A Closer Look at Bayesian Analysis
ARNULFO P. SUPE

erforming a statistical analysis may be done

) in two approaches, the
Classical approach and the Bayesian approa

. ch. The term classicqy
does not have the unanimous support of | statisticians, but s

usually used to describe inference with the following characteristics:

1. Estimators and test procedures are evaluated in terms of their
properties in repeated_§amples. .

2. The probability of an event is defined
relative frequency of that event.

3. There 138 no provision for
information.

In a Bayesian framework, probability is defined in
of belief and although the properties of estimators and t
samples are of some interest, they do not provide for th
inference and estimator choice. One of the main featu
analysis is that uncertainty about the value of an unknown
expressed in terms of a probability distribution.
parameters are treated as random variables, not
outcomes of an experiment yield different
in the sense that a parameter has associate
distribution that describes our state of kno

In classical methods
performance of a procedure ov
4pproach give primary
the actual data that is

in terms of the limit of the

the formal inclusion of nonsample

terms of degree
ests in repeated
€ main basis for
res of Bayesian
parameter can be
In a Bayesian framework,
in the sense that different
realizations of a parameter, but
d with it a subjective probability
wledge about that parameter.
inferences are based on the average
er all possible samples, while the Bayesian
importance to the performance of a procedure for

observed in a given experiment. Bayesians believe

that it is more practical and realistic to base inference on actual data

Sampled rather than base it on large repetitions of sample which may or will
not oceyr

L, BAYES’ THEOREM

When one performs Bayesian analysis, one uses prior information aside
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in order tO generate inferences ﬂbom‘
1 dmhicﬁ the data was hypothesized to COme,lhxsp%q

from moa“e";PMm 58
the m statistics where only sample information is UMOppos; of
F"”'ﬁ fn'IM > information is & necessary ingredient 5 o o 3

0=(0:, 062 ©,) be the parameter of interest,

}©) the prior density associated with ©, and

fix}6) the density from which the sample was taken

Bayes’ Theorem states that the posterior density of @ .
sample information, denoted by m(8x), is, for a continuous °9’ O given y,

) f(x10)
x(0lx) = He)/ :
m(x) (L))

where

m(x)=‘j...jf(x|.)m.)de
Since m(x) does not involve 8, we may rewrite (1.1) as

x(6lx) = h(OYx10),
where thie symbol o " means “is proportional to”. This simplification is

used in the illustration in Section 4.

2. THE PRIOR INFORMATION

ections leveled against Bayesian statistics are directed
random variable with a probabilty

density, considered as “subjective” by

ill the most controversial aspect of

however, that adopting 2 frequency

are both quite subjective

Most of the obj
towards. the treatment of 6 as a
distribution. The use of the prior
classical statisticians, is to date st
Bayesian analysis. Bayesians argue,
distribution for X and a prior distribution for ©
activities.

Two of the methods of determining prior distributions that ha*®
gained popular support are the noninformative priors and the use of
conjugate families.
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2.1. Methods of Determining Prior Distributions

A noninformative prior is a prior that contains no information about 8, or

more crudely, a prior which favors no particular value of & over the others
A simple example of a noninformative prior is one which assigns for a

finite © = (B, @, ..., ©)', a probability of 17k for each element 8, of ©.

lJef&z:s (1961) dew{elop?d a theory of choosing prior densities based
on rules of parameter invariance where “nothing” is known about the
values of the parameters. Below is a summary of the methods for choosing
a noninformative prior as recommended by Jeffrys.

(1) Foralocation parameter © (the density is of the form
Ax —8)), use n(0)oc ¢, where ¢ is a constant;

(it) For a scale parameter ¢ (the density is of the form
(1/6)f(x/c)), use m(0) < 1 s
(i) For a more general setting (ugivaﬁate case), use
x(©) = (IO)F,

where I(B) is the expected information measure under commonly
satisfied conditions;

(iv) For a vector valued @ = (@, ©,, ..., 8, use
7(0) = [det I®)]"*
where det[A] means the determinant of a square matrix A,

It is often the case that the analysis from the use of noninformative
priors yields the same result as the one done through classical methods..
However, the interpretations of the two results will be different. There are
many situations in which the two results differ and the classical report
almost invariably suffers in comparison.

Berger (1985) argues that “noninformative prior Bayesian analysis
is the single most powerful method of statistical analysis, in the sense of
being the ad hoc method most likely to yield a sensible answer for a given
investment of effort”, ‘ s

One of the operational advantages of Bayesian stalistics over
classical statistics is its more effective use of prior infprfmtnon when
significant prior information is availablg. C]a§sic§l statistics Floes not
provide for a systematic utilization of reliable prior information, in a more
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formal framework. In cases where no or very little prior inform,.. ,‘
available, Bayesians can always fall back to noninformative priorg alion j

2 to
sensible analysis. get

2.2. Conjugate Families

There are many instances where n(Bjx) is not easily calculable
reason, a large part of the Bayesian literature was devoted to find
that can be easily calculated. The use of conjugate families is an answer (,
this problem. Below is a definition taken from Berger (1985), - gy
Let F denote the class of density functions fix{). A class 5 o L
prior distributions is said to be conjugate family for F, if the posterigr
distribution of © given x, 7(B}x), is in the class H forall fe Fand he g
Aside from providing an easy method of finding m(6Jx), cc :
priors also have the intuitively appealing feature of allowing one to
with a certain functional form of the prior and end up with a posterior of
the same functional form, but with parameters updated by the sample
An example of a conjugate family is the normal-gamma dis
The joint density of two random variables X, and X; is a nor
with parameters p, p, o, B if and only if

fox) = filabe) folrr) 5 -0 < x <+ ®, >0, 1".

where f(x,|x,) is normally distributed with mean p, and ‘ sion pry,
and f,(x,) is a gamma distribution with parameters o and .

For thjg
mg P"Ofs |

3. BAYESIAN INFERENCE
From a Bayesian viewpoint, all inferences about © are based or
posterior distribution of © given the sample. The idea is that, |

posterior distribution su

3.1. Point Estimation

To estimate 6, some of th classical estm
the posterior distribution. The most common «
: Vo R
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mum likelihood estimation, which chooses, as the estimate of @, the value
8 which maximizes the likelihood function, The analogous Bayesian
estimate is defined below

The Geucrahzed Maximum erehhood Estimate of © is the lar-
gest mode, 8" , of m(Blx), i.e., the value 8% which maximizes n(Bx),
where w(B|x) is wnsrdered asa funcuon of 8.

Some Bayesians maintain that inference should ideally consist of
simply reporting the entire posterior distribution n{@x). The reason
advanced is that since the posterior distribution is an actual probability
distribution for ©, one can derive from it, any feature of interest and a
visual inspection of the graph of the posterior will often provide the best
nsight concerning ©.

If © is a vector and the corresponding posterior is thus a joint
density, the marginal posterior density of any element of © can be found by
integrating out the other elements of ©.

3.2. Credible Set

The Bayesian analog of a classical confidence set is called a credible set. A
100(1 — @)% credible set for © is a subset C of the parameter space
2, such that

l—as P(Cly) = [dF*,

o

J (0 x) (for 8 continuous)

he dF'-':f‘h‘I- o IS :
where j; > a(0x) (for 6 discrete)

BeC

Since the posterior distribution is an actual probability distribution
of B, one can speak meaningfully of the probability that 8 is in C. This is®
not the case for classical procedures where one can interpret only in terms
of coverage probability,

3.3, Hypothesis Testing

Testing H,:0 £ vs H;: 0@ & (i is conceptually more straightfor-
ward within the Bayesian lramework One simply calculates
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o, = P(Q"lx) and
o, = P 1%):

. aly whether t0 accept or reject the hypothesis baseq =

then decide logiealy s Another method would. be to accept or reject th
whether or not the specified value under , nu;

hypothe thin a highest posterior density  credible s, vith

hypo(hCSis H,
content | —ct
4 BAYESIAN ANALYS]S OF THE LINEAR MODEL

: illustrated below with the anglyg
cian anproach will now be illustrate : alysis of
&e:;ﬁa?ing model, Recall that the least square estimate ang g,

unbiased estimate of the parameter B s

p = (XX)(XY)

Consider now the general linear model ¥ =XP+e where ¢ ha
o multivariate normal distribution with mean vector 0 and variance-
covariance matrix o?l and

- — -

F}{' I X, Xz X,o ﬁl
. Kap: Kag: o X
v l X = :u :zz 2 B = 9:1
L ;J _XNI an an_ _Bp_

Y isthe (nx 1) vector of dependent variables, X is the (n x p) matrix
of independent variables of full rank p and B is the (p x 1) vector of

parameters, Then the likelihood function of (B,0?) given the sample
observations (X,Y) is

Lo X Y) (02) exp {-} c'? [(Y - XB)(Y - xg)]} (4.1)

Let the joint density of (8,02) be given by the noninformative prior

1
P(Bocz) x -&:. 42)
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1 i G
Let &= 5 Combining the likelihood function and the joint prior, by

Bayes' Theorem, yields

RBHX,Y) o ' exp{ _ 3 210 - Xpy(v - Xp)} (43)
To find the marginal density of B, we integrate 8 out from {(4.3) to get,
R(BX [75" exp { 3 S [0V - XBY(V - XB) s,

T(BLXY)) (Y - xs'r(v- XE) + (B—BHXX(B- B %

which can be rewritten as

[ (- - Byoexy -y
TBIX.Y)) = 1+ “XBYV-XE) | (4.4)
(n-p) -
J

The expression at the right hand side of (4.4) can be recognized as the
kernel of a multivariate t-distribution with

degrees of freedom (# - p),
mean vector B’ = (X’X)'(X'Y), and

(- p)X'X
(Y- XB7)(Y-XB)

precision matrix

A point estimate of B is B = (X"X)(XY), which corresponds to
the unbiased and least squares estimate of B. There are many situations
where the Bayesian estimates, when using the noninformative prior, are the
same as the estimates made through the classical approach However, their
interpretations will be different.

From the posterior density of P, hypothesis testing and the
construction of credible sets become relatively straightforward, The
predictive distribution of future independent observations is also easily
derived, This illustrates the advantages of Bayesian analysis. All inference
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T
has found the posterior distribug
solved 0Nce one | ’ tibiitia
problems ;:relnsmd of learning @& large varnety of Samplings Of the
: :ee > nference 1S done by clas31qal a_nalysns, one only th°°'}r
::hmml:l:wt \ Bayes® Theorem when doing it the Bayesian wa;eeds to
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