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Abstract 

I 
f estimating break points in linear models which und 

1be prob em o . . h Post • d' . . ergo 
.- analyzed using the Bayesian approac • enor tstributions of th 

sttuetural. change 
15 

11 
as the other parameters of the model are derived. A p . e 

break points as we . nor 

distnbution based on past data as ~- . 

1. Introduction 

tructural change has, in t~e past, often been ignored in model 

building. The oil price "shock" of 972-73 and the Ninoy Aquino 

-......,, assassination in 19~3 are two maJor tests that m~y economic 

models the Gross National Product (GNP) and the Consumer Price Index 

(CPI) 'among others, failed to pass. T~e widespre~d model problems 

associated with these · events created an important stimulus to reevaluate 

and improve these models. It is thus the role of statistical analysis to detect 

the presence of structural change and to find ways to assimilate it in its 

models 
In ·a regression frame~ork, Structural Change may simply be 

defined as a change in one or more of the parameters of the model. 

Although coefficients in statistical models are usually assumed to be 

constant, it is often recognized that in applied work, some relationships 

change over time, especially after some sudden unforeseen events like war, 

-revolutions, coup d 'etats or major calamities. 

Page (1955) was the first to study structural change in simple 

sequences of independent random variables based on cumulative sums or 

CUSUMS. Chow (1960) developed an F-test for a known break point 

while Qu_andt ( 1960) • developed a test based on the likelihood function 

when the break point is unknown. Broemeling and Tsurumi (1987) discus-
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ses structural change in linear models using a ~ormal-Gamma prior distri-
bution. 

1. Methodology 

Bayesian inferential procedures will be employed for the most part of the 
analysis. Although the Bayesian methodology faced a lot of criticisms in its 
earlier growth and especially during the 1970' s, most of these criticisms 
have already been addressed with and the method has gained worldwide 
acceptance since then. Let 

0 = (01, 0 2, ... , 0r) be the parameter of interest, 

h(8) the prior density associated with 0, and 

.l{xl8) the density from which the sample was taken. 

Bayes' Theorem states that the posterior density of 0 given the 
sample information, denoted by 1t(8lx), is for a continuous 0, 

x(81x)·= h(8)/(xl8), (2.1). 
m(x) 

where 

m(x) = f ... J /(xt•)h(·)d8. 

Since m(x) does not involve 8, we may rewrite (2.1) as 

1t(8lx) oc h(8)/(xl8) 

where the symbol "oc"means "is proporti_onal to". This simplification is 
used in the illustration in Section_ 4. 

3. The Model and the Prior 

Consider the following model. • 

where v, 1 s v s n, is the unknown break point, 
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E; .... N(O,o-2) ; 
i = 1, 2, ... , 11 

X. =(Xi. x. X.) is a 1 x r vector of explanatory van·abJ 

, 1, 
2, , • .. , n 

es 
) 

j = 1, ... '11; 

• 

~
1 

= (~ 11,
 ~21, .

.. , ~rJ)' is the r x 1 vector of parameters, J === 1 2 ' . 

If Structural Change is present in Model (3 .1) , then 1 < v $ n-J 

However, if no structural change occurs, v = n. Therefore, testing for th • 

presence of structural change is like testing the hypothesis that e 

Ho : l < v < n -1 against 

H1
: v = n. 

The decision on whether to accept or reject the hypothesis will be 

pased on the posterior probabilities of v. • 

Assume that past data (Xf ,fiP),(Xf ,fiP), ... , (X!,Y,t) exists. To 

find the prior for (~, o), we fit the past data into the model 

where 

Yt 
Y/ 

YP = 2 

fP 
m 

xr 
XP 

XP = 2 

' ' 

XP 
m 

and the other parameters are as defined in (3 .1). 

. . (3.2) 

. . Using a noninformative prior for ~2 and v, the joint prior of(~ 0 v) 

ts given by 

' ' 

4. Posterior Analysis 

Let o = l/0
2
, and let 

-~BB 

(3.3) 
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Yi fv+l X1 xv+] 

r; fv+2 
y = y - ' z - X2 xv+2 

-? 2- z -
1 

1- , (4.1) 
• 

2- , 
• • • 

Yv Yn xv xn 

Y_ = [;:], Z = [~I ;J P=[:J 
The likelihood function is 

L(P,6,v I (Z,Y)) oc 6~ exp{ : [(Y -ZP)'(Y-ZP))} · (4.2) 

Combining (3.3) and (4.2) with Bayes' Theorem, we obtain 

,c(p,6,vl(Z,Y)) oc 

oc 02 exp -2[(Y1 -Z1P1)'(Y1 -Z1P1)+(Y2 -Z2P2)'(Y2 -Z2P2)]}x n+m { 6 

x exp{-~ [<Y' -X'P 1 )'(Y' - X'P1 >]} 

After some algebraic manipulations, the last equation can be rewritten as 

n+m { 6 , J 
1t(P,6,vl(Z,Y))oc o2 exp -

2
[(P.-f)'Z' Z'(P-f) + g(v)]J' (4.3) 

where 
, 

v'v = z.~z1 +X' X' 

0 
• , , , , 

p; = (Z1 Z1 +X' X'r1(Z1 YI +X' Y'), 

, , 
p; = (Z

2 
Z

2
f1(Z 2 Y2), and 

, , , 

' ' J 
g(v) = Y1 YI+ Y2 Y2 - (Y2 Z2XZ2 z2r (Z2 Y2) + 
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, , , , 

'yp (V, Y + Yt v:)(Z, z, + xp XP) '(z, v, + vp·~ 

+ Yt I - 4 I 
I rt ) 

·nal posterior density of v, we integrate out a 
To find th~ margtt out n apply Aitken' s integral and 

(4 3) To 1ntegra e ,., ' 
f, trom · • • , 

I I {-_!_(x'Ax)dx} oc /A/-
2 

.... exp 
2 

. . . definite. Integrating out P from ( 4. 3) , yields 

where A is pos1t1ve i 

t; •+:-2r exp{- 0 [g(v)]} . zp' ZP -2 

,r(o,v/(Z,Y)) oc 2 • 

(4.4) 

l 

ex: /+:-2, exp{-~ [g(v)J} . /z/ Z1 + X; XP -2 z/ z2 -~ (4.5) 

• 

To integrate out 5, we use the property of the Gamma distribution 

f xk-t exp{-Ak }dr = ,._-, (4 6) 

Integrating out 6 from (4.5), we therefore have 

l 

.. , , 2 

~l(vl(Z,Y)) 0C Z1 Z1 + xp xp 

n+m-2r 

g(v)J-c 2 > 
(4.7) 

Relation ( 4. 7) is the posterior density of v and we can choose as 

our point estimate of the break point the value of v which attains the 

highest posterior density. However, a plot of the whole density will 

usually give a much clearer picture. 

5. Estimation ·of Parameters 

To estimate the parameters of the model, we also derive their posterior 

densities. If we are now sure that structural change is present, model (3. I) 

can be rewritten as 

i=12®v 
' ' 

i=v+12®n 
' ' 
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where I < v < n - 1. Note that n is now exclud d 

(4.3), the posterior density of (P,6), for a fixed v\ as a value of v. From 

{ 0 
1t(P,Blv,(Z,Y)) oc o 2 

exp --[(13-13.)'ZP,ZP(A n•)· } 
2 .., - .., + g(v)] 

(5.1) 

Integrating out 8 from ( 5. I) using ( 4. 6), yields 

1ti{ Plv,(Z,Y)) oc g( v) + (P-P- )'(Zp' Z')(P- p•)f<"•;•2i 

which can be rewritten as 

1t2 (131 v, {Z, Y)) oc 

, 

(n+m-2r+2)(P-f)'(V V)(P-f) 

oc l+------:-- ·~g~(v~) ____ _ 
(n+m-2r+2) 

-(n+m+2) 

2 

(5.2) 

We can distinguish (5.2) as the kernel of a multivariate t-distribution with 

degrees of freedom ( n + '!1 _ 2, + 2), 

mean vector 13 •, and 
, 

precision matrix 
(n+m-2r+2)(ZP ZP) 

g(v) 

Summing now for all values of v, the marginal conditional posterior density 

of~ is therefore given by 

n-1 

1t3{Pl(Z,Y) = L[x 2 (Plv,(Z,Y)). 1t1{vl(Z,Y))], (5.3) 
v=I 

where 1t2(Plv, (Z,Y)) is defined in (5.2) and 1t1(vl(Z,Y)) is defined in (4.7). 

Therefore, the marginal posterior distribution of 13, is a mixture of 

multivariate t-distributions where the mixing probabilities are the marginal 

posterior probabilities of v . To find the marginal density of 6, first fix the 

value of v in (4.3). Integrating out p from (4.3) using (4.4), yields 
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1t(6lv,(Z,Y)) oc /+~-2, exp{- i [g(v)]}. [V'vf1, or 

n+m-2r { 8 } 
1t4(6lv,(Z,Y)) oc 8 2 exp -2[g(v)] (S.4) 

1 

where lczP'zPf2 is absorbed into the constant of proportionality. We 

can recognize ( 5. 4) as the kernel of a Gamma distribution with parameters 

(n + m _ 2r)/2 and g(v). Summing now for all values ofv, we have 

n-1 

1t
5
(61(Z,Y) = r[x 4 (61v,(Z,Y)). 1t1(v(Z,Y))] (S.S) 

v=l 

where 1t
4
(61v,(Z,Y)) is defined in (5.4), and 1t1(vl(Z,Y)) is defined in (4.7). 

The marginal posterior distribution of o is a mixture of Gamma 

distributions where the mixing pr9babilities are the posterior probabilities 

of V. 
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