Bilinear Henstock - Stieltjes
Integral in Banach Spaces

SERGIO R. CANOY, JR.

rancisco and Chew [FC] defined the Henstock-Stieltjes integral of a
real-valued function with respect to a function of bounded variation
on the compact interval [a,b]. This integral turned out to be

equivalent to the Perron-Stieltjes integral [W].
In this paper, we shall define a more generalized concept of the

Henstock-Stieltjes integral. We shall investigate its simple properties and

formulate some convergence theorems.
Throughout this paper, all functions considered are bounded and

are defined on the closed interval [a,b). The letters X, Y, and Z are used to
denote Banach spaces over the field R of real numbers.

Definition 1. A transformation 4 : X x ¥ — Z is said to be bili-
near if it satisfies the following properties:

(1) Al tx,y) = A(x,y) + A(x, y)
(i)  AQx, i ty2) = Alx, y) + A(x, 3,)
(i) A(ox,y) = ad(x, y)
(iv)  A(x, ay) = ad(x, y)

forall x;, x, x €X, y.yoy €Y, and a € R

Definition 2. A bilinear transformation 4 : X x Y — Z is said to
be bounded if there exists a positive constant M such that

4G, Mz < Mlxlxlylr
forall x € X and for all y € Y. Furthermore, we have

|4l = inf {M: JA(x, Y)]|z < M]x||x |[ylr, forallx e Xandally € ¥ }.
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the space of all bounded bilinear transformg.

We denote by L(X.Y;2)
tions A: XxY—=>Z

Definition 3. A function £ : [ab) — Y is said to be of boundeg

. variation on [a,8] if
V(. [ab]) : = sup QLAY ~f)ll»

is finite, where the supremum is over all divisions D = {[u,v]} of [a,b].

In what follows, fi : [a.5] s X and f:[ab] > Y.

Definition 4. Let C = (c1,c2) be an ordered system, where ¢, ¢
{0,1} for j=1,2 and let A € L(X,Y,Z). Further, we write

dfi=f if ¢ =0 and dfj=df} if ¢ =1.
We say that the Henstock-Stieltjes, or simply HS, integral exists if there

is a vector J € Z satisfying the following property: For every € = 0, there
exists a positive function 5 on (a,b] such that for every 5-fine division D =

{([uY15)) of [a,b], we have

IO)ZAi ), fo@) = Iz <,

where

Suy) =48, if ¢=0, and fi(u,v)= f(v) —fw), if ¢;=1.
Recall that a division D = {([#,v].£)} is 5-fine if

£ € [uv] < (§-8(), & +8(0)).

In Definition 4, we write

(HS) j" A(dfidofs) = J.

If X=Y=R, f; isof bounded variation on [a,b], A(ry,r2) = nir2 and
C = (0,1), then Definition 4 reduces to the Henstock- Stieltjes integral
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Py Francisco and Chew in [FC]. Also, it is easy to show that if the HS
integral exists, then it is unique.

~ The following theorem is known as the Cauchy criterion for the
existence of the integral,

Theorem 5. Let C=(c,c;)and 4 € L(X.Y,Z). Then

(HS) [* A oty

exists if and only if for every € > 0, there exists a function (&) >0on
[a,5] such that for any two 8-fine divisions D, = {([#,v},E) } and D, =
{([#',V]:€)} of the interval [a,b],

I DOLAG (), fo(uv)) - (DAL A V), fiw )]z <e.

Proof. (=): Suppose that the HS integral exists and is equal to J €
Z. Then given € > 0, there exists 8(&) > 0 such that for any d-fine divisions
D] and Dz of [a,b].

I (DOZA (), fou,v)) - J ||z < &2 and

| DD2ACS (@v), fouy)) = J |z < &/2.
Thus,
| (DOZA(w,v), fo(u,v)) = (D) LAGi(w,v), filu )|z <e.

(«<=): For each positive integer », there exists a 8,(£) such that

I DDA (wv), fuv)) — (DILAG@Y), )z < Un

whenever D, and D, are d,-fine divisions of [a,b]. We may assume that
8,1(E) < 8,(&) for all n. Now, for each n, fix a §,-fine division D,

and put
sp= (D)2A(f (1), fiu,v)).

Let n, m be positive integers with # < m. Then D,, is both a 3,-fine and
d,-fine division of [a,b] Thus,
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I S — Sm IIZ < 1/n

ence in Z. Since Z is comp)|
Sa} 15 8 Cauchy sequ e
zfistshinf/;tcsr in Z such that e

Iim Sa = J.
n—>®

Thus, given & > 0, there is a positive integer N' such that for all 3 A

| s, =J)z < el

Choose N* 2N such that 1N™ < e/2. Define 5)=5(2) for eaey
£ in[ab] Then forany d-fine division D of [a,5], we have

| ©TAG ), fiw )~ Nz S NO)ZAGiwx), f(uv)) = a

B

*lswe-Jlz < UN*+ a2 < g

i »
:,

a2
-
v 4

Therefore, the HS integral exists and

o

BS) [* Adifi df) = J. D

Theorem 6. Let A ezcxm ihis
bounded variation on [a.b],

@ {ES)I Alfy,df) exists,

.......
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[a,h]. Then there exists a 8-fine division D; of [a,&] which is finer than
both D, and D;. Now, let [#v] be an interval division in D;. Then there
exist division points zy, zy, ..., 2, inDssuchthat w=2< 2y <.. <z = ».
Consider the following difference:

A(uv) = ARENL) - filk)) - Z A HE Loz = f:(2es))

x=1

= 3" AU ~ A8 ) - iz
k=1

Then
(A@lz < DA I AG - AE D DA - filza) B
k=1
< e[ 4] V(£[v]).
It follows that

| (D)LAGRELLD) - £0) - (DIZAGEWAD) - L) 12 <

< DL Az < el 4] V(s [ab)).

Similarly,
| DDLAFENAY) - @) - (DIZAREWLD) - Aw) |z <

< || 4[| V{fa; [a.6]).
Therefore,

| (DYZAKEVLE) - L) - DIZARENLY) - fuDlz <
< 2e|| A V(fula.b]).

By the Cauchy criterion (Theorem 5), we have the desired result.
(i) As in (i), define 8() = n/2. Let D = {([#v],E)} be a 5-fine

division of [a,#]. Then
ID)LAFY) - S, £0) - L@z <e|A|V(falab)).
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This shows that
(HS) [” A(dfdf;) =8z D

Simple Properties
We shall show that the HS integral has the usual properties of integrals,

Theorem 7. Let 4, B € LIXY.Z), fi, f:[ab] > Xand g, o
[abd] - Y.

(i) If (HS) j"’ A(f dg) exists, then (HS) [* A(.dg) exists for every
subinterval [c,d] of [a,b].

i) If & € R and the integral (HS) J"’ A(f,dg) exists, then the

ntegrals (HS) [ A(W/dg) and (HS) [ AGdhg) exist. Moreover
(HS) [* A(Vdg) = (HS) [ Adg) and
(HS)j: A(fd[Ag]) = A (HS)]‘: A (f.dg).
(iii) I the integrals (HS) r A(fdg) and (HS) r A(fy,dg) exist, then

the integral (HS) J’" A(f+,,dg) also exists and

(HS) f A(f+ /,,dg) = (HS) f A(f.dg) + (HS) ]" A(fidg)

(iv) If the integrals (HS) J" A(f.dg) and (HS) r A(f.dg)) exist, then
the integral (HS) r A(fdlg+g:]) also exists and

(HS) f A+ gil) = (HS) [* A(fdg) + (HS) r A(f.dgy).

Proof. (i) By the Cauchy criterion, there exists 5,(€) > 0 on [a,]
such that for any §,-fine divisions D and D’ of [a,b], we have
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| O)ZARE), glw,¥)) - (DILARE)LW. V) Iz < e
Let &E)=05,(&) forall £ e [c.d]. Let D, and D, be any &-fine

divisions of [c,d). Let E, and E; be fixed -5,-fine divisions of [a,c] and
[db), respectively, Consider D=E; w D, UE; and D'=E; wD; U E:.

Then D and D' are 8,-fine divisions of [a,5] and
D)L ARE).g(u,v)) - (DYLARE)&W'V)) =

= (D). ARE).&(1,v)) - (D) 2ARE)Lw'V)).
Thus,
I(D)TAE).&(u,v) - DIZARE)LW V|2 < &

By the Cauchy criterion applied to [¢,d], it follows that .the integral
(HS)["A(/ dg) S¥ists.

(i) Lete > 0 and A & R. Since rA(f‘dg) —  exists, there exists
8,(€) >0 such that for any §;-fine division D, = {([%,v];£)} of [a.B],

[(D)LARE) &) - gu)) - J)z<e.

Let 8(E) = 8y(€) for all £ € [ab]. Then for any d-fine division
D = {([#,v];8)} of [ab],

I(D)LAGAE),&(v) - gw)) - Mz <
< A [(DYLARE).&() - gu)) - J]|z < [Me, and

I(D)LA(AE), Mg(v) - gw) - M|z <
<\ |(D)LARE).&(v) - gw)) - J]|z < [Me.
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Therefore,
b
)[40 dg) = MHS)[ A(/ dg) and
b
)| (7 Mdg) = MHS)| A/ de)

(iii) Let £>0. Let J and.J, be the respective integrals Then there

exists a common () > 0 such that for any 8-fine division D = {([u,v];£))
of [a,5),

(D)2 A(fE).g(v) - gw)) - |z < &/2 and
ID)L A(fi(2).g(v) - gw) ~ Sz < 2.
Thus if D = {([u,v];£)} is a &-fine division of [a,], then
ID)LARE AE).0) - g(w) - (V+ )|z <
< [DZARE)() - gw) - J]|2 +
+ |(D)LA(E)(V) - gw)) — |2
<gl2 +el2=c¢g
Therefore (iii) holds.
(iv) This is proved as in (iii) (since A is also linear in the second
component).

Convergence Theorems
We shall now turn our attention to the convergence theorems.

Theorem 8. Let {f, : [a,b] — X} be a sequence of bounded
functions which converges uniformly to the function S [ab] = X and let

g * [a.6] » ¥ be a function bounded variation on [a,4]. If A € L(X.Y:Z)
and the integrals
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Iy = 015 A, dg) and 1= qats [ 4s.de)
exist for all n, then

lm J,=J

n—sx

Proof.: Lete >0 Then there exists a natural number ¥ such that
forallnzNandforaﬂle[a.b].wchavc 1/ -A0) kx<e Letn>Nbe
fixed. Since J, and J exist, there exists a common &) > 0 on [a,b]
such that for any 5-fine division D = {([u,v)£)} of [a.5), we have

1/~ D2AGE) £0) - g)) |z < & and
1 /- D)X ARE) g - gw) |7 < &,

It follows that
I/, = J) <25+ ¢ | A V(g[a,]).
Accordingly,
bm J,=J. [
n—w

Definition 9. Let 4 € L(XY;Z) and g : [a,5] — ¥ be a function of

bounded variation. We say that £ [a,6] — X is A-integrable with respect
to g on [a,b] if

HS)[ A/ dg) exists.
From this point on , all integral are, unless-otherwise speccfied, HS integrals.

Definition 10. Let g : [a,5] — Y be a function of bounded variation
and A € L(X.Y;Z). Let {, : [ab] - X } be a sequence of A-integrable
functions with respect to g'on [a,5]. We say that {f,} is y{4)-convergent
to f: [a.b] = X with respect to g if for every ¢ > 0, there exists a natural
number N, such that if k= N, there exists y(£) > 0 defined on [a,5] such
that for any ye-fine division D = {([#,v],£)} of [a.5],
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I(D)LAFHE) - AE). g) - 8GNz <e.

Example 11. Let 4 € L(X Y;Z)and g : [a,b] = X be a function
of bounded variation on [a,b]. If {£,} is a sequence of X-valued continuous

functions that converges uniformly to f: [a,b] — X, then {f,} is y(A)-
convergent to fon [a,b] with respect to g.

Proof. First, we note that in view of Theorem 6(i) the integral

I b A(f,,.dg) exists for each n. Now, let € > 0. Since f, — funiformly on

[a,b] as n — o, there exists a natural number N(g) = N such that if k > N
and f € [a,b], then

o) —ADl ¢ <e.

Let D = {([w,v];E)} be any interval-point pair division of [a,b]. Then

I(D)LARE)-AE)&(V)-g)) || 2 | A I (D)L WAE)-AE | | g(v)-g ()2
<g IA ||V(g;[a, b]).

Therefore {f,) is y(4)-convergent to f with respect to f O

Theorem 12. Let 4 € L(XY;Z) and g : [a.b] — Y a function of
bounded variation. Then the sequence {f, [a,b] — X} of A-integrable

ﬁ.mct-ions with respect to g is y(4)-convergent to [ [a.b] = X with respect
to g if and only if

fA(}:dg) exists and |im r A(f»-dg)=r A(f.dg).

n—oo

Proof. (=) Let &> 0 and let N(g) = N be as in Definition 10. If 4.

k = N, then there exists a ¥(€) > 0 (depending on A and k) such that if D, =
{([w.v]:£)} is a y-fine division of [a,b], then
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IDDZAGE). gv) - g(0)) - (DYZAGRE)ED) - gl < & and
I(DNZAGE) &) - gl)) - DIZARE)EY) - gDz < &.

Since £; and /. are A-integrablé with respect to g on [a,b], there exists S(E)
> 0 such that if D, = {([«,v]:£)} is any &-fine division of [e.4],

IIZAGEN£0) - 80N - ['a(, gy |2 <& and

[(DILAFE)LM) - 2la)) - J" At dey Iz <&

Put n(€) = min {¥(£),8()} for every £ & [a,8]. Therefore it D = {{[«,v]:£)}
is an n-fine division of [, 4], then

| [ At dg) - [Acs, dgylz <

+
2

+ | (DYLAUE)L(¥) - 2() — DIZARE)L() - g@))]|2 +

<

b
ILA(fk.dg) - (DY), A(f (E).&(v) - glu))

+ IDYLAE)2) - gl)) - (DILAGE) L) - gz +

+ [DZAGELE) - 86 - ['4(f, .dg) |z
<g+etete = de.

Since € is arbitrary, it follows that the sequence {rff(f..ndg)} is a Cau-

chy sequence in Z. Hence there exists J € Z such that

J=tm [ *ACS, dg).

n—oc*d
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Claim: Jis the 4-integral of f with respect t0 g on [a,b]. Let € > 0. Then
there exists a natural number N*(¢) = N* such that for all &= N*,

< E.

UTAUk-dg) -J

Z

Set M =Mig) = max{N, N*}, where N=N(e) is as in Definition 10. Then
for k > M there exists Y(£) > 0 such that if D* = {([1,¥):2)} is a y,-fine
division of [a, 8], then

03 4/, ) - £(6).80) - 8@, <

Also, there exists S4&) > 0 such that if D** = {([# v];E)} is a Oy-fine
division of [a ], then

<. €.

“(D " *)Z A(f3 (). 8(v)-8(%)) - J: Alfy 'dg)’i

Define mMd&) = min{7:(£),048)} for every & € [a,b). Therefore if
D = {([%,v];£)} is a ne-fine division of [a.b], then

ID)2ARE) L) - gw) -/ | =
= [D)ZAGE).£) - 2n) - DYLAGUE).EL) - g(u)]

+ |D)ZAGHENS0) - ) - [*ACf, dg) |

b
=] Afidg) - I
a
<gtegte = 3e
Therefore fis A-integrable with respect to g on [a,5].
(<=): Let & > 0. Then there exists a natural number N = N(g) such

74



SERGIO R. CANOY, JR.
that if £, h 2> N then
uj:A( £,.dg) - J:A(j,,.dg-)“ <e.
Let k > N be fixed (but arbitrary). Since f; and f are A-integrable with

respect to g on [a,b), ther exists a common 8,(£) > 0 on [a,b] such that if
D* = {([u,v];€)} is a 8)-fine division of [a,5], then

|O)ZAGE)80) - 86) - [*A(fy dg) | < & and

|@)ZAGE£0) - 80) - [ A(f,dg) | <&

Define y{&) = 8E) for £ € [a,b]. Then for any y;-fine division D = {([%,V];
§)} of [a,b],

|(DLARE) - AE).e) - gw))] <

< | OZAGE)£0) - 2@) - [* (s de) | +

N[ ahde) - [Lacr.ap |+

+| j:A( 7.dg) - DIZARE L) - )| < 3e.

Therefore {f} isy(4)-convergent to f with respectto g. [J

We now use the abowe theorem to prove our last result.

Theorem 13. Let C([a,5],X) be the space of X-valued continuous

functions on [a,b] with the uniform norm. Let g : [a,5] — ¥ be function of
bounded variation on [a,5] and 4 € L(X,Y;Z). Then
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1) = [" A(fdg), fe CablX),

defines a continuous linear operator on C([a,b],X) into Z.

Proof. First, note that the above integral exists in wew of Theorem
6. Now linearity of 7 follows from Theorem 7(ii) and (iii). It remains to

show that T"is continuous.
To this end, let £, f» € C([a.2].X) forn=1,2,..,and

Iy - fle—>0asn—>x.

By Example 11, the sequence {f.} is y(4)-convergent 'O f with Tespect to
g. Thus, by Theorem 12, we have

im [ ACf, dg) = [, AU de).

n—® a

It follows that | 7(%,) = T()] — 0 as n — . This shows that 7 is conti-
nuous on C([a,8],X). U
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