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P
erforming a statistical analysis ma~ be done in two .approaches, the Classical approach and the Bayesian approach. The term classical does not have the unanimous support of all statisticians, but is usually used to describe inference with the following char·acteristics: 

1. Estimators -and test procedures are evaluated in terms of their perties in repeated samples. 
pro 2. The probability of an event is defined in terms of the limit of the • elative frequency of that event. 
r 3. There is no provision for the formal inclusion of nonsample 
information. 

In a Bayesian framework, probability is defined in terms of degree of belief and although the properties of estimators and tests in repeated samples are of some interest, they do not provide for the main basis for inference and estimator choice. One of the main features of Bayesian analysis is that uncertainty about the value of an unknown parameter can be expressed in terms of a probability distribution. In a Bayesian framework, parameters are treated as random variables, not in the sense that different outcomes of an experiment yield different realizations of a parameter, but in the sense that a parameter has associated with it a ._subjective probability distribution that describes our state of knowledge about that parameter. In classical methods inferences are based oi:i the average performance of a procedure over all possible samples, while the Bayesian approach give primary importance to the performance of a procedure for the actual data that is ol?served in a given experiment. Bayesians believe that it is more practical and realisti~ to base inference on actual data sampled rather than base it on large repetitions of sample which may or will not occur. 

1. ~A YES' THEOREM 

When one performs Bayesian analysis, one uses prior information aside 
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data in order to generate inferences about<, th 

trom r,~~m whicli the data was hypoth~sized to corne. Pararnei 

the ~o e t. sties where only sample information is s opp08 
er or 

~Jass1cal sta rior infonnation is a necessary ingredient ~sed to '<Id to 

inferences, P 
In a 13 ra\\i 

procedure. • Let 
ayesia,, 

0 =
 (0i, 02, ... , 0,) b~ the parameter of interest, 

h(_fJ) the prior density associated with 0, and 

/{x/8) the density from which the sampJe was taken. 

Bayes, Theorem states that th~ posterior ~ensity of 0 . 

sample information, denoted by 1t(0lx ), is, for a continuous 0, 8Jven the 

) 
h(B)f(x/0) 

,r(8/x = m(x) , 

where 

m(x) = J .. .J j(x/.) h(.) de 

Since m(x) does not invoJve 0, we may rewrite (1.1) as 

1t(8fx) oc h(0}/{xj0), 

(1, 1) 

where tile symbol :' oc." me~~s "is proportional to". This simplification is 

used ,in the dlustrat1on in Section 4. • 

2. THE PRIOR INFORMATION 

Most of the objections leveled against Bayesian statistics are -directed 

toward~ the treatment of -0 as random variable with a probability 

distribution. The use of the prior density, considered as "subjective" by 

c1assica1 statisticians, is to date still the most controversial aspect of 

Bayesian analysis. Bayesians argue, however, that adopting a frequency 

distribution for X and a prior distribution for 0 are both ·quite subjective -

activities. 

. . Two of the methods of determining prior distributions that have 

gained popular support Alre the noninf ormative priors and the use of 

conjugate families. 
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2.1. Methods of Determining Prior 0 . t .b . 
1s r1 ut1ons 

A noninf ormative prior is a prior that c . . . 

more crudely, a prior which favors no o~tams no mformat1on about 0, or 

A simple example of a noninformativ~arti~ular_ value of 0 over the others. 

finite 0 = (01 9 2 
0 )' a b bT pn~r is one which assigns for a 

Jeffry; 096i') d:v;lo :~o a ~h• ity of Ilk for _each ~lement 0, of@. 

on rules of parameter i·nvapn·a eohry of choosing pnor densities based 
nee w ere "nothin " • k b 

values of the parameters Bel . . 8 is nown a out the 
• ow 1s a summary of th h d fi • 

a noninformative prior as recommended b J ffry e met o s or choosing 
y e s. 

(i) For a location parameter 8 (the density is of the form 

f(x - 9)), use 1t(8) oc c, where c is a constant , 

(ii) For a scale paramete; cr (the density is of the fo~ 

(1/cr}/{x/cr)), use 1t(8) ac _!_; 
CJ 

(iii) For a more general setting. (univariate case), use 
l 

1t(8) oc [1(0)]2, 

where 1(0) is the expected ·information measure under commonly 

satisfied conditions· 
' 

(iv) For a vector valued 0 = (0 1, 0 2, ... , 0k)', use 

1t(8) oc [det 1(0)]i12 

where det[A] means the determinant of a square matrix A. 

It is often the case that the analysis from the use of noninformative 

priors yields the same result as the one done through· classical methods .. 

However, the interpretaJions of the two resul~s will be different. There are 

many situations in which the two results differ and the classical report 

almost invariably suffers in comparison. 

Berger (I ~85) .argues that "noninformative prior Bayesian analysis 

is the single most powerful method of statistical analysis, in the sense of 

being the ad hoc method most likely to yield a sensible answer for a given 

investment of effort". 
One of the operational advantages of Bayesian statistics over 

classical statistics is· its inore effective use of prior information when 

significant· prior information is available. • Classical statistics does not 

provide for a systematic utilization of reliable prior information, in a more 
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formal framework. In cases where no or very little prior inf 
O 

. 

r. II b k • l': rrnation • 
available Bayesians can always 1a ac to non1n1ormative prior is 

, s to &et 
sensible analysis. . a 

2.2. Conjugate Families 
' 

There are many instances where 1t(01x) is not easily calculable. F . 
• 1· d or this 

reason, a large part of the Bayesian 1terature wa_s evoted to finding . 
• I I d Th f • t. .c. ·1· • Pnors 

that can be eastly ca cu ate . e use o conJuga e ianu 1es 1s an answ 

this problem. Below is a definition taken from Berger {1985). • • • er to 

Let F _den~te t?e class of de~sity functi~ns .l{xl0). class II of 

prior distributions 1s said to be a conJugate f am,ly for F, 1f the poste . 

distribution of 0 given x, 1t(01x), is in the class H for all/ e F and he ;or 

Aside from ~i-o~~lng ·an easy: method Of finding ~(0jx), conjuga~e 

priors also ~ave th~ 1ntu1t1vely appeahn? feature of allo~ng one to begin 

with a certain functional form of the pnor and end up with a posterior of 

the same functional form, .. but with parameters updated by-. the sample 

information. 

An example of a conjugate family is the normal-gamma distribution. 

The joint density .of two _.random variables X1 an~ ~ 2 is a non:nal-gamma . 

with parameters µ, p, a,· P if and only if • . . • • 

.l(x1,x2). = Ji(x1lx2)fi(x2) .; - oo < X1 < + oo, X2 > 0, • : 

where f. ( Xi I Xi) is normally distributed with mean µ, and precision px2, 

and fi(x 2 ) is a gamma distribution with_ parameters a and p. 

3. BAYESIAN INFERENCE 

From a Bayesian viewpoint,· all inferences about ·e • are.··based on the 

posterior distribution of 0 given the sample. The idea is that,· since the 

posterior distribution supposedly contains all · the available information 

about 0 _(both sample and prior information), any inference concerning 8 

should consist solely of features of this distribution.· • 

3.1. Point Estimation 
. . . 
; ' • • 1 I·. , • • 

To estimate 8,. some of the classical estimation techniques ~an be _applied !0 

the posterio~ distribution. T~e most common clas~ical _technique is ll)P.l · 
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m:im ti~elihood estimation, which chooses, as the estimate of 0, the value 
0 which maximizes the likelihood function. The analogous Bayesian 
estimate is defined below. 

The Generalized Maximum Likelihood Estimate of 0 is the lar-
gest mode, e*, of 1t(8lx), i.e., the value e* which maximizes 1t(8lx), 
where 1t(8lx) is considered as a function of 0. 

Some Bayesians maintain that inference should ideally consist of 
simply reporting the entire posterior distribution 1t(8lx). The reason 
advanced is that since the posterior distribution is an actual probability 
distribution for 0, one can derive from it, any feature of interest and a 
visual inspection of the graph of ~he posterior will often provide the best 
insight concerning 0. 

If 0 is a vector and the corresponding posterior is thus a joint 
density, the marginal posterior density of any element of 0 can be found by 
integrating out the other elements of 0. 

3.2. Credible Set 

The Bayesian analog of a classical confidence set is called a credible set. A 
100(1 - a.)% credible set for 0 is a subset C of the parameter space 
0, such that 

1 - a < P(C I x) = f d.Fnce~) , 

where J d.Fnce~) = 

C 

C 

J 1t ( 01 x) (for 0 continuous) 
C 

L n(01x) (for 0 discrete) 
eec 

Since the posterior distribution is an actual probability distribution 
of 0, one can speak meaningfully of the probability that 0 is in C .. This is· 
not the case for classical procedures where one can interpret only 1n terms 
of coverage probability. 

3.3. Hypothesis Testing 

Testing Ho : 0 E 0 0 vs. H
1: 0 E 01 is conceptually more straightfor-

ward within the Bayesian framework. One simply calculates 
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<lo == P(OolX) and 

a, ::P(01lx), 

. h ther to accept or reject the hypothesis based 

t
heit decide logical(~ e Another method would be to accept or reject ohn 

al babthties. ·fi d I t e these actu pro h ther or not the spec1 te va ue under a 1 . b sed on w e . ,,J • d nu 1 hypothesis a . . hi' a hiuhest posterior uenslly ere ible sei w· h . u hes wit n o· It hypothesis .l() 

content I - a. 

N
ALYSIS OF THE LINEAR MODEL 

4. BAYESIAN A . . 
. a roach will now be illustrated below with ~he analysis of 

The Bayesian_ PP del Recall that the least square estimate and the 
the general hnear mo • . 
unbiased estimate of the parameter~ ts 

~· = (X'X)'(X'Y). 

Consider now the general· linear model Y = XP + E where e has 

a multivariate normal distribution with mean vector O and variance-

covariance matrix a21 and 

Yi Xi X2 
.. • . 

xp ~l 

Yi ·X21 X22 
... 

X2p ~2 
Y= X= = ... 

. 
I: Xnl xn2 

... 
xnp ~p 

Y is the (n x I) vector of dependent variables, X is the (n x p) matrix 
of independe~t variables of full rank p and p is the (p x I) vector of 
parameters. Then the likelihood function of (P,cr2) given the sample 
observations (X, Y) is . 

L(P,cr
2
JX,Y)oc (cr

2f" exp { -
2
~

2 
[(Y-XP)'(Y-XP)]} (4.1) 

Let the joint density of (~,cr2) be given by the noninformative prior 

P(P,cr
2
) oc J__ (4.2) 

02 
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Let 8 = ~2 • Combining the likelihood function and the joint prior, by 
' 

Bayes' Theorem, yields 

n-'.! 

1t(P,8l(X,Y) ex: 8 2 exp{ - ~[(Y - XJ})'(Y -XP)} (4.3) 
2 

To find the marginal density of p, we integrate 8 out from (4.3) to get, 

OC) n-2 

1t1(Pl,(X,Y) ex: f c,2 exp { -~ [(Y - XP)'(Y -XP)]}d8, 
Jo 2 

1t1(Pl,(X, Y)) ex: [ (Y - xp•)'(Y - Xp°) + (P- p•)X'X(P-f) rt 

which can be rewritten as 

(4.4) 
. 

The expression at the right hand side of ( 4. 4) can be recognized as the 

kernel of a multivariate t-distribution with 

degrees of freedom (n - p), 

mean vector p-- = (X'Xr1(X'Y), ·and 

. . . (n- p)X'X 
prec1s1on matnx • • . 

(Y-XP )'(Y-XP) 

A point estimate of p is p* = (X'Xr1(X'Y), which corresponds to 

the unbiased and least squares estimate of P. There are many situations 

wher~ the Bayesian estimates, when using the noninformative prior, are the 

same as the estimates made through the classical approach. However, their 

interpretations will be different. 

From the posterior density of P, hypothesis testing and the 

construction of -credible sets become relatively straightforward. The 

predictive distribution of future independent observations is also easily 

derived. This illustrates the advantages of Bayesian analysis. All inference 
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•1 d once one has found the posterior distn'b . 

1 are so ve 

. 
Uhon 

prob ems I tead of learning a large vanety of sa~ 1· s of tL 

nrameters. ns 
• b 1 . al . &.llp Jng L •ie 

P"'"''.' s when inference 1s done y c ass1c analysis, one on/ t,,e
0
1y 

techn
1

que pply Bayes' Theorem when doing it the Bayesia Y needs t 

Jeam how to a 

n Way_ o 
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