THE DERIVATIVE

Esperanza Blancaflor Arugay

In the seventeenth century. an Englishman. Sir Isaac Newton (1642-
1727). and a German. Gotfried Wilhelm Leibnitz (1646-1716). indepen-
dently introduced the calculus. The calculus is considered the motion-
picture machine of mathematics. It catches natural phenomena in the act of
changing. or as Newton called it. in a state of flux. Other fields of mathe-
matics are to be likened to the camera which shows a still picture of
nature as it appears at a given instant without regard to the possible
appearance the following instant.

Nature 1s never static. Everything around us is in a state of motion.
Hence. the processes of nature is not possible without the notion of rate
of change or denvative.

Rate of change: the changing time of sunset. The sun sets at
different times of the vear. depending on date and location. Here in the
Philippines. in the year 1994. for instance. the sun sets at

h

6:14 con May
43 on October 5. and

:25 on December 5.

N

N

The time of sunset is a funcrion of the date. If we let 7 be the time of
sunset in hours and minutes and d be the date of the yvear. we can express
our functional relation in the form T = 7(d). For example, from the data
above, we have 6:14 = T(May 35). or we simply write 6:14 = T(123), since
May 5 is the 125th day of the year. Similarly. we can write 5:43 =
7(278) and 5:25 = T7(339). We observe that the rate at which the time
of sunset is changing varies at different times of the vear. We show how
the rate varies by looking at some further data for sunset from a weather
news for the year 1994.
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Using the data below, we can estimate the rate at which the time of
sunset is changing on October 5. On October 8, the sun sets 5 minuteg
carlier than on October 2. This is a change of —5 minutes in six days,

so the rate of change is

(-5 minutes ) / (6 days) ~ - .83 minutes per day.

date time| date time date time

May 2| 6:13| October2 | 5:45| Dec. 2 5:25
May 5| 6:14| October 5 | 5:43| Dec. 5 5:25
May 8| 6:15| October 8 | 5:40| Dec. 6 5:26

We say this is the rate at which sunset is changing on October 5 and we

write,
7'(278) ~ —.83 minutes per day.

The negative sign indicates that the time of sunset is decreasing, i.e., the
sun is setting earlier each day. Similarly, we find that around December 3,
T'(339) = .17 minutes per day and around May 5, T'(125) ~ .33 minutes
per day. The last two values are positive since the time of sunset is
increasing, i.e., the sun is setting later each day in May and December.

With these rates, we can estimate the time of sunset for dates not
given in the table. For instance, May 10 is five days after May 5, so the
total change in the time of sunset from May 5 to May 10 should be
approximately

AT ~ (.33 min. per day) x —5 days = 1.65 minutes.

In whole numbers, then, the sun sets 2 minutes later on May 10 than
on May 5. Since sunset on May 5 is 6:14, sunset on May 10 is 6:16.

By letting the change in number of days be negative, we can use the
same reasoning to tell us the time of sunset on days shortly before the
given dates. For example, November 29 is -6 days away from
December 5, so the change in the time of sunset should be i

AT = (.17 min. per day) x —6 days = —1.02 minutes.
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I'herefore, we can estimate that sunset occurred at 5:25 — 0:01 = 5:24
on November 29.

Changing rates. Supposc. instead of using the tabulated values for
October 5. we try to use our May data to predict the time of sunset in
October 5. Now, October 5 is 153 days away after May 5, so the
change in the time of sunset should be approximately

AT = (.33 min. per day) x 153 days = 50.49 minutes,

and we compute that sunset on October 5 should be 6:14 + 0:50 = 6:64 or
7:04. which is 1 hour and 21 minutes later than the actual time! When
we use the formula above to estimate A7, we assume  that the time of
sunset changes at a fixed rate of .33 minutes per day for the entire 153-
day time span. The rate actually varies, and the variation is too great for
us to get a good estimate. Only with a much smaller time-span does the
rate not vary too much. Predictions over long time spans are less reliable.

REMARK. While many rates do involve changes with respect to time,
other rates do not. Examples are the dose rate for medicine  (milligrams
per pound of body weight). annual birth rate (live births per 1,000
population), death rates (deaths per 1,000  population).  Any quantity
expressed as a percentage. such as an interest or unemployment rate,
is a rate of similar sorts. An unemployment rate of 4% . for instance,
means 4 unemployed workers per 100 workers.

8:00
7:00
L— N
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Figure |
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Graph of a function: graph of data. We now look at the graph of
the sunset  function. See Figure 1. The dates are represented in the
horizontal axis. the times are on the vertical axis.

We know from geometry that the rate of change of a linear function
can be visualized as the slope of its graph. Can we say the same thing
about the sunset function?

LLooking at the graph of the sunset function, we observe that its graph
is not a line. so the sunset function is not linear. How do we make
the connection then between rate and slope? What do we mean by the
slope of this graph? These can be answered and made clear by
enlarging the graph.

Imagine we have a “microscope” that allows us to “zoom in” on the
graph near each of the three dates we considered in the given data. [f
we put each magnified image in a window, we get windows a, h and ¢
below.

8:00

7:00

6:00 pm=— /.D’ ‘\E;L JZ
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|

Window a Window b Window ¢

Figure 2
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Notice how different the graph looks under the microscope. First of
Il it now shows up clearly as a collection of separate points - one for
cach day of the year. Second. the points in a particular window lic on a
line that is essentially straight. The straight lines in the three windows
have very different slopes, but that is only to be expected.

et us calculate the slope in each window. In window a. choose the
points (dy.T}) = (122, 6:13) and (d,.T5) (128.6:15). The slope 1s

AT -1 615-6:13

4 [5-6:13 2 minutes minutes
Ad dy-d; 128-122

A ~ 33—
6 days day

Using the same approach in the other two windows we find that the
slope in window 4 is —.83 min/day and the slope of the line in window
¢ is .17 min/day. These are exactly the same values as we have for rates
of change of the time of sunset around May 5. October 5. and December
5.

REMARK. The rate of change of a function at a point is equal to the
slope of its graph at that point. if the graph looks straicht when we view it
under a microscope.

The graph of a formula. Rates and slopes are rcally the same thing
_that's what we learn by using a microscope to view the graph of the
sunset function. But the graph of the sunset function consists of a  finite
number of disconnected points - this is a problem when we deal with data.
In such cases, magnifying the graph too much becomes useless. lFor
instance, we get no information from a window that was narrower than
the space between the data points. On the other hand, if we consider the
graph of a function given by a formula, there is no limitation of
magnification. We can magnify as much as we wish and still obtain useful
information.

While the microscope is used by biologists to study microorganisms.
the “microscope” that we are talking about here is actually a computer
in which we can enlarge or shrink any part of a graph by pressing a “zoom
in" or “zoom out” command on the keyboard of the computer.

Consider the function f(x) = x' — 8x. Let's find f'(1), the rate of change
of f when x = 1. We need to zoom in on the graph of fat the point (1,/(1))

(1.-7). We do this in stages, producing a succession of windows
(See Figure 3) that run clockwise from the upper left corner.
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Figure 3

Notice how the graph gets straighter with each magnification. Let's
call field of view that part of the graph that we see in a window. The field
of view of the second window is only one-tenth as wide as the previous
one. and the field of view of the last window is only one-thousandth of
the first!

Intuitively. the rate of /' is the slope of the graph of f when we
magnify the graph enough to make it look straight. But how much is
enough? Which window should we use? The following table gives the
slope  Ay/Ax of the line that appears in each of the last four windows in
the sequence. For Ax we take the difference between the x-
coordinates of the points at the ends of the line, and for Ay we take the
difference between the y-coordinates.

Ax Ay Ay/Ax

1528 | -.589638844 |-3.858892958
0147 | -.058823280 (-4.001583673
0069 | -.027603811 |-4.000552319
0037 | -.014802170 [-4.000586486

As you can see, under successive magnifications, the first five digits
of  Ay/Ax have stabilized. The values of Ay/Ax are successive

approximations to the slope of the graph. The exact value of the slope is
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then the limit of these approximations as the width of the field of view
shrinks to zero:

f'(1) = theslope of the graphat x =1 = lim :i .
[n the limit process, we take Ax — () because Ax is the width of the field
of view. Since five digits of Ay/Ax have stabilized. we can write

(1) =4.0005 .

To find f'(x) at some other point, proceed the same way. Magnifs
the graph at that point repeatedly, until the value of the slope stabilizes.
Our main observations are summarized below.

REMARKS. (1) The slope of a graph at a point is the limit of the slopes
seen in a computer at that point, as the field of view shrinks to zero.

(2) The rate of change of a function at a point is the slope of its
graph at the point. Thus the rate of change is also a limit.

Formal definition of the derivative. The word derivative is adopted
for convenience to replace the more cumbersome phrase rare of change.
In other words. if we can compute the derivative of a function y = fix) at
x = x; and can find its value, the number thus found tells us how fast fis
changing with respect to x at the point on the graph whose abscissa is x,.

2.1 DEFINITION. The derivative of the function f at x is the rate of
change of f at the point (x,f(x)). which is the same as the slope of its

graph at (x. f{x)). This is denoted by f’(x). Formally. it is defined bv

, . J(x+Ax) - f(x)
x)= ] =
7 AJTO Ax

The value f'(x) is called the derivative of f af x. if the limit exists.

I.et us examine this definition from the geometric point of view.
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Consider the graph of o function v A(x). Let POy bea poiy on

the graph and Q(x,.1,) be another point of the .gruph‘. near P T i
through the points 2 and O s called a secant line. (Figures 4 and §)

.............. o)

O X \ ()

Figure 4 Figure 5

Note that v, =x, + Axand y; =y, + Ay. The slope of the secant line s,

oy A fxy +Ax) = f(x))

Xy =X Ax Ax

Now. if we let Ax approach 0, the point O will move along the curve’
= fix) and approach the point . What happens to the secant line? As
the point O moves closer to the point 2. the secant line pivots about the
point I and gets closer to the tangent line (see Figure 6).

Figure 6

IO
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Thus as Ax = 0. the slope Ay/Ax of the secant line approaches the slope m
of the tangent line, that is,

. Ay i —f(x
m= lim =X = lim [l +4x) - f(x) =1'(x).
Av—0 Ax Av—0) Ax

The geometric interpretation of the derivative above shows to us that the
derivative of a function fata point x = x, in the domain of fis the slope
of the tangent line to the graph of f at the point (x,.;) = (x;,fix,)). The

: (X +Ax) = f(x)) . y
expression Lv~&l ) is called a difference quotient.
AX

REMARK. The derivative is a limit. To find that limit, we follow a
four step process:
(a) Replace y by v+ Ay and x by x + Ax in the given
cquation.
(b) Solve for Ay.
(¢) Divide both sides of the equation by Ax.

. . Ay
(d) Evaluate lim —.
w0 Ax

2.1.1 EXampLE . Giveny = x’. find 1 '(x).
Solution. Since y+ Ay = (x + Ax)’, we immediately have
Ay =(x+Ax) -y
= (> + 3x°Ax + 3x(Ax)’ + (Ax)’ — X’
= 3x°Ax + 3x(Ax) + (Ax)’.
Ay 3x'Av+ 3x(Av)’ + (Ax)’ |

C Ax Ax
. Ay . 3.\'2Ar+3x(Ax)2+(Ax)3 )
“lim === lim =3x".
wo0 AX Avs0 Ax

Hence, /7(x)=3x". #

NOTE. In calculating this limit, you must be careful to treat x as a
“constant” while letting Ax approach zero.
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2.1.2. EXAMPLE. If fix) =+x, find f'(x)-

Solution. From fix)= Jx,wehave fictAx) = NxX+AX Hence,

fxs d= /() _ iy SERNE

[ lim ST A A

I \/erA;c-\/x\/x+Ax+«/;
_ ;Y oY
/\xli() Ax \/x+Ax+\/;

(x+Ax)-x

= lim ————F7-
A:T()Ax(\/x-i-Ax +«/;)

1
o f'x) = ——=. #
/'(x) 2 x
The preceding example makes use of the definition of the deri" ative
in functional notation.

The derivative notations. Other notations used to denote the

derivative of y = f(x) are:

dy
dx
The process of finding the derivative /' of a function f is called differen-

d,
) yl, ny, Dx‘f, ;}’L
X

tiation.

2 2 DEFINITION. A function fis said to be differentiable at x, if f'(x)
exists. If fis differentiable at every point x, in its domain, we say that f 1

differentiable.
Differentiability and continuity. Consider a function f defined by
the equation (see Figure 7)

3x-2, 1fx<3,

(x) =
/(%) {IO—x, ifx > 3.
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| S

0/ 3 m\x

Figure 7

Since lim fix) =7 = f{3), as x — 3, it follows that f is continuous at x = 3.
However, if we form the difference quotient,

fG+A)-f(3) _ fB+Ax)-7
Ax Ax

and calculate its limits as Ax — 0 both from the left and from the right, we
obtain,

34+ Ax)— G+ Av)—7
lim LGFA)-T7 3 hile fim 28PA-7 _

Ax—0~ Ax Ax—0* Ax

Since the left-hand and right-hand limits of the difference quotient are not
equal, the limit of the difference quotient does not exist; that is, /'(3) does
not exist or f'is not differentiable at x = 3. If we look at the graph of f'in
Figure 7, particularly at the point where x = 3, the nonexistence of the
derivative is indicated by the absence of the tangent line there.

2.3 DEFINITION. The derivative from the right of a function f is

: . flx+Ax)- f(x)
+ = 1 ‘
f+ () Axl—r>nO+ Ax

The derivative from the left of a function f is

. . flx+Ax)- f(x)
f(x)= 1 .
i A\'TO' Ax
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I'hus. for the function graphed in Figure 7. f (3) = 3 and fi3) = -
Hence, f'(3) cannot exist.

REMARK. The derivative f'(x) exists and has the value 4 if and only
if both of the one-sided derivatives exist and have the same value A.

2.3.1 EXAMPLE. Let the function / be defined by,

Flx) = {x‘ - ifxso,
_-xh

if x>0,

Figure 8

Determine if /s differentiable at x = 0 (Figure 8).
Solution. By Definition 2.3, we have

L ) (0+ Ax)— £(0 _ D)
f.(0) = lim A )=/ ©) = lim M
Ax—0" Ax Av—0' Ax
= Iim —Ax=0.
Ax—0"
: - SO+A)=F(0) [0+ A0
/(0) = lim = i e ST
Ax—0" Ax Av—>0" Ax
hm Av=0. #
Av 20
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Since £.(0)= f_'(O) = 0. f'(0) exists and equals 0. Hence [ is differen-
table at x = 0. This example shows that a function defined “piecewise”
can have a derivative at the boundary number between the “pieces”.

Geometrically. a function that is differentiable at the point
(x;.f{x;) of its graph has a tangent line with slope f (x,) at that point.
Obviously. fis continuous there.

2.4 THEOREM. If a function is differentiable at the number x,, then it
Is continuous at x,.

Before we prove this, let us recall the definition of a continuous
function at a point.

2.5 DEFINITION. The function f is said to be continuous at the num-
ber aif

lim f(x)= f(a).

X—da

Proof of Theorem 2.4. Assume that f is differentiable at x,. We write,

J(x) - f(xy)

x—x]

Ax) = fix)) =

(x=x;), x#x,.

We take the limits of both sides and apply some theorems on limits:

lim [/ (x) - ()] = tim ZEZLE0) (

XX XX X =X

X))

= f'(x;) lim (x-x)= 0.

X=X

Thus lim f(x)= f(x;) and f is continuous atx,. #

.\'—)Xl

) Xy tAx)-f
REMARK. The expressions f'(x)) =, /_\l\-lil:() S Az J(x) and

f'(x,) = lim VAC P ACIV I, equivalent. To see this, letx = x, + Ax.
X=X, X — X
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Then Ax — 0 is equivalent tox — X.

Formulas for derivatives. Up to now. we differentiated functi(ms e
direct use of the formal definition of the derivative as a limj Ofi
difference quotient. Differentiation in this process can be tedious. Relie‘f
from this technique is given to us by applying basic theorems, These
theorems are proved using the definition of the derivative.

2.6 THEOREM (CONSTANT RULE). The derivative of a  conggy
function is the zero function. In symbols, if fx) = c for all x, where ¢
a constant, then f'(x) = 0 for all x.

2.6.1 ExaAMPLE. Let f(x) =8 —m forall x. Then f'(x)=0. #

2.7 THEOREM (IDENTITY RULE). The derivative of the identity function

is the constant function 1. In symbols, if f(x) = x for all x, then f'(x) = |
for all x.

2.8 THEOREM (POWER RULE). If n is an arbitrary constant, then

n n—1 dX” n-1
D_x" = nx or — =nx .

dx

2.8.1 EXAMPLE. Given h(x)= v/x . find D, h.

I

Solution. By Theorem 2.8, D, (Jx )= D, (x*) = -‘%x‘-" . H
2.9 THEOREM (SUM RULE OR ADDITION RULE) The derivative of asi"

is the sum of the derivatives of the summands. In symbols, if f and g0
differentiable functions of x, then

Dy (fix) + g(x) )= D, fix) + D, g(x).

2.9.1 EXAMPLE. Find Dx(l+5j.
X

)

L —

X

Solution. D, (l+ 5) = Dx(l )+ D, (5) =D, (x 1) L0 =X
X X
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2.10 THEOREM (PRODUCT RULE OR MULTIPLICATION RULE). The
derivative of the product of two functions is the first function times the
derivative of the second function plus the derivative of the first function
times the second function. In symbols, if [ and g are differentiable
functions of x, then

Dy [f(0)g()] = Ax) Dy [g)]+ Dy [f(x)] g(x).

2.10.1 EXAMPLE. Find D, [(x + 1) (x* —2)]
Solution. D [(x + 1)(x* = 2)] = (x + [ D, (**~2)] +
+ [ Dy (x + D= 2)
=(x+1)(2x) +1(x*=2)
= 27+ 2x+x° =2

=3 +2x -2 #

2.11 THEOREM (QUOTIENT RULE). The derivative of a quotient of two
functions is the denominator times the derivative of the numerator minus
the numerator times the derivative of the denominator, all divided by the
square of the denominator. In symbols, if f and g are differentiable
functions of x, then

D (f'(x)] _ gD S(0)-Dgv)  d (f(x)) gL %
L) g’ (x) dx \ g(x) 2 (x)

2.11.1 ExampLE. Find D, ( 3x+ 7).
X

¥’ ] _ DD =X [D (x4 7)]

Solution. D, ( (x'+7)

x'+7

(x' +7)(2x) - x"(3x7)
(x'+7)°
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l4x—)c4
(x> + 7)*

The next rule is a consequence of the product and the quotient ruleg
2.12 THEOREM. If ¢ is any constant and f'is a function of x then
(1) Dy (¢f)=c D, f,
D, f
A
2.12.1 EXAMPLE. Given f{x) = 8x — 2/x. find 1.

(i) D, (<)
i D, (—)=-c¢
f

Solution. D, (8x —2/x) = D, (8x) — D, (2/x)

—8D - 2DX g0y
J x2

Derivative of a composite function. Suppose that y = f{u) and y =
£(x). We can combine the two equations and write Y = h(x) = flg(x)). Here.
the function 4 obtained by “chaining” f and g together defines a new

function called a composition of fand g and is written A = fo g For
example. let

R
v=u and u=5x+1.

Then, substituting the value of u from the second equation into the first
cquation, we get

Thus, vy = h(x) = flg(x)) = (fo ) = (5x + 12 We now define
composition of function precisely.

2,13 DEFINITION. Let f and g be two functions satistying the cotr
dition that at least one number in the range of g belongs to the dom.uu
/- Then the composition of f and ¢, in symbols f o g, is the ftunctio®
detined by the equation
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(fo2)x) = flg(x))

2.13.1 EXAMPLE. Let f{x)=3x — 1 and g(x) =x". Find,

(a) (fog)(2) (d) (g 0 N(x)
(b) (g0 N(2) (€) (foH(x)
(©) (fog)x) () (fo £)(3.007)

Solution. (a) (fo g)(2) =£(g(2)) = £(2) = A8) = 23
(b) (g0 N(2) = g(f(2) = 2(B3(2) - 1) = g(5) = 125;
(©) (fo @) =f(gx) =f(x') = 3x" — 1;
(d) (g 0 N(x) = g(fx)) = g(Bx - 1) = (3x - 1)’;
(€) (fo N(x) = fifix)) = f (3x = 1) = 9x - 4;
(f) (fo £)(3.007) = £ (2(3.007)) =f(3.0073) ~ 80.57.

An important result for finding the derivative of a composite function
is the following rule known as the chain rule.

2.14 THEOREM (THE CHAIN RULE). If y = w(u) is a differentiable
function of u and u = u(x) is a differentiable function of x, then y is a
differentiable function of x and

dy dyd
D, y= Dy Dyu, or &y _ & au

dx  dudx’
2.14.1 EXAMPLE. Ify=1" and u=5x + 1, find dy/dx.

Solution. Y =LA _ 2,05 =10u=10(5x + 1), #

dx du dx

One way to understand the meaning of the chain rule is to think of it
in terms of rates of change. The equation

dy dy du

dy  du dx
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just says that the rate of change of v per unit change in x is equal to the ray
of change of v per unit change in « times the rate of change of per Unict
change in x. For instance. if y is increasing twice as fast as u ang uin
turn is increasing thrice as fast as x. then y is increasing six times g fast
as x.

In another notation. if we let v = fu), then D, Au) = f'(u), and the
chain rule takes the torm.

D, f(u) = f"(u) Dy u.

I'he above form is probably the most practical form of the chain rule for
routine calculations ot derivatives.

2.14.2 EXAMPLE. Find D, (x’ = 6x)" by using the chain rule.

Solution. Let fu) = W’ and u = x’ — 6x then Au)= (x3 — 6x)%, and
f'(1)y=2u.and D, u= D, (x" —6x)=3x" — 6. Hence,

D, (X —6x) = D, fla)y=f"(1) Dy u
= 2u(3x’ - 6) = 2(x’ — 6x)(3x° — 6). #
To differentiate the expression (x3 — 6x)° in another way, we can expand
it first and then differentiate it.
One way of remembering the chain rule, given to us in [1], 1s stated as

DA whatever) = f'(whatever) x D(whatever).

For instance, using this device with fas the power function, we would
have

D, (whatever)2 = 2(whatever)2'I D, (whatever),

Thus, the calculation of Example 3 could have been abbreviated as
follows:

D, —6x) =2 = 6x) 7 Dy (xt - 6v) = 2(x* — 6x) 3x” — ©)
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The chain rule is often used to calculate derivatives of the form Dyu”.
where u = u(x) is a differentiable function of x and » is an arbitrary cons-
tant. Thus, letting f{u) = u”, so that f'(u) = nun-1 we obtain the important
formula

n -1
D" =nu"""D,u.
In other words, we have the pattern

D(whatever)" = n(whatever)” ' D(whatever).

2.14.3 EXAMPLE. If F(x) = ———_ find F'(x).
(4x-T7)

X -

]
Solution. F'(x)=D. ———— = D_(4x -7)"°
#)= D (4x - 7) x (=)

= 3@4x-N"* D (4x-7)=-12(4x-7)"* 4

2.14.4 EXAMPLE. If h(r)=sin’ 1, find D, h(1).

Solution. D, h(t) = D, sin' 1 = 4(sin t)3 D, (sin t) = 4(sin 1) cos t.

2.14.5 ExaMpLE. Find D, G(x), if G(x) = (x + 3)(1 - 2x)".
Solution. G(x) is a product so we first use Theorem 2.10.
Dy G(x) = Dy[(x+3)(1-2x)]

(x +3)D, (1 =2x)" + [ D, (x + 3)](1 - 2x)’

(x +3)5(1 = 2x)* D, (1 =2x) + (1 - 20)°

(x +3)5(1 =20 (-2) + (1 = 2x)’
= (1 -20%(1 - 2x)- 10(x + 3))
= (1-20)"(-29-12x). #
The next examples illustrate the repeated use of the chain rule.
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2.14.6 EXAMPLE. Find Dv\_(\/_\-»‘ -4) .

Solution. A first use of the chain rule gives,

p(Vx=a) = s(¥x'=4) py(Vx-4)
= st 4 D, (Vx4

|
Applying the chain rule again on D, (\/x" — 4) = Dx(x'1 - 4)2 , We get,

19| —

1)\.(\/7—'4)5 ~ 50— 4y Dy (x - 4)

5(x° — 4)° (% )(x' —4)"5 (3x°)

19w

#

('5%”2 )(x" —4).

If u = u(x) is a differentiable function of x, we can combine the chain
rule with the usual differentiation rules for trigonometric and exponential
functions. Listed below are some of the most basic differentiation

formulas:
D, sinu=cosu Dyu,
D, cosu=-sinu D, u,
D, tan u =secu Dy u,
D, sec u=secutanu D, u,

Dxbu = bu log b Dxu.
3.14.7 ExaMPLE. Find the derivative of flix) = tan(3x6).
Solution. f'(x) = sec’(3x") D, (3x°)

= sec’(3x") 18x° = 18x" sec’(3x"). #
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2.14.8 EXAMPLE. If F(0) = (1 — tan (30 = 7)) find Dy F .

Solution. Dg F(8) = Dg (1 - tan(30 ~ 7))’

= 3(1 - tan(36 + 7))’ Dy (1 - tan(36 + )

= 3(1 - tan(30 + 7)) [- sec’(30 + )| Dp (30 + n)

= 3(1 —tan(30 + n)): [ scc:(?\() =) (3)

= 9(1 —tan(30 + 7)) [~ sec’(30 + 1)].  *#

As stated earlier. the chain rule is actually a rule for diflerentia-

ting the composition of functions. To see this. let v = fa) and 7 g(V),
so that y = f{g(x)) = (fo 2)(x). Hence. we have

dy dy du

0 ! = ——=—"—=f' o'(x)=1f"(g(x "(x).
(fog)'(x)=— g 08" @) =1 (g)g &
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