of [a,b], then 

11 (D)LJ(f(~),g(v) - g(u)) - J 11 < 

< IICD)LJ(f(~),g(v) - g(u)) - D)LJ(fk(~),g(v) - g(u))II 

+ II (D)LJ(f.t(~),g(v) - g(u)) - J: A(fk ,dg) II + 

+ II C A(fk,dg) - J II 

< E + E + E = 3e. 

Therefore f is A-integrable with respect to g on [ a, b]. 

(~):Let E > 0. Then.there exists a natural number N = N(e) such 
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that if k, h > N then 

Let k > N be fixed (but arbitrary). Since /,c and/ are A-integrable with 

respect to g on [ a, b ], ther exists a common olc(~) > 0 on [ a, b] such that if 

D* = {([!',v];~)} is a Bk-fine division of[a,b], then 

ll(D*)'D(fi~),g(v) - g(u)) - J: A(fk ,dg) II < & and 

ll(D*)'D(t{~),g(v) - g(u)) - J: A(f ,dg) II < &. 

Define yk(~) = ok(~) for~ E [a,b].. Then for any Yk-fine division D = {([u, v]; 

~)} of [ a, b], 

II (D)L,4(fk(~) - j(~),g(v) - g(u)) II < 

< II (D)L,4(/k(~),g(v) - g(u)) - J: A(fk ,dg) II + 

+ II r: A(fk ,dg) - I: A(f ,dg) II + 

+ II J: A(f ,dg)- (D)L,4(/{~),g(v) - g(u) II < 3&. 

Therefore if,,} is y(A )-_convergent to f with respect to g. 

We now use the above theorem to prove our last result. 

Theorem 13. Let C([a,b],x) be the space of X-valued continuous 

functions on [ a! b] with the uniform norm. Let g : [ a, b] Y be function of 

bounded variation on [ a, b] and A E L(X, Y; Z). Then 

75 



THE MINDANAO FORUM 

T(j) = J: A(f.dg), f E C([a, b ].x), 

defines a continuous linear operator on C([ a, b ],x) into Z. 

Proof First, note that the above integral exists in view of Theorem 

6. Now linearity of T follows from Theorem 7(ii) and (iii). It remains to 

show that Tis continuous. 

To this end, let/,/,, E C([a,b],-X) for n = 1, 2, ... , and 

By Example 11, the s~quence {/,,} is y(A)-convergent to/ with respect to 

g. Thus, by Theorem 12, we have 

Jim r A(fn,dg) = r A(f ,dg). 
a a 

It follows that II T(f,,) - T(f) II 0 as n oo. This shows that T is conti-

nuous on C([a,b],-X). 
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