Bilinear Henstock - Stieltjes Integral in Banach Spaces

SERGIO R. CANOY, JR.

real-valued function with respect to a function of bounded variation on the compact interval $[a, b]$. This integral turned out to be rancisco and Chew [FC] defined the Henstock-Stieltjes integral of ^a on the compact interval $[a, b]$. This integral turned out to be equivalent to the Perron-Stieltjes integral [W].

In this paper, we shall define a more generalized concept of the Henstock-Stieltjes integral. We shall investigate its simple properties and formulate some convergence theorems.

Throughout this paper, all functions considered are bounded and are defined on the closed interval $[a, b]$. The letters X , Y , and Z are used to denote Banach spaces over the field R of real numbers.

Definition 1. A transformation $A: X \times Y \rightarrow Z$ is said to be **bilinear** if it satisfies the following properties:

- (i) $A(x_1 + x_2, y) = A(x_1, y) + A(x_2, y)$
- (ii) $A(x, y_1 + y_2) = A(x, y_1) + A(x, y_2)$
- (iii) $A(\alpha x, y) = \alpha A(x, y)$
- (iv) $A(x, \alpha y) = \alpha A(x, y)$

for all $x_1, x_2, x \in X$, $y_1, y_2, y \in Y$, and $\alpha \in \mathbb{R}$.

Definition 2. A bilinear transformation $A: X \times Y \rightarrow Z$ is said to be **bounded** if there exists a positive constant *M* such that

$$
||A(x, y)||_Z \leq M||x||_X||y||_T
$$

for all $x \in X$ and for all $y \in Y$. Furthermore, we have

 $||A|| = \inf \{ M : ||A(x, y)||_Z \le M||x||_X ||y||_Y$, for all $x \in X$ and all $y \in Y$ }.

SERGIO R. CANOY, JR. is an Associate Professor of Mathematics at MSU-IIT. He obtained his PhD in Mathematics at the University of the Philippines, Diliman, Quezon City. His work interests include Integration Theory, Topology, and Graph Theory.

We denote by $L(X, Y, Z)$ the space of all bounded bilinear transformations $A: X \times Y \rightarrow Z$:

Definition 3. A function $f: [a,b] \rightarrow Y$ is said to be of **bounded** • **variation** on [a, b] if

$$
\mathbf{V}(f,[a,b]):=\sup{(D)}\sum||f(v)-f(u)||_Y
$$

is finite, where the supremum is over all divisions $D = \{ [u, v] \}$ of $[a, b]$.

In what follows, f_1 : $[a,b] \rightarrow X$ and f_2 : $[a,b] \rightarrow Y$.

Definition 4. Let $C = (c_1, c_2)$ be an ordered system, where c_j ${0,1}$ for $j = 1, 2$ and let $A \in L(X, Y, Z)$. Further, we write

$$
df_j = f_j
$$
 if $c_j = 0$ and $df_j = df_j$ if $c_j = 1$.

We say that die **Henstock-Stieltjes,** or simply **HS, integral exists** if there is a vector $J \in Z$ satisfying the following property: For every $\varepsilon > 0$, there exists a positive function δ on $[a,b]$ such that for every δ -fine division $D =$ $\{([u,v];\xi)\}\$ of $[a,b]$, we have

$$
\|(D)\sum A(f_1(u,v),f_2(u,v)) - J\|_Z < \varepsilon,
$$

where

$$
f_j(u,v) = f_j(\xi)
$$
, if $c_j = 0$, and $f_j(u,v) = f_j(v) - f_j(u)$, if $c_j = 1$.

Recall that a division $D = \{([u, v]; \xi)\}\$ is δ -fine if

$$
\xi \in [u, v] \subseteq (\xi - \delta(\xi), \xi + \delta(\xi)).
$$

In Definition 4, we write

$$
(HS)\int_a^b .A(d_1f_1,d_2f_2) = J.
$$

If $X = Y = \mathbb{R}$, *f₂* is of bounded variation on [a,b], $A(r_1, r_2) = r_1 r_2$ and $C = (0, 1)$, then Definition 4 reduces to the Henstock-Stieltjes integral

by Francisco and Chew in [FC]. Also, it is easy to show that if the HS integral exists, then it is unique.

. The following theorem is known as the **Cauchy criterion** for the existence of the integral.

Theorem 5. Let $C = (c_1, c_2)$ and $A \in L(X, Y, Z)$. Then

$$
(HS)\int_a^b A(df_1, dy_2)
$$

exists if and only if for every $\epsilon > 0$, there exists a function $\delta(\xi) > 0$ on [a, b] such that for any two δ -fine divisions $D_1 = \{([u, v]; \xi) \}$ and $D_2 =$ $\{([u',v'],\xi')\}$ of the interval $[a,b],$

$$
\| (D_1) \sum A(f_1(u,v), f_2(u,v)) - (D_2) \sum A(f_1(u',v'), f_2(u',v')) \|_Z < \varepsilon.
$$

Proof. (\Rightarrow) : Suppose that the HS integral exists and is equal to $J \in$ *z*. Then given $\epsilon > 0$, there exists $\delta(\xi) > 0$ such that for any δ -fine divisions D_1 and D_2 of $[a,b]$.

$$
\| (D_1) \sum A(f_1(u,v), f_2(u,v)) - J \|_Z < \varepsilon/2 \text{ and}
$$
\n
$$
\| (D_2) \sum A(f_1(u,v), f_2(u,v)) - J \|_Z < \varepsilon/2.
$$

Thus,

$$
\| (D_1)\sum A(f_1(u,v),f_2(u,v)) - (D_2)\sum A(f_1(u,v),f_2(u,v))\|_Z < \varepsilon.
$$

 (\Leftarrow) : For each positive integer *n*, there exists a $\delta_n(\xi)$ such that

$$
\| (D_1) \sum A(f_1(u,v), f_2(u,v)) - (D_2) \sum A(f_1(u,v), f_2(u,v)) \|_Z < 1/n
$$

whenever D_1 and D_2 are δ_n -fine divisions of *[a,b]*. We may assume that $\delta_{n+1}(\xi) \leq \delta_n(\xi)$ for all *n*. Now, for each *n*, fix a δ_n -fine division D_n. and put

$$
s_n = (D_n) \sum A(f_1(u,v), f_2(u,v)).
$$

Let *n*, *m* be positive integers with $n \le m$. Then D_m is both a δ_m -fine and δ_n -fine division of $[a, b]$. Thus,

$$
\|s_n - s_m\|_2 \leq 1/n
$$

and hence, $\{s_n\}$ is a Cauchy sequence in *Z*. Since *Z* is complete, there exists a vector *J* in *Z* such that

$$
\lim_{n\to\infty} s_n = J.
$$

 $\lim_{n \to \infty} s > 0$, there is a positive integer N such that for all $n \geq N$ Thus, given $\varepsilon > 0$, there is ε from $\varepsilon > 0$

$$
\|s_n-J\|_2 \leq \varepsilon/2.
$$

Choose $N^* \ge N$ such that $1/N^* < \varepsilon/2$. Define $\delta(\xi) = \delta_{N^*}(\xi)$ for each ξ in [a,b]. Then for any δ -fine division D of [a,b], we have

$$
\| (D) \sum A(f_1(u,v), f_2(u,v)) - J \|_2 \leq \| (D) \sum A(f_1(u,v), f_2(u,v)) - s_{N^*} \|_2 +
$$

+
$$
\| s_{N^*} - J \|_2 \leq 1/N^* + \varepsilon/2 < \varepsilon.
$$

Therefore, the HS integral exists and

$$
(HS) \int_a^b A(df_1, d_2f_2) = J. \square
$$

Theorem 6. Let $A \in L(X,Y,Z)$. If f_1 is continuous and f_2 is of bounded variation on [a,b], then,

(i) (HS) $\int_{a}^{b} A(f_1, df_2)$ exists; (ii) (HS) $\int_a^b A(df_1, df_2)$ exists and is equal to θ_z , the zero vector.

Proof. (i) Since f_1 is continuous on $[a, b]$, it is uniformly continuous there. Hence given $\varepsilon > 0$, there exists $\eta > 0$ such that for all $t, t \in [a, b]$,

 $|t-t| < \eta$ implies $|| f_1(t) - f_1(t) ||_Z < \varepsilon$.

 ${}^{\text{Define }} \delta(\xi) = \eta/2 \text{ for all } \xi \in [a, b].$ Let D₁ and D₂ be two δ -fine divisions of

[a,b]. Then there exists a δ -fine division D_3 of [a,b] which is finer than both D_1 and D_2 . Now, let $[u, v]$ be an interval division in D_1 . Then there exist division points $z_0, z_1, ..., z_r$ in D_3 such that $u = z_0 < z_1 < ... < z_r = v$. Consider the following difference:

$$
\Delta(u,v) = A(f_1(\xi), f_2(v) - f_2(u)) - \sum_{k=1}^r A(f_1(\xi_k), f_2(z_k) - f_2(z_{k-1}))
$$

=
$$
\sum_{k=1}^r A(f_1(\xi) - f_1(\xi_k), f_2(z_k) - f_2(z_{k-1})).
$$

Then

$$
\|\Delta(u,v)\|_{Z} \leq \sum_{k=1}^{r} \|A\| \|f_1(\xi) - f_1(\xi_k)\|_{X} \|f_2(z_k) - f_2(z_{k-1})\|_{Y}
$$

 $\leq \varepsilon \|A\|V(f_2[u,v]).$

It follows that

$$
\| (D_1) \sum A(f_1(\xi), f_2(v) - f_2(u)) - (D_3) \sum A(f_1(\xi), f_2(v) - f_2(u)) \|_Z \le
$$

$$
\leq (D_1)\sum \|\Delta(u,v)\|_Z \leq \varepsilon \|A\| \mathbf{V}(f_2; [a,b]).
$$

Similarly,

$$
\| (D_2) \sum A(f_1(\xi), f_2(v) - f_2(u)) - (D_3) \sum A(f_1(\xi), f_2(v) - f_2(u)) \|_2 <
$$

 $\leq \varepsilon \|A\| \mathbf{V}(f_2; [a, b]).$

Therefore,

$$
\| (D_1) \sum A(f_1(\xi) f_2(v) - f_2(u)) - (D_2) \sum A(f_1(\xi) f_2(v) - f_2(u)) \|_Z <
$$

< $2\varepsilon \|A\| \mathbf{V}(f_2, [a, b]).$

By the Cauchy criterion {Theorem 5), we have the desired result.

(ii) As in (i), define $\delta(\xi) = \eta/2$. Let $D = \{ ([u, v], \xi) \}$ be a δ -fine division of $[a,b]$. Then

$$
\|(D)\sum A(f_1(v)-f_1(u),f_2(v)-f_2(u))\|_2\leq \varepsilon \|A\| \mathbf{V}(f_2,[a,b]).
$$

This shows that

(HS)
$$
\int_a^b A(df_1, df_2) = \theta_z \quad \Box
$$

Simple Properties

We shall show that the HS integral has the usual properties of integrals.

Theorem 7. Let $A, B \in L(X, Y, Z), f_1, f: [a, b] \rightarrow X$ and g_1, g_2 . $[a,b] \rightarrow Y$. (i) If (HS) $\int_A^b A(f, dg)$ exists, then (HS) $\int_A^d A(f, dg)$ exists for every

 $subinterval [c, d]$ of $[a, b]$.

(ii) If $\lambda \in \mathbb{R}$ and the integral (HS) $\int_A^b A(f, dg)$ exists, then the integrals (HS) $\int_a^b A(\lambda f, dg)$ and (HS) $\int_a^b A(f, d[\lambda g])$ exist. Moreover, (HS) $\int_a^b A(\lambda f, dg) = \lambda$ (HS) $\int_a^b A(f, dg)$ and (HS) $\int^b A(f,d[\lambda g]) = \lambda$ (HS) $\int^b A(f,dg)$.

(iii) If the integrals (HS) $\int_{a}^{b} A(f, dg)$ and (HS) $\int_{a}^{b} A(f_1, dg)$ exist, then the integral (HS) $\int_{a}^{b} A(f+f_1, dg)$ also exists and

(HS)
$$
\int_a^b A(f+f_1, dg) = (HS) \int_a^b A(f,dg) + (HS) \int_a^b A(f_1, dg).
$$

(iv) If the integrals (HS) $\int_{0}^{b} A(f, dg)$ and (HS) $\int_{0}^{b} A(f, dg_1)$ exist, then the integral (HS) $\int_{a}^{b} A(f, d[g+g_1])$ also exists and

(HS)
$$
\int_a^b A(f,d[g+g_1]) = (HS) \int_a^b A(f,dg) + (HS) \int_a^b A(f,dg_1).
$$

Proof. (i) By the Cauchy criterion, there exists $\delta_1(\xi) > 0$ on $[a, b]$ such that for any δ_1 -fine divisions **D** and **D'** of $[a, b]$, we have

$$
\| (D) \sum A(f(\xi), g(u,v)) - (D') \sum A(f(\xi'), g(u',v')) \|_Z < \varepsilon.
$$

Let $\delta(\xi) = \delta_1(\xi)$ for all $\xi \in [c,d]$. Let D₁ and D₂ be any δ -fine divisions of $[c,d]$. Let E_1 and E_2 be fixed $-\delta_1$ -fine divisions of $[a,c]$ and [d,b], respectively. Consider $D = E_1 \cup D_1 \cup E_2$ and $D' = E_1 \cup D_2 \cup E_2$. Then D and D' are δ_1 -fine divisions of [a, b] and

(D)
$$
\sum A(f(\xi), g(u, v)) - (D')\sum A(f(\xi'), g(u', v')) =
$$

= (D₁) $\sum A(f(\xi), g(u, v)) - (D_2)\sum A(f(\xi'), g(u', v')).$

Thus,

$$
\|(D_1)\sum A(f(\xi),g(u,v))-(D_2)\sum A(f(\xi'),g(u',v'))\|_Z\leq \varepsilon.
$$

By the Cauchy criterion applied to $[c,d]$, it follows that the integral

$$
(HS)\int_{A}^{s} A(f, dg) \text{ exists.}
$$

(ii) Let $\varepsilon > 0$ and $\lambda \varepsilon$ **R**. Since $\int_A^b A(f, dg) = J$ exists, there exists $\delta_1(\xi) > 0$ such that for any δ_1 -fine division $D_1 = \{([u, v]; \xi)\}\$ of $[a, b],$

$$
\|(D_1)\sum A(f(\xi),g(v)-g(u))-J\|_Z\leq \varepsilon.
$$

Let $\delta(\xi) = \delta_1(\xi)$ for. all $\xi \in [a, b]$. Then for any δ -fine division $D = \{([u, v]; \xi)\}\$ of $[a, b],$

$$
\| (D) \sum A(\lambda f(\xi), g(v) - g(u)) - \lambda J \|_{Z} \le
$$

\n
$$
\le |\lambda| \| (D) \sum A(f(\xi), g(v) - g(u)) - J \|_{Z} < |\lambda| \epsilon, \text{ and}
$$

\n
$$
\| (D) \sum A(f(\xi), \lambda(g(v) - g(u)) - \lambda J \|_{Z} \le
$$

$$
\leq |\lambda| \|(D)\sum A(f(\xi),g(\nu)-g(u)) - J\|_Z \leq |\lambda|\varepsilon.
$$

Therefore,

$$
(\text{HS}) \int_{a}^{b} A(\lambda f, dg) = \lambda(\text{HS}) \int_{a}^{b} A(f, dg) \quad \text{and}
$$

$$
(\text{HS}) \int_{a}^{b} A(f, \lambda dg) = \lambda(\text{HS}) \int_{a}^{b} A(f, dg)
$$

(iii) Let $\varepsilon > 0$. Let *J* and J_1 be the respective integrals. Then there exists a common $\delta(\xi) > 0$ such that for any δ -fine division $D = \{([u,v];\xi)\}$ of $[a,b]$,

$$
\| (D) \sum A(f(\xi), g(\nu) - g(u)) - J \|_{Z} < \varepsilon/2 \text{ and}
$$
\n
$$
\| (D) \sum A(f_1(\xi), g(\nu) - g(u)) - J_1 \|_{Z} < \varepsilon/2.
$$

Thus if $D = \{ ([u, v]; \xi) \}$ is a δ -fine division of $[a, b]$, then

$$
\|(\mathbf{D})\sum A(f(\xi)+f_1(\xi),g(\nu)-g(u))-(J+J_1)\|_2 \le
$$

\n
$$
\leq \|(\mathbf{D})\sum A(f(\xi),g(\nu)-g(u))-J\|_2 +
$$

\n
$$
+ \|(D)\sum A(f_1(\xi),g(\nu)-g(u))-J_1\|_2
$$

\n
$$
< \varepsilon/2 + \varepsilon/2 = \varepsilon.
$$

Therefore (iii) holds.

(iv) This is proved as in (iii) (since A is also linear in the second component).

Convergence Theorems

We shall now tum our attention to the convergence theorems.

Theorem 8. Let $\{f_n : [a,b] \to X\}$ be a sequence of bounded functions which converges uniformly to the function f : $[a,b] \rightarrow X$ and let $g: [a, b] \to Y$ be a function bounded variation on $[a, b]$. If $A \in L(X, Y; Z)$ and the integrals

$$
J_n = (HS)\int_a^b A(f_n, dg) \text{ and } J = (HS)\int_a^b A(f, dg)
$$

exist for all *n,* then

$$
\lim_{n \to \infty} J_n = J
$$

Proof.: Let $\varepsilon > 0$. Then there exists a natural number N such that for all $n \ge N$ and for all $t \in [a, b]$, we have $\| f_n(t) - f(t) \|_X < \varepsilon$. Let $n \ge N$ be fixed. Since J_n and J exist, there exists a common $\delta(\xi) > 0$ on [a,b] such that for any δ -fine division $D = \{([u, v], \xi)\}\$ of $[a, b]$, we have

$$
\| J_n - (D) \sum A(f_n(\xi), g(v) - g(u)) \|_Z < \varepsilon \text{ and}
$$

$$
\| J - (D) \sum A(f(\xi), g(v) - g(u)) \|_Z < \varepsilon.
$$

It follows that

$$
\|J_n-J\| \leq 2\varepsilon + \varepsilon \, \|A\| \, \mathbb{V}(g,[a,b]).
$$

Accordingly,

$$
\lim_{n\to\infty}J_n=J.\quad \Box
$$

Definition 9. Let $A \in L(X, Y; Z)$ and $g : [a, b] \rightarrow Y$ be a function of bounded variation. We say that $f: [a, b] \rightarrow X$ is *A*-integrable with respect to g on $[a,b]$ if

$$
(HS)\int_{a}^{b} A(f, dg) \text{ exists.}
$$

From this point on, all integral are, unless-otherwise specefied, HS integrals.

Definition 10. Let g : $[a,b] \rightarrow Y$ be a function of bounded variation and $A \in L(X,Y;Z)$. Let $\{f_n : [a,b] \to X\}$ be a sequence of A-integrable functions with respect to g on $[a, b]$. We say that ${f_n}$ is $\gamma(A)$ -convergent to $f : [a, b] \rightarrow X$ with respect to g if for every $\varepsilon > 0$, there exists a natural number N_e such that if $k \ge N_e$ there exists $\gamma_k(\xi) \ge 0$ defined on [a, b] such that for any γ_k -fine division $D = \{([u,v],\xi)\}\$ of $[a,b]$,

$$
\|(D)\sum A(f_k(\xi)-f(\xi),g(\nu)-g(u))\|_Z\leq \varepsilon.
$$

Example 11. Let $A \in L(X, Y; Z)$ and $g : [a, b] \rightarrow X$ be a function of bounded variation on $[a, b]$. If $\{f_n\}$ is a sequence of X-valued continuous functions that converges uniformly to $f : [a,b] \rightarrow X$, then $\{f_n\}$ is $\gamma(A)$ convergent to f on $[a, b]$ with respect to g .

Proof. First, we note that in view of Theorem 6(i) the integral $\int_A^b A(f_n, dg)$ exists for each *n*. Now, let $\epsilon > 0$. Since $f_n \to f$ uniformly on [a,b] as $n \to \infty$, there exists a natural number $N(\varepsilon) = N$ such that if $k \ge N$ and $t \in [a, b]$, then

$$
\|f_k(t)-f(t)\|_X\leq \varepsilon.
$$

Let $D = \{ ([u, v]; \xi) \}$ be any interval-point pair division of $[a, b]$. Then

$$
\| (D) \sum A(f_k(\xi) - f(\xi), g(\nu) - g(u)) \|_{Z} \le \|A\| (D) \sum \|f_k(\xi) - f(\xi)\| \|g(\nu) - g(u)\|_{Z}
$$

 $< \varepsilon \|A\| \mathbf{V}(g; [a, b]).$

Therefore $\{f_n\}$ is $\gamma(A)$ -convergent to f with respect to f. \Box

Theorem 12. Let $A \in L(X,Y;Z)$ and $g : [a,b] \rightarrow Y$ a function of bounded variation. Then the sequence $\{f_n : [a,b] \to X\}$ of A-integrable inctions with respect to *g* is $\gamma(A)$ -convergent to $f : [a, b] \to X$ with respect \log if and only if \log

$$
\int_a^b A(f, dg) \text{ exists and } \lim_{n \to \infty} \int_a^b A(f_n dg) = \int_a^b A(f, dg).
$$

Proof. (\Rightarrow) Let $\varepsilon > 0$ and let $N(\varepsilon) = N$ be as in Definition 10. If *h*, $k \ge N$, then there exists a $\gamma(\xi) > 0$ (depending on h and k) such that if D₁ = $\{([u,v];\xi)\}\)$ is a γ -fine division of $[a,b]$, then

$$
\|(D_1)\sum A(f_i(\xi), g(v) - g(u)) - (D_1)\sum A(f(\xi), g(v) - g(u))\|_2 < \varepsilon \text{ and}
$$

$$
\|(D_1)\sum A(f_i(\xi), g(v) - g(u)) - (D_1)\sum A(f(\xi), g(v) - g(u))\|_2 < \varepsilon.
$$

Since f_k and f_k are A-integrable with respect to g on $[a, b]$, there exists $\delta(\xi)$ > 0 such that if $D_2 = \{ ([u, v]; \xi) \}$ is any δ -fine division of $[a, b]$,

$$
\|(\mathbf{D}_2)\sum A(f_h(\xi), g(v) - g(u)) - \int_a^b A(f_k, dg)\|_{\mathbb{Z}} < \varepsilon \text{ and}
$$
\n
$$
\|(D_2)\sum A(f_h(\xi), g(v) - g(u)) - \int_a^b A(f_h, dg)\|_{\mathbb{Z}} < \varepsilon.
$$

Put $\eta(\xi) = \min \{ \gamma(\xi), \delta(\xi) \}$ for every $\xi \in [a, b]$. Therefore if $D = \{([u, v]; \xi)\}$ is an η -fine division of $[a, b]$, then

$$
\|\int_a^b A(f_k, dg) - \int_a^b A(f_k, dg)\|_{Z} \le
$$

\n
$$
\leq \left\|\int_a^b A(f_k, dg) - (D)\sum A(f_k(\xi), g(v) - g(u))\right\|_{Z} +
$$

\n
$$
+ \|(D)\sum A(f_k(\xi), g(v) - g(u)) - (D)\sum A(f_k(\xi), g(v) - g(u))\|_{Z} +
$$

\n
$$
+ \|(D)\sum A(f_k(\xi), g(v) - g(u)) - (D)\sum A(f_k(\xi), g(v) - g(u))\|_{Z} +
$$

\n
$$
+ \|(D)\sum A(f_k(\xi), g(v) - g(u)) - \int_a^b A(f_k, dg)\|_{Z} +
$$

\n
$$
< \varepsilon + \varepsilon + \varepsilon + \varepsilon = 4\varepsilon.
$$

Since ε is arbitrary, it follows that the sequence $\left\{ \int_{A}^{b} A(f_n, dg) \right\}$ is a Cauchy sequence in *Z*. Hence there exists $J \in Z$ such that

$$
J = \lim_{n \to \infty} \int_a^b A(f_n, dg).
$$

73

Claim: J is the A-integral of f with respect to g on $[a, b]$. Let $\varepsilon > 0$. Then there exists a natural number $N^*(\varepsilon) = N^*$ such that for all $k \ge N^*$,

$$
\left\|\int_a^b A(f_k, dg) - J\right\|_Z \leq \varepsilon.
$$

Set $M=M(\varepsilon)$ = max{N, N^{*}}, where $N=N(\varepsilon)$ is as in Definition 10. Then for $k \ge M$ there exists $\gamma_k(\xi) > 0$ such that if $D^* = \{ ([u, v]; \xi) \}$ is a γ_k -fine division of $[a, b]$, then

$$
\left\| \left(D^*\right) \sum A(f_k(\xi) \cdot f(\xi), g(v) - g(u) \right\|_Z \leq \varepsilon.
$$

'n.

Also, there exists $\delta_k(\xi) > 0$ such that if $D^{**} = \{([u,v];\xi)\}\$ is a δ_k -fine division of $[a, b]$, then

$$
\left\| \left(D^{**}\right) \sum A(f_k(\xi), g(v) - g(u)) - \int_a^b A(f_k, dg) \right\| < \varepsilon.
$$

Define $\eta_k(\xi) = \min\{\gamma_k(\xi),\delta_k(\xi)\}\$ for every $\xi \in [a,b]$. Therefore if $D = \{([u, v]; \xi)\}\)$ is a η_k -fine division of [a,b], then

$$
\| (D) \sum A(f(\xi), g(v) - g(u)) - J \| \le
$$

\n
$$
\leq \| (D) \sum A(f(\xi), g(v) - g(u)) - D) \sum A(f_A(\xi), g(v) - g(u)) \|
$$

\n
$$
+ \| (D) \sum A(f_A(\xi), g(v) - g(u)) - \int_a^b A(f_k, dg) \| +
$$

\n
$$
+ \| \int_a^b A(f_k, dg) - J \|
$$

 $5\varepsilon = 3 + \varepsilon + 5$

Therefore f is A -integrable with respect to g on $[a, b]$.

 (\Leftarrow) : Let $\varepsilon > 0$. Then there exists a natural number $N = N(\varepsilon)$ such

that if $k, h \geq N$ then

$$
\left\|\int_a^b A(f_k, dg) - \int_a^b A(f_k, dg)\right\| < \varepsilon.
$$

Let $k \geq N$ be fixed (but arbitrary). Since f_k and f are A-integrable with respect to *g* on [a, b], ther exists a common $\delta_k(\xi) > 0$ on [a, b] such that if $D^* = \{([u,v];\xi)\}\$ is a δ_k -fine division of [a, b], then

$$
\|(D^*)\sum A(f_k(\xi),g(v)-g(u))-\int_a^b A(f_k,dg)\|<\varepsilon \text{ and}
$$

$$
\|(D^*)\sum A(f(\xi),g(v)-g(u))-\int_a^b A(f,dg)\|<\varepsilon.
$$

Define $\gamma_k(\xi) = \delta_k(\xi)$ for $\xi \in [a, b]$. Then for any γ_k -fine division D = {([u, v]; ξ)} of $[a, b]$,

$$
\| (D) \sum A(f_k(\xi) - f(\xi), g(v) - g(u)) \| \le
$$

\n
$$
\le \| (D) \sum A(f_k(\xi), g(v) - g(u)) - \int_a^b A(f_k, dg) \| +
$$

\n
$$
+ \| \int_a^b A(f_k, dg) - \int_a^b A(f, dg) \| +
$$

\n
$$
+ \| \int_a^b A(f, dg) - (D) \sum A(f(\xi), g(v) - g(u) \| < 3\epsilon.
$$

Therefore $\{f_n\}$ is $\gamma(A)$ -convergent to *f* with respect to *g*. \square

We now use the above theorem to prove our last result.

Theorem 13. Let $C([a,b],X)$ be the space of X-valued continuous functions on [a, b] with the uniform norm. Let $g : [a, b] \rightarrow Y$ be function of bounded variation on [a, b] and $A \in L(X, Y; Z)$. Then

$$
T(f) = \int_a^b A(f,dg), \ f \in C([a,b],X),
$$

defines a continuous linear operator on $C([a,b],X)$ into Z.

Proof. First, note that the above integral exists in view of Theorem 6. Now linearity of T follows from Theorem 7 (ii) and (iii). It remains to show that *Tis* continuous.

To this end, let $f, f_n \in C([a,b],\lambda)$ for $n = 1, 2, \ldots$, and

$$
||f_n - f||_{\infty} \to 0 \text{ as } n \to \infty.
$$

By Example 11, the sequence ${f_n}$ is $\gamma(A)$ -convergent to f with respect to *g.* Thus, by Theorem 12, we have

$$
\lim_{n\to\infty}\int_a^b A(f_n,dg)=\int_a^b A(f,dg).
$$

It follows that $||T(f_n) - T(f)|| \to 0$ as $n \to \infty$. This shows that T is continuous on $C([a,b],X)$. \square

·References

- . [B] Bartle, R. G., *A convergence theorem for generalized Riemann integrals,* **Real Analysis Exchange,** 20(1), 1994-95.
- [FC] Francisco, F. and Chew, T. S., *The Henstock-Stieltjes integral and convergence theorems,* Lee Kong Chian Centre for Math'l Research, Research Report No. 370, NUS, 1989.
- [H] Hallilovic, A., *Multilineat (Riemann) Stieltjes integral in Banach spaces,* **Radovi Matematicki,** 7(2), 1991.
- [W] Ward, A. J., *The Perron-Stieltjes integral,* **Mathematische Zeitschrift,** 1936, 576-604.