LimiTS AND CONTINUITY OF FUNCTIONS

Sergio R. Canay, Jr.

The use of Timits, though i unerystallized {orm. can be traced to the
aneient Greeks. For example, Archimedes had used the concept to find an
approximation ol the value of 2. Specifically, he oblained an approximate
value hy tking the “limil” of the perimeters of regular polygons inscribed
i a circle of radins 1 oas the number ol sides of the polvgons construcied
nerese without bound.

o this lecture, we shull study Hmis und continuity ol Tunconons, These
coneepls are essential o the main subjects that form the naclens of
caleulus: the derivative and the integral.

Intuitive idea of lmit. Lot 7 be o [unctien given by v = fx) and
defined a1 each ¥ on some interval [ containing @, except possibly al o
itzclt. When we zav that “f s the Mol of £x), o x approaches o7 we
reushly say that fix) gels close to L oas x gets close fo g To see this, ler us
consider a couple of examples.

1.I.1 ExanpLE. Let # bedefined by p  fix)= 52+ 2. We shall in-
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L2 Examee e, Consider the Mnetion Sodetined by

&

fivi

-
T

Clearly, the value of the funetion at ¥ 2 is not defined 2y DA
Hlowever, flah has o limit as x approaches 10 20 To see this let us i
vonstiruet tao tables,
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We see [tom  hoth tables ubove that fx) pets close o 4 as x gets
close 1o 2. Thus, 4 is the limit of fix) as x approaches 1. &

In the ahove procedure, we may also specify the values of fTx) first. In
Lxample 1.1.1. we can actually make the value of fx) s close to 2 as we
please by laking x close enough o 0. In other words. we can make the
ahenlute difference (distance) between fx) and 2, written |z} - 2|, small
by muking the absolute diflerence between x and 0 (or simply the
absolute value of x or x), small enough. This relationship 1s usually
described by using two Greek letters: (epsilon) and & (deltay, Thus,
we sav thal |fix) 2| is less than a given positive number £ whenever
|t — [ = |¢| is less than some appropriately chosen positive number 8. It 15
warth noting that the value of & is dependent on the value ol .

Formal definition. Let us now give the standard delinition of a Tint.

1.2 [IeFmNimon. Let § be o [unction which 15 defined at all x on the
apen interval [ containing @, except possibly at @ ilself. The limit aof flx) as
t appraaches fo g 15 Lowrnilten

lim f{x}) =1L,
r—d

if for any ¢ = 0, however sinall, there exists a § = 0 such that
|.a" () L| < whenever 0<lx — al <4,

Mote that in the above definition. 7 is the limit of fx) us x approaches
i cilher [Toem the right or from the left.

The following example uses the definition to prove that a given
funetion has the indicated limit.

1.2.1 EXAMPLE. Prove that hm{2x-7) = 3.

=5

Sodution, We need 1o show that for every & = (0 there exists a § = 0
such that

[{2x ~71 - 3| < & whenever 0 < v — 3] < &

i
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Mo | (2 =T ?_-| |2¢ 10| =2{x - 5| Thus, we must shaw tha
2x - 5| = & whenever (< Jx — 81« f,

oT, equivalently,

v 3eoe whenever 0=|x—35=4

ked

[fwesat §= E'r.,Lhen we hawve

Yy —3]=28 whenever 0y - 5= &
ar. eduvalently,

25 ~7i-3 <& whenever 0= x—5 <3
This will prove that

lim (Zx=71 3, #

§ =t

e next theorem says that a funetion cannaf approach twe differen:
Lt al the same rime. More precisclv, if the limit-of o function exists.
henthis limit ooust be unigue.

L3 THEOREM. (TNIQUENESS OF A LIMIT) ff we have bim f{x) = L

X=Fil
widd ime fixy= Lo, then L, = L.,

e

Proaf. Suppose L, = Lyoand et £= |1, - L, | Since £ is a limit ol
Axl as x approaches a, there cxdsts a 8, = 0 such that

Fixi—dyl = 2 whenever 00|y - a2 §)
Alao, sinee Ly s alimil of fix) as ¢ approaches o, there is & = 0 such that

I .
Fiv)=dap= 2 whenever D<|x —al < by
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Tetd = min 18, . 8.1 Then, applying the Iriangle incquality. we have

|'I.| -'Ijl'ﬁ.l.ll|-_,i'll:.".':]+|.lr-[_.-'i} |r:

<, E o =& when < | —al < &
Henee,

Uy — Lol <l — Lg)
This s o contradiction; henee, our assumption is false. Therefore, £ = L.

and the theorem is proved, &

Limit theorems. Finding limits by direct application ol the definition
is quite tedious. Hence, in order o evaluate limits ol [unctions in w
straight-forward manner, we shall need some powerlul rules,

1.4 THEOREM, I b and ¢ ure constants, they lim (hx — 1= ba - 1

L R

Proaf. 1et &= 0. We wunl lo show that there exits é = 1) such that
|[}:-_r ted—-(ha+e) < whenever U< | ul = 8.

I'o e this, we conaider two cases;

tase 1. Suppose & # [ Sinee |f|’:lx+{:j— (ha—ei=lbly o, we
wanl to find a number & = 0 such that

Bl woes whenever 0= x —f.'r| 2
or, cguivalently,

|t —al= & whenever 0=
|
1

X—o =,
[l wechonse & =g/ b, then we have

lidr+ci—(fet o)< whenever 0= -al <8
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['Ts proses the theorent Tor §ase |
k] L 1 I .
Uase 2 Suppase h (L 1T H =0, then |[."1.1' by Tha t o) =l I
lor all x Since & > 0, we can take any positive number & This prog,

the theorem for Case 2. #

LA b ExampeLE. lm ¢?e- &) — N-2)-8=-22. &
r—=-=1

142 CoroLLary (Lnam ofF A CONSTANT Fuscnion) Jf ¢ g
cobsfund, then for auny real wmamber o,

lim ¢ = ¢,
¥

Pracd. This lollvws from Theorem 1.4 by selting & 00 &

| 43 EXaMPEE,. lm 5 J5. &
il

A4 CORGLLARY {LIMIT OF The IDENT Y FLinge ML For oy

|.|:_.I:.II|
aumther o,

lm x = a,
L
fraaf. This follows from Theorem 1.4 by setfing b 1 and ¢ = b, &

[.4.5 EXaMPLE lim x - =

[

La | kg
s

.2 THEOREM (LIMIT OF & BUML I lim f(x)= L, ond lim aix)

. Y o —=wid
M, then lim { f(x)+ o201 = lim f(x) - lim gixy- L — M,

X owd =y Xk

Frogf. Let €= 0. Then, by definition ol 7, there is s &, =0 such
that

|_f'|I:-:'+—Liffa;..-"2 whenever 0<[x-al <8,
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simifarly, there exists a 6, = [ such that
|}:i Xl- .-"-1’| <g/2 whenever 0<x —a <89,
Mow et & min A, &), Then & =8 and & = a8, Henee,
fixy—L = g2 whenever 0<|v—al<d and

plei— M|<g/2 whenever D<|v—a <8

It Lallonwes that

(o)t gl =il Mz fivi- Lafg(xi- M = g2 - &2 =&

Vo

whenever 0 < [x —al < &, This proves the theorem.  #

The fellowing theorem is an extension of Thearem 1.5,

L Treorew. {0 Tim fiiad L b fieh = ey o0 lim F ()
ks

=il Tokd

Ly, Hien we have

lim [ £ Ceh+ falebt oo 0 L] =0yt iy o+ L

[P
=i

Proaf. This is proved by using Theorem 1.5 and mathematical
induction.  #

6.1 Exanmpie, From Corollary 1.4.2, and Corallary 1.4.4, we have

T=T.amdl limx=75.
f1113
% f—s5

I heretore, rom Theoremy 1.5, himiy =7 =5+7=12
v b

t
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e proots of the following important theerems are found §), stand gy,
i

caleulvs wexis, e, see [2]

.7 THEOREM (Livin oF A PRODUCTE B limv fiix)

T—py

i faf{x) s Lo then lim _J‘iir].l’_—_h[x_h{: fqdq

=

Thearem 17 can be extended o any finate number of finetiong p.
applving mathemancal mduction, :

L& THECRER, I lim fiix)= L0 lim f2ixr LA lim fixy =g

T »iyf Lo T —hjy

|r.'I|'E“.'|' H: .II.'{."I'{-'

i [ A faixd oo faixd] dyds -

&}

b

F Ll

AL Exasiiir. From Theorem 1.4, we have: Tim (Fr -1 B

s —r =
and  lim (=4 1013 =89, Thus. from Theorem |72 i follows tht
L R
I (Fe b1 1—dx+ 10 lm (7x =110, lim (=3 + 1) 25
Tyl s Ly

L9 THeEorEs, 0 lim flxy L oad o ox amy posiive omeger

R

e e e

i e =87

e )

[.9] FExasisor, ﬂ}' Fheoreme 1ol Thm {(Tx =13 - [hos, ot Liedlists
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LY THEOREM. If him f{x)= L. then lim § fix)= L provided
=¥l [
{0 and n is a positive integer, or T <0 and n is a positive odd
ralegrer

0L ExasmpPee. By Theorem 1.4, limi2x 9) - 1: by Theorem
xowd
19 limi2x =9 =(=11" = -1 Hence. by Theorem 1.10. it follows that

vowd

ok S THRY IR 5 .
fim y(2x—-9% =§ lim(2x —‘-Jljj =3-l==] 4
V=4 T—44

L THEOREM. IF lim fix)=L amd lim gixi= M, MW=z0

L—¥dl e 7
Hen

fix) L

vt FLX) M

L1 L ExanmipLe. By Corollary 1.4.4 and Theorem 1% lim xr =27:

=33
also by Theorem 1.2, m(2x+31=9. Thus. by Theorem 1.11, we have
K3
3 lim x°
a 5 b
A : ] ll
s - . e Vi
ress 2B hm{2xt3) ¥
T—%3
. - LTI " # (A i .
Inatempting  to evaluale lim . we  ireguently  encounter
R H[-_rlfl
sitirtions o which Yimog(x) o & Inosuch cases, Theoremy 111 does not

L

apply. But the lollowing theorem is often applicable.

|42 TheoreM, If F oand G oare two funciions such that Fix) = Glx)
feer i v = aoand I lim Gix) exisis. then

Pkl

lim Flx)= blim (Hx).

T —kad =il

I
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Proof. 13y hypothesis, L Gy =L exists. Therefore, for any ¢ =

F—+:i

there exits o & = 0 for which
Wrixy—1 e whenever 0« |v—o| <&,

where x 15 in the domain of the function (7.

Again, by hypothesis, Gx) -1 = FO -1 forall x 2 g Thys Wwe
casily see that for any & = {. there exists @ & > 0 such that
U< v —a <&, then

Fixy - L =|Gixy-1 <=

Thus. lim M= L. and the theorem is proved. &

N

ELT ExampeLe. Evaluate the following limits:

. xm—R s
() lim = by lim 2 =
Sk 2 — =l X

Sudndioni: {a) Since mix 27 = 0, Theorem 1,17 is not applicahic
xal
Sow obzerve that it v # 2. then

FTrJ:L;_H. x=207 -
' ¥ =32 (i =2)

[

'l"l ]
: ]—_1"' F2x 4 = Gx)

I'hus. by Theorem 112 and the other limit theorems, we have

1
Yy - -

Al : . 2

it 5= I1mﬁu + 20+ Ay = (217 2 rd =

. b —
r—=a1 X = L=

5

th) Again. Theorem 111 cannot be used 1o evaluale the wivé
limit, 8o, let

vi+1-1

Hx)
x
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s e 0 then By orpbenaleang the numertor ol fx), we have

fvrel=l) (Jr T4} X I

; =7 = Lal %)
; (vxtl=1 xiJx=-141y ~x+1+1

Hiy)

Theretore, by Theorem 1,12, we have

(RS N ) | |
N [tm ; ==
Wkl ¥ R I W o | i | =

Uhne-sided limits, Observe that when considering  lim fix) we are

L

corteerned with values ol v # @ in an open inlerval { containing &, which
are close e However, the function £ may not be delined in any open
mterval containing . In such a ease, we are led to consider either those
vithues of v greater than @ or values of @ less than g 1 the function [is
detined evervwhere in some interval (o, ¢} and it the value of Sixpean he
ande s close w the oumber £ as we please by laking x in this inlerval
close cnough to g, then we say that the “limicof fix) av x approaches a
fremy the rivhe o L7 and write

lims f{x)= L
VR
Ui the other hand, it ¢ is defined everywhere in an open interval
{her)and fx) can be made as elose to the number L as we please by taking
values of x sufficiently close to @, then the “fawmit of fix] as x approaches
i frevine the feff iy U and we wrile
lim f{xy= L.
el
As un lostration, consider the function £ defined b f[x1=-."._t Ts
Note that il x < 1, then fix} is not a real number {hence, Ax) “docs not

exist™) Thus, we cannot consider the ordinary limit  limyx—1.
Y |

However, if we consider values of x that are geeater than |, then we sep

that the value of ¥x—1  can be made close enough 1o by taking x
sufficiently close 1o 1, In this case, we wrile

13
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lim Jx—1 =0.
|

We shall now formally define one-sided limits.
L1531 DEFmmion. (RiGHT-HarD LisiT) Let fbe a function which i.

detined at every number in some open interval (a.e). Then the Hmit of f.
as x approaches a from the right 1s L, wniten

lim_ fixy = L,

X—=0

if for every £ = 0, however small, there exists a & = 0 such that

|fixy—L

<5 whenever 0<x—-a=8.

1.13.2 DEFTioN {LEFT-Hawo LivaiT) Let fbhe a function which is
delined at every oumber in some open interval (ler), Then the finvir of fix)
iy x gpproaches o fram the feft s [, written

him fxed - L

X—*iT
i Tor every £ > (), however small. there is a & = 0 such that
|f|:xj|— Ll=g whenever () < a—-x < &

REMarK. The limil theorems discussed earlier still hold il “x — o' 15
replaced by “x — o™ or “x = a "

. : -1
1.13.53 ExampPLE. Evaluale hm

xwl ol =1

Selwtion.  We apply an analogue of Theorem 1.12 1o evaluate the
given hirmit. Motice that if x = 1, then

-_] — 'I '1| _]
Fix)=—m—_ = {x—1) yix 1 1px—1)

=

Jxr =1 Jx+x-1) (x4 1)

14
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t_-f Ilyx =1 __l;..'r—l‘,n._.'x‘—1:-."_'r;l=GrLr}_
ViV (=1 (e41dx =1} (xt1)

It follows from the previous [imit theorems that

it = Jig A LG LB

T LY ) (R L b (1+1) 2

[he following theorem pives the relationship between the orcdinary
two-sided limit and one-sided limits.

1.14 THEOREM. lim Fixy existy if ced .rm."_}' r,l'- “'". flxy el

-mF T=8/
o fixy  bath exist and are L'qum' Moroover,
L —g
lim f{x) = lim fix) = lim fix).
=il Ik ¥—bel

;X i
1.14.1 ExasmpLe, Does lim —— exist?
x—1 1|

Sodurion. To answer this guestion. we evaluate the ene-sided limits of

the piven function at x = 1. First. observe that v - 1f= x - |af x = |,
and - 1| ~—ix=1). if x=1. Hence,
x-1 x|
lim — ., = lim — =1 and
rl =1 gyt X1
-1 , %=1
lirm = fim ————=-1.
vl ¥ x—»i -{x-1)

Thus, by Thearem 1.14. the ordinary limit lim does not exist,  #

x—= | ]l

o

Infinite limits. Consider the function f defined by f{x) = ;
X1

We investigate the values of f when x 15 close to 1. To do this let us look
at the following tahles,
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\ L 2 1.1 L0 1.1

fixy | 05

R

2UH) 20,000 2004, (400

Table 5{ x> 1)

From Table 5, we see that as x gets close to | through values grea,
than 1. fix) increases without bound, In other words, we can make ) as
large as we please by 1aking x close cnough to 1. In this case we write

-~

lim — = 4

i --|1 ! [I o ] :|
X -1 il (.9 ()40 (.94 —l
| os | 2 200 | 20000 2,000,001

Table6(x-1)

From the second table we also see tha

UAx) increases without bound as
vapproaches | through values less than 1

Hence. we write
2

lm —— =
L | f.'l'-*]]'

L AR

~ Therefore, as x approaches 1 from cither the right or the left. fx)
mereases without bound, 1n this Case we wrile

, 2

lim —= . = 44

v+l fx-])
LS. Dernamion.

number in some apen in

namber o jself W

dpproaches a, writlen

Let / be a function which is defined a LIP:F.
terval I containing o, except possibly ot "':
vosay thay fx) imcreases withous bound @

1y
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bim fix}=+ag,

¥ —*d

il for uny posiive number &, there exists o & = 0 such that fxp = ¥
whenever 0« |y —a <&

REntark,  The ghove lmit can be read as “the Jmir of fix)y as x

apyreachies o iy posiiove srfinite” Tnsuch acase, the limit does not exasl,
Similarly. we have the tollowing definition,

1.15.2 DEEMITION. Tet 7 be a [unction which is defined al every
purmber in some open interval 7 ocontaining @, exept possibly ol the
mamber o itsell,  We say that  fix) decreases withowt bound as x
appredachies o writlen

iy fix) = —0,
if lor every negative oumber N, there exists a 8 = 0 such that, flay < N
whenever 01 < |y —al <.

1.16 THEQREM. Jf © i%q posiive integer. (ReR

] i | D, i i odd

) - = 4o 1 Im T 5o

(a) ,hﬂ;' .‘;,- = 4 jx i | +a0, 1F r 15 even,
1 A T ]

161 Exampie. {a) lim —— 1o (S
RIS ropll X

1.17 THEOREM Jf a € R, and if limg(x)}=0 and lim fix)=«,

A b2 K il

where © iv a constant net egual o0 zero, then
(i i e 0 o if olx)y— 0 throngh positive values of gix),

fix)

[t = juirh
v 10X

17
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(iiy i ¢=0 and if g(x) — 0 through negative values of g(x),

fix)

l1im =0
v 22D

(1if) if ¢ <0 and if glx) — (¢ through positive values ol gix),

: fix) _
1M =—m

x g LX)

(i) af e and iF glx) -~ 0 through negative valucs of gix),

[1m -”IJ =

r—%fr ,E."T']

0,

1171 ExavrLe. BEvaluate the following limits,

. Ix+1] -5 5 e _
{a) Jm;ll —-ix 5 (b} lim I—I (¢} lim 25
L e Y 3

X

a—) X

Solutton. {(a)let flx)= Ix -] and p(x) = x' = 2x. Then

lim f(x)= lim 3x+1=7 and lim pix)}= lim x° -2x -0
i3t zinat g x—xl

Further, since  piy) tends o zern through positive values of wix), by
Theorem 1.17 (i), we have

LRl R
lim — = 0.

e
=3 =y

{b)Let fix)~ —5x and gix) = 1 - x. Then

lim fix)= lim —5x=-5 and lim g(x}= lim 1-x=0.
x—=1” r—b]" x—] roxl

Since gix) =+ 0 through positive values of g(x), by Theorem 117 (didh,

18
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(c) Let fix)= - W5-x and glx) = x. Then

lim fix)= lim —245—-x =-245 and

s L x=0

lim glx)= lim x =0,
¥ — 01" -l

Sinee gix)— 0 through negative valucs of g(x), by Theorem L. 17 {fv).

—24S5—1x
him ———— =+, #
v —al] x

.18 THEOREM, () If Lm f(x)=+2 gnd hm g{x)=c. where ¢
= K=l
is cny constant, then

lim [ f(x) = g(x)] = +os.

K —F

iy I bim flx)y=—w, gnd Lm gi{x)=c, wherec e R, then

r—ral ¥k

lim [f{x] + g{xﬂ = —,

X7

1.18.1 ExampLr. Lvaluate the following limits;

[ -3 . 3 . ~5x 4
(a) lim |— + i () lim { = _-‘
TR B PO v L=1=-x 3x
2 : -3 . 3.
Sodution, {a) Because Lm =—az and lim ==, i
=3 24X =3 2+x 3

follows from Theorem 118 (7)Y that

|4
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- i 1
lim g e
l-x 24z

|—I'_.!-_

. 5x : 4 v -
ib) Because lim * 4o and  lim —=- . it follows from
e e e | =17 3K

Theorem 118 (5 that

|18 I'HEOREM, ff lim f{x) =+ and limelxi=v¢, where ¢ i

F—=h —Fii
@y Ronzern consiaat, thee
i i e i Hm f{x)-gix) - e
v ora
(i} if ¢ i, lim Fixy-glx) - —oe
. Xl
: . , - R 1=x
191 Exampor. Singe  lim =+ g lim —  =—=u
p—s2” X =2 y—2 7T o

follows from Theorem 1.19 (i) that

; -¥ l=x .
i | ——|= = #
y3 27T L A
1.20 THEOREM. & lim f{x)=—=0 and lim gixl=c. wheno o i
X—*dd

R |

aRY nonzers constant, then

B i e> 0. lim flx)glx) - o

r—+il
(i ife= 0, tim f(x) glx}=-=
xoil
? ) a4 ||.'| '-
lim 5 =—2 and lUm — =F
%3

pil

1.20.] ExampLl, Because
I

il fallows tfrom Theorem 1,20 (57 that

20
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7 dy
i T—]UJ—-‘{" k
x—l) | _.l'."l F i

Continuity of a function. In the previous section. wu pointed out
that i° lim fix) exisls, then its value is mor necessarily equal to fw). the

L |
valuc of the [unction at the number . In fact, Ao may be undefined, On
the other hand, it is possible for fa) w exist and nel hm f{xp. When

ToRQ

honh exist and are equal, we say that fis continuous at o

1.21 Duerisenon,  The function [ is said fo be comtinneus at the
suender o il the following three conditions ure satisfled:

{f1 Aa) cxsts;

(1 lm f{x) exists;
x rid

(i) lim flx) = fie

iRy
1T ane or two of these conditions fail o hold, the fanction is said to be

i comntingons af x = .

Geometrically, a function is discontineons at tbe number e 1l there 15
a hreak in Lhe graph of the funclion § al the point wherex = a.

Further, rrote that it £is diseontinuous at a number . bul lor which
lim #r+1 exists. then either fle) = lim fix) ot My does not exist, This

'R T ] =

discontinuity is called u removable discontinnty because  we van
redeline Fac that fia)= lim f(x] and. henee, £ becomes continuous at o,

Lo

[l the discontinuity is not removable. then it is called an essential

dliNCa i iy

| 31 Exaseere Determine 17 the given lunction is contimuous m the
idicated pumber o 16 0 is discantinusus at e, delermune it rhe

diseantinuity i removable or essential,
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e o E
. 'l"_l i &= i ] ) _I
lap fix)= |-'l'—|i A=
i, i |
. i
Lxample 1.14.1  shows that  Tim = does not exig
e L T

Sedfrf o,
s

Hence condition (i) of Defindtion 1.21 15 net satistied. Therctore
1. Soreover. the discuntinaity 15 essential.

discomtinones oo

i
il red soa =4,

l'hl,;:lf,rl—'; PO
1l x=4

Sedutivi, By definition o poowe see that 204y 7,0 Now. in view of

ITheorem 1,12, we ohbtain

|

co KT == R et 5 2
lim ——— — im — —=Timx+3="7
v —xd x—4 ¥ x -4 |

Thus, lim gixy=gid). Thus, by Detinition 1.21. /s continuous al = 4

P |
el fix) _ a=1,
5
i

Sofution. Llsing the special product &7 — 7 2o FI A~ 451 £

wie s that forx = (),

S _'-|I|'-_ i 3 e e e - —
(1) \I.‘fll__l_l.r-»..‘.l—ﬂlil{i]j +4x ]"'ﬂ
= A (A r+13 + 8y +1 413
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[y [Theorens 1,012,

. o : | |
lim #x) = lim Fix) = lim —

I AL ¥t} '.'--rII;';I'l":L- + | :I-' | ,'i_."_: 11 | 3

mance 08 nol defined, it follows that

Ao discontinwous al O
Flomwover,

since Ll vl exists we may redefing & in such a way thal
] 3
Sy 15 Thus the discortinuily al ¢ is removable.

'
i

22THROREM. I § andd g are twe functions which are cominnony al
e qumber @, then

LR o cnm s o o

= Ry comtingoss of o
CREY iy condinnony af o

fint ,n‘.-:':!._- P CEIREEITIICEY If i oot Waor UETIE I

Limits at inlinify o this scction we shall investizae the function

villues fx} as x increases {resp., decreases) without boond, Consider the
onetion f delined by

— X"
fix]=——mr!
X +2

Freom the lable beloaw, we see lbat as xoincreases through positive
values, the Tunchion values fixd get closer and closer 1o 1. Ioluttively, we
s What we can make the value fixy as close W L oas we please by raking «
Lt e encugh, Inthis case we write

v ) | |13 143 [REIH
Ml (+ AR R AR (R TP AT
— i -
Table

{
_-.
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lhm
T ] ¥ '|'
The symbal “r — 4o s gaed 1o denole that x incroases without boungd

We now deline the above concept Tormally.

1,23 DEFmmon. Let f be a funetion which is defined at cvery
muinhet in some interval (g, toe) The fireit of fx) as X fncreases withionus
Boupd iv 1. writlen

hm fixy= f.

b et L

if for auy £ = 0, however simall, there exisls a number & = O such that

|_."I.|.3'-’:'— ! | < whenever x ° M
We now state the analogue of the precading definilion.

124 DEFNGTION. Let 0 be a lunetiun which is defincd at every
aumber in some interval (=, o). The finsf of fx) asx decreases witfioat
Bawcrnid ix F. wTilED

lim: filx) =4,
-
i for any £ > 0, there exists a number &< 1) suich that

ftxy- L =e  whepever x < A

The symbol “x — —=" indicates thut x decreases without bound,

1.25 THEOREM. [ r o5 o postitve infeger, thon

! 1 1
(wh  lim T_” () Lim R
k b b n N — = xr
I
. ; ; _ \ . :
Proeef Lel fix) : and £ = 0. We want show that tor every £ W

A
iere is there exists a number N 0 such that

24
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I
- N & whenever ¥ - N
:

fixy— L=

or. cquyvalently,

| 1
=R £ owhenever x» = N
|'-'r x

or, equivalently,

v 1 ;
7 = whenever x = N
Since ro1s @ posilive integer, this is equivalent fo

I
i ".I.

gl = whenever x» -~ N,

YRS

|
hus, i order Tor the above o hold, we may choose N = J'—_;' That is.

i
Ol < whepever x > N= Ii}“

L

[is proves (. We con prove (i) similarly. @

1251 Exampir. Evaluate the following limits;

| . Sx -8
fay i - tb1 lim =
e dxt oS -+ 102" +3

Sedution, () To upply Theorem 125, we divide both the numeraboy
and e denominator by the highest power off nucqrriug in either the
numerter of the denominator, which in this case 15 s, applying
Plcoems 1.5, 101 wsd 1.25(a), we have

25
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. 7
1! 47 TP lim (3+ 5}
[y = lim Ry Kk =
V= 2T =R yoepa TS lith (22— )y 2
SR Y

(b First, we divide the numerator and the denominator ol the froctiog

Since we are considering negative values ol x then by definition,

l‘“-:-. LT
W N |vl = —x. Thus. applving Theorems 1.5, 101 and 125 by,
foel levivs (Tal
<, 8 po
4 I B |
. - § " . : ] _.'_:. "o"l”‘
lim = — lim I—_"_ S = M
Pt 0T +3 v g+ 2 4D 2
y v
Limil theorems involving sine and cosine functions. [n the stody ol

the  dertvatives of  wigonometne hnelions, we shall need  some
impartant it theerems, o particular, we shall need o theorem that s
casential in the derivation of the furmula for the derivatve al the sine

lunction. Firsl we state and prove the tollowing onporiant result.

.20 THEoRes CSOULEAL THEOREM).  Suprprase dhad the finictions |2
aord T3 gnre defined o g upen fnfervad §oostaining o except possitiy al
a daell and thar fx) = o) SR for all x in d Alvo supprerse e

lim fix)=L and lim Bx)y - 1.
e r—:id

Fhen lim gy aifse exisey and is egquad to i
L TN

Proaf. let w=1L Then there exist &, -0 and &, = 0 such that

: whenever 0 < |x — o] ~ &, and

-

|Fix) — 4] =

fx) — L= g whenever 0 = v -y < 8,
"ul &= nun{o,, o5). Then

26
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e firi-L<vand —g = hixy- [ < 2 whenever {0 =|x - a | <
I hus, by assumplion, we have
g < fix)-L gy - L <hix)—1 < g whenever 0<|r—al< &
Le. |gixi=1L < ¢ whenever O = |.1' -1 | <,

This shows that lim gixi=1.
Tk
T
127 THEOREM. lim —— = |
Y]

freenf, Let us first assume that O = ¢ = w2, Figore 1 below shows the
mnitcirele ©© 37 1 and the sectar BOE, where B is the paint (1,01 and P
15 the point (cos r, sin ). The arca § of the circular seelor BOP ol radivs r
= | und central angle of radian measure ¢ s 5 - (1725

T{1, sin ticost)

LH_"‘-—H.

G/ﬁ B{1,0)

Figure 1

Ficos t.sin 1)

Mext, consider the triangle BOP. The area of this trangle 1
Ay - (152) el AP).(0.B) = (142 sin ¢ (1) = (1/2)sin .
The line through the points O{0,0 and Plvos £, sin £) has slope

sing — 0 sint
cost ~- 00 cast

27
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: _ : s f
I'hus. the equation of the lineis p = — ==
Los f

If A, square units e the arca of triangle BOT. then

] u’l:

! !
fy = (<) d(B.T)-d(C.B) = ;”"‘ =03 )20
2 o5 | cios |

l'rom Figure 1, we sve that A= 5= s That 1s.

L. _ sin f
_&'ﬂ!]'l.l' = =

1.
2 cosf

| —

By assumption. sid = 0. and henee 20sind = 0. It follows that

rl__l

B

cine  cosd

Taking the reciprocal of each member of the above incqualities. we have

~osind
R Bt S
!

(e of the ahove inequalities pives sinf < L Replacing ¢ by (123 W
have sin {12y = (12) 1ising the identity

| — cosf |
b BB —iprs
5 2
wie have
2
e | | — 5y !
510 —jf =i | — L —
& 2 4
e ahove ineguality yields
| ,[,— LT -
e 14 o i3 we hiave
. SN
lr' T . /.

/
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I a2 << then 0< - < n2. Hence,

2ih (—.r}!
-

| 1
F e e s
1( {h
[us.

< LofF -mf2 < f <

Csnd L
| ;_;3 « 2 e i _lpega

; 3 -,i;r. and 1 2 0),

Since lim{1-1°y=1 and Emi=1 it follows from Theorem 1.26
(-l i =l

. Sint .
that  lim e I, This proves the theorem, #
f—d]

. - 11 ;5
1.27.1 EXamPLE. Find lim ——=, if it exists.
e—+( 50 21

Solwion. To apply Theorem 127, we write

sin?.t}
s x .
: - _?x if x=#0
sy 2{.‘sl x]
2x
Since lim =} and lim = |. we have
rst Tx coell X
. &nlx
- 7 Lim 71 7
L L I T
x— gin2x 2 im sinZx 21 2
sl 2X

Theorem 1.27 can also be used to show that the sine and the cosine
funclions are continuous at zero,

1.28 THEOREM. f flx) =sinx. then [ is continuous at .

Prouf. Let us show that the three conditions in Delinition 1.21 are sa-

. . s1n f
tistied. Clearly, (i) fi0) = sin 0 = 0. Now, writing sint = R we have

29
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. . _ 111 A N Hinf__n_. m
{iy lim sint  lim¢- r—: fim ¢ fim — -1 = AL

" PR |
i =i w bl vt |

Hence, (i} lim sint sinf D Vherefore, 15 comtinuous at .
vowll

L29 LFORENML I fixi=coax, ther fis conrinius @t 1,

Proaf. Again, we verily the three conditions given in Definition 1.21,

(i1 cos=1

—— — 3 —
i T : A | ol i
iy lim cosx = lim v l—sin’x = _lim{] — sin ) =+1-0=1
© wll v —il Vs
] L o e E G
In (i), we can replace cos by 1 sin’x because cos x = O whenx =1
| PR
aml -5 <x®

Thus.

2]

iiifn m eosx=cos D |
=)

Therelore, # is cominuous at &, &

The following theorem is also important. [t is an immediate conss-
quence of the previous three theorems,

N
1.30 THEOREM.  lim — =1
Jonlk f
ol =wost . (l—cosfHlteoosi)
Proaf, lim — iim =
5ol i {3 W1 + eosd )

. {1 eos'h)
= lim—

tar{l * cosr)

; sincf
= lim :
=] + cost)

I

=1 0

. sint .
= lim lim
t=t ¢+ i=0f{] + oos)

I ==

Lhis proves the theorem,  #
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. - - . l=cosx C
13001 Exanielf, Evaluate  lim . 11 the limit exists.

x-30)  SINX

Selwdion. 1F x 210, then

| —cos
1 —¢osx
VR 517 X
v

Phus, applving Theorems 111 1.27, and 130, we have

lim SELLE
.l —rcosx | { .
im _ =l X __ 1 oy
vt EI X . sinx !
- fim
roWllx
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