
INTEGRATION AND SOME 
APPLICATIONS 

Emmanuel M. Lagare 

It has been the traditional view, albeit inaccurate, that differential 
calculus and integral calculus be treated separately. With such a 
perspective, teachers lose the pedagogical advantage of viewing these two 
facets of the calculus like two sides of the same coin and exploiting the 
Synergy of both. 

This intimate connection between derivatives and integrals was first 
discovered by Newton and Leibnitz and has formed the linchpin in the 
development of physics. It has also played a major role in the application 
of calculus to the real world. 

The lecture will substantively cover only single integrals although 
multiple (particularly double) integrals will be briefly touched. The focus 
will be the concept of the sum and the role it plays in the application of 
integration. 

Proofs will be generally omitted in these notes due to space 
limitations. However, you can find the proofs in the texts mentioned in the 
bibliography or any good calculus text which are now increasingly 
available in local reprints at the bookstores. The assumption throughout is 
that other concepts with bearing on integration have been discussed or will 
be discussed by other speakers. 

Partitions and integration. The concept of partitions or divisions 
play a chief role in the development of the theory of integration. 
Depending on the specifications of partitions, we arrive at a different 
integral. What we shall be discussing will be partitions which will give 
rise to the Riemann integral. 

3.1 DEFINITION. A partition D of [a,b] is a collection of points 
i'o.y). . .Vni such that a = yo <y< "<y, =b. The norm |D| of 

the partition D is the largest of the differences(y, -}), i=1,2,.. n. 



3.2 EXAMPLE. Let a=1, b= 4. One such partition is 
D: a=|<12<1.5<1.8 <2.1 <2.5 <3.0 <3.4 

F'or this partition, the nornm is |D| = 3.0 -2.5 = 0.5. # 
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The next definition ives the requirements for a function f to be 
Riemann integrable. This definition was given by Ricmann. An equivalent 

detinition was given by Darboux. 

... n, we have 

3.3 DEFINITION. Let f be a function with domain the interval of real 
numbers |a,b\, and range which is a subset of the real numbers. We say 

that fis integrable on |lab< if we can find a number / with the property that 
given &>0 there exists a >0 such that whenever a division D 

satisties tlhe conditions that |D| <6 and x; is in [y,-). fori = 1.2. 

1Xy; - V-)-1| <t. 
i=l 

of I is given by 

We say that / is the (Riemann) integral or definite (Riemann) integral of 
fover [a,b]. This value is denoted byf(x)d . In some sense. the value 

3.6<3.8<4 -h 

= lim 

x 

n 

When fx) > 0, each term in the above summation is the area of the 

rectangle of width y, - y,- and length fx;). As D ’ 0 the widths 
become smaller and smaller and the sum of the rectangles better and better 
approximates the area under the curve of (x;) from a to b. 

3.4 ExAMPLE. Let fx) =2x and D as given ab0ve. Choosing the 
x}'s as follows: 

= 1.2, x, = 1.3, X = 1.7, x, = 2.0, x; =2.3, xh = 2.8, X, = 3.2, x� = ) 
Xy = 3.7, X10 = 3.9, 
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we have 10 Z
a
y

, 
-y,-)=

 

=| +f(2.3)(0.4) 

+(2.8X0.5) 
+

 

f(3.2 

X0.4) 
+

 

f(3.5)(0.2) 
+t 

+f(3.7)(0.2) 
+

 f(3.9)(0.2) 

=
 

15.12. 

3.5 

DEFINITION, 

Let 

Fand 
f be 

tw
o 

real-valued 

functions 

defined 
on a.b] 

such 

that 

F
(x

) 
=

 

f(x) 

for 
all 
x e la,b]. 

Then 
we 

say 

that 
F is the 

antiderivative 
of f in 

(a,b]. 

REM
ARK. 

One 

class 
of Riem

ann 

integrable 

functions 
is 

the 

class 
of functions 

which 
are 

derivatives 
of som

e 

functions. 
In 

fact, 

integralion 
as inverse 

lo
 

differentiation 
has 

been 

alw
ays 

enphasized 
in 

calculus 

courses. 

The 

inverse 

process 

cannot 

alw
ays 

be 

perform
ed. 

H
ow

ever, 
in

 

cases 

w
here 

it can 
be 

done, 

3.6 

THEOREM
. 

The 

follow
ing 

form
ulas 

can 
be show

n 
by 

obtaining 
the derivative 

of the 

right-hand 

side 

using 

the 

definition 

(see 

also 
the 
pre ceding 

rem
ark). 

(a) 
dx 
=

+
C

 +
 

C. n#
-i 

n+1 

(b) 
r"d 

(c) 

dx =
 

n +C
 

(d) 

edx 
=

 

e+
C

 =
 

COSX 
tC

 

(e) fsin 
x dá 

57 

f(1.2)\0.2)+f(L3)X0.3) 
+

 

f(1.7)X0.3) 
+

 

f(2.0)(0.3) 

com
putation 

is m
ade 

m
uch 

easier. 
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() 

cosrdx 
=

 

-sin 

xtC
 =

 

tan 

x
+

 
C

 

(g) 
sec'x 
d 

=
-cot 

x +
 

C
 

(h) 
(esc'x 
dr 

x tan
 

x dx 
=

 

sec 
x +

 
C, 

x cot 
x dx 
=

 

-csc 
x +

 
C. 

(k) 

sec 
x dx =

 
In 
lsec 
x +

 
tan 

x+C
, (i) 

csc 
x dx =

 
In 
csC 
x - cot 
x +C

, (m) 
tan 
x dt =

 
In lcos 

(n) 
cot 
x dk =

 
-n

 
sin 

x+C
, -+

C
, 

a>0, 

In
 

a 
a (0) fa'ár 

dx 
=

 

arctan 
x +

 
C. 

(9)Jdt 
=

 
arcsin 
x +

 
C, 

dx 
=

 

arcsec 
x +

C
. 

1 

IfF
 

andG
 

are 

both 

antiderivatives 
of f then 
Gr) 3.7 
THEOREM

. 

=
 

Proof. 

Differentiate 
G

 
- F 

and 
use 

the 

fact 

that 
the 

antiderivative 
ot 

the 
zero 

# 

This 

theorem
 

says 

that 

any 

antiderivative 
of f can 
be 

obtained 
tron by 

choosing 
the 

constant 
C

 
as 

needed. 58 
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x+C
. 

F(x) 

+
C

 

w
here 

C
 

is any 

constant. function 
is 
a constant 

function. 



From Definition 3.3. we can see immediate applications of the 
definite integral which will be discussed later. 
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3.8 THEOREM. If F is the antiderivative off, then 
F(a), i.e., the integral offover [a,b] is F(b)- F(a). 

Proof F is continuous for each xe [ab] since F is the antideri 
vative of f. By the Mean Value Theorem, F(y,)- F(y-)= 
fx, ; -y-) for some x; in y-.]. The conclusipn follows from this 

observation. # 

3.9 THEOREM. If g is a differentiable function on [a,b], then 

n+] 

3.10 DEFINITION. Iff is integrable on [a, b], then we define 

=0 

-+C. 

Simple properties of the integral. Viewing the definite integral as an 
area gives a meaningful interpretation of the following theorems. 

for all c in [a,b]. 

3.11 THEOREM. If f is integrable on [a,b], then 

3.12 THEOREM. Iff is integrable on the intervals [a,c], and lc.b] 
where a <c<b, then fis integrable on [a,b] and 
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3.12.1 
EXAM

PLE. �3/ 2 

r=1/2 

3 
+

 3 

3 8 3 
-0)+ 3 

3.12.2 

COROLLARY. 
If 
f is 

integrable 
on 
the 

intervals 
[a.bl 
and 

3.13 

THEOREM. 
Iff 
is integrable 
on 
|a, 
b] and 
k is anv 

constant. 
then 

kf ix integrable 
on 

[a,b] 
and 

3.14 

THEOREM. 
f f and 
g are 

integrable 
on 

Ja.b), 

then 
f+

 
g is in 

tegrable 
on 

la.b] 
nd 

3.14.1 
ExAMPLE. 
[(x+2*)dr 

# 

4 

=
0 

3 

(60 

8 

lc.b\, 

where 
a 

<e<b, 
then 
fis 

also 

integrable 
on 
the 

interval 
|a,c] 
and 



then 
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3.15 THEOREM. Iff and g are integrable on [a,b] and if fx) gx), 

3.16 THEOREM. Iffis integrable on [a,b] and m s f(x)s M for all 
r in (a.b], then 

m(b -a) s fx)dx s M(b -a). 

3.17 THEOREM. If the function f is continuous on the interval a,b], 
lhere exists a numnber c e [a,b\ such that 

3.17.1 EXAMPLE. Let f be the function f(x) =x, with a =0 and b 
=2. Then 

2/3 
3 

-, C= and f(cXb-a) =(X2 -0) = 

The succeeding two theorems show the link between the integral and 
the derivative. Their names suggest the importance of the ideas presented. 

3 

3. 18 THEOREM. (FIRST FUNDAMENTAL THEOREM OF CALCULUS). Let 
the function f be continuous on the interval a,b] and let x be any 

lhen F'(x) =*) for all x e (a, b|. 

61 

number in [a,b]. If F is the finction defined by 



3.19 THEOREM. (SEcOND FUNDAMENTAL THEOREM OF CALCULUS). 
Ler the function fbe continuous on the interval la.b] and ler g be a 

fnction such that g()=) for all N e la.b]. Then 

= g(b) S(a). 

3.20 DEFINITION. A partition D: a='o < < <V, =b of 

[a.b] is said to be regular if the subintervals ;.N;-| are of equal 

3.21 THEOREM. lf the function f is contimuous on the closed interval 
la.b] and the mumbers a = xo <X<.. <X, =h form a regular partition 
of la.b]. then 
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2n 

Integration techniques. We shall look at some of the most useful 
techniques for evaluating integrals. 

(1) INTEGRATION BY PARTS. Under certain integrability conditions. 
e.g., continuity of the derivatives f" and g'. the following formula holds: 

(r) = 

EXAMPLE. Integrate r 

= f(x)g(r)- g(x)f"(*)dr. 

Solution. Let fr) = and gx)dx = xe 

[redr =x? 

Hence, 

2 

-

- fe', 

2xdx 

xdr 

62 

dx, then f'(x)dx = 2xdx and 

lengths for all i = 1,2..... n. 



2 
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-e-e +C. # 

EXAMPLE. Integrate 

2 

2 

xedx. 
Solution. Let fx) = x and g'(*)dt = e du, then f'(x)d = 2rdk and 

g()= e. Hence, 

(xedr = xe-2 |xe*d +C'. 

Now let f(r) = x and g'(x)dr = eds, then f(x)dk = de and g(x) = e. 
Hence, 

Jxe dt = xe*- edr = xe* -e* + C" and 

xe'd = xe'-2[xe'dx +C 
= xe-2(xe* -e +C") +C' 

= xe*- 2xe* - 2e* +C, where C = C'+ 2C". # 

EXAMPLE. Integrate ecosx dr. 
Solution. Let fx)= e and g(r)dx cos x dx, then f(r)dx = ex and 

g(<) = sin x. Thus, 

e`cos xdx = e*sin x- esin x d + C'. 

Now let f(x) = e and g'(x)d = sin x dx then f"(x)dx = e*dx and g(x) 
cos x. Hence, 

e'sin x dx = -e'cos x + e*cos x dr + C" 

Jecos x dx =e*sin x- e*sin x dr + C' 

63 

and 



Therefore. 

2cosx dx = esin x + ecos x +C, where C = C'-C" # 

du 

(2) TRIGONOMETRIC SUBSTITUTIONS. Integration by trigonometric 
substitution is based on the Pythagorean identities.There are three types: 

Vu'-? 

= e'sin x - (-e'cos x+ e'cos x dx + C") +c: 

Na-u = a cos . 

EXAMPLE. 

du 

EXAMPLE. 

THE MINDANAO FORUM 

V9-? 

2 

Va+u? 

u >0. Let u = a sin . Then du = a cos d and 

du 

r(3sin )»cos d 
3cos 

-sin 20) + C 

(aresin (") -9-u') +C, # 
3 

u> 0. Let u = a tan . Then du = a sec 0 and 

2sec 0 

64 



= 

EXAMPLE. 

= In 

du 

Vu-2 

sec O de 

= 

4, Be R. 

= In sec + tan e| + C 

andyu-a? = a tan . 

partial fractions. 

v4+? 

EMMANUEL M. LAGARE 

In 

du 

2 

a> 0. Let u = a sec , Then du = sec 0 tan 0 d0 

-25 

Jsec d9 

+ 

+ 

= In sec + tan +C 

rational function of the form 

2 

u Vu-25 
5 

+C. # 

-5sec tan 0 d 

5tan 9 

(3) PARTIAL FRACTIONS. This method is based on the fact that a 
P(u) 

+C. # 

gu) 
can be expressed as a sum of simple 

For instance, suppose Q(u) is a product of nonrepeating linear factors. 

Let Q(u) = L(u)L,(u), where L, (u) and L>(u) are linear. Then for some 
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du 

B
 

r Lz(u)) 

du 

B
 

A
 J)(u

-3
)) 

du= 

5u-3 
EXAMPLE. 
Ju+

)(u-3) 

du 
-3) 
+

 
B(u+1) 

(u+1)(u-3) 

du 

(A
+

 
B)u 
+

 

(B
-34) 
(u+l)(u-3) 

(4
+

 
B

 

=
5

, 

and 

B
-

3A 

=
-3) 

(u-3)J 

2 

-
a
 =

 

2ln 

u+1|+3ln 

u-3+
C

. 

The 
last 

integral 
is obtained 
by 

equating 

the 

coefficients 
of 
the 

numerators 

in 
the 

first 

integral 

and 
the 

fourth 

integral. 
# 

REMARKS. 
(1) 
If 

O(u) 
is 
a product 
of 

nonrepeating 

linear 

factors, 
i.e., 

B
 

A
 du. 

c P(u) 
(2) 
If 

Q(u) 

has 
a quadratic 

factor, 

say, 

O(u) 
=

 

L(u)M
(u), 

where L(u) 
is linear 

and 

M
(u) 

is 

quadratic., 

then, 

there 

exist 
real 

numbers 
A, b 

and 
C

such 
that, 

du. M(u) 
Bu+C 

çP(u) 

L(u) 
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P(u) 

if 

Q(u) 
=

 

L
(u)l, 

(u), 

where 
L

 
(u) 
=

 

LL(u), 

then, 

there 

exist 
real 
num bers 

A
 

and 
B

 

such 

that. 
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pplications. 

We 

shall 

now
 

consider 

som
e 

applications 
of the integral. 3.22 

DEFINITION. 

Let 

the 

function 
f be 

continuous 
on 
a, b| 

and f(x) 
>0 

for 
all 
x in 

[a,b]. 
Let 
R

 
be 
the 

region 

bounded 
by 
the 

curve 
y 

=
 

f(x), 

the 

x-axis, 

and 

the 

lines 

x
=

a
 

andx=
b. 

Then 
the 

area 
A

 
of the region 

R
 

is 

given 
by 

a 
3.22.1 

EXAM
PLE. 

Take 
f to 
be 
the 

line 

passing 

through 

the 

origin 

w
ith 

slope 
1. Let 

a
=

1
 

and 

b=
3, 

Then 

=
 

(9-I)=4. 
# A

 2 2 

x is 

given 
by 

A(x), 

3.23 

DEFINITION, 

Let 
S be 
a solid 

such 

that 
S lies 

betw
een 

planes 

draw
n 

perpendicular 
to 

the 

x-axis 
at a and 
b. If the 

area 
of 

the 

plane where 
A

 

is 

continuous 
on 

[a,b], 

then 
the 

volum
e 

of 
S, 
V, is 

given 
by 

section 
of S 

3.23.1 

EXAM
PLE. 

Let 

S be 
a pyram

id 

with 
a square 

base 

whose 

Solution. 

The 

area 
of the 

plane 

section 
of S drawn 

perpendicular 
to the 

x-axis 
at x units 

from
 

the 

origin 
is 

(30 
-5x A(x) 

=
 3 

67 

=
 

drawn 
perpendicular 
to 
the 

x-axis 
at 

plane 
is perpendicular 
to

 
the 

x-axis 
at the 

origin. 
If the 

side 
of the 

base 
is 

10 

units 
and 
the 

height 
is 6 units, 

what 
is the 

volum
e 

of S? 

a square. 

Using 

ratio 

and 

proportion 

on 
the 

right 

triangle 

form
ed 

by 
the 

altitude 
and 
the 

base 
we 

have 



T-faa -

V= 

1 

V= 

9 
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2 

V= 

dx 

L (900 - 300x + 25x* )adx 

25 

3.24 THEOREM (DIsC METHOD) Ler the function f be continuous on 
the closed interval [a,b] and assume fx) >0 for all x in [a,b]. If S is 
the solid of revolution obtained by revolving about the x-axis the region 
bounded by the curve y=fx), the x-axis, and the lines x =a and x= 

b, and if V is the volume of S, then 

= 8.. # 

6 

3.24.1 EXAMPLE. The region between the curve y= Vx, 0<x<4 
and the x-axis is revolved about the x-axis to generate a solid. Find the 

volume of the solid. 

lx=0 

200 cubic units. 

3.25 THEOREM. (WASHER METHOD) Let the functions f and g be 

continuous on the closed interval [a,bl and assumne fx) > 0 for all 

la,b]. If S is the solid of revolution obtained by revolving aboul ne 
axis the region bounded by the curve y = x) and y = S) and th 

68 

lines x =a and x = b, then the volume, V, of S is given by 

(900x �1 50x + 



3.25.1 ExAMPLE. The region bounded by the curve =r I and 
the line v= -r+3 is revolved about the x-axis to generate a solid. Find 
the volume of the solid. 

EMMANUEL M. LAGARE 

(8x -32 

117r 

3.26 THEOREM (SHELL METHOD). Let the function fbc contiu0Us On 

the closed interval a.b] where a> 0 and assume fx) >0 for all x in 

Ja.b]. If S is the solid of revolution obtained by revolving about the x 

axis the region bounded by lhe cure y =fr), 1he y-xis, and the lines A 

= a und x =h. nd if I is the volume of S hen 

l'= 2axf(x )dx . 

3.26.1 EXAMPLE. The region bounded by the curve y = Vx, the -

axis and the line x=4 is revolved about the y-axis to generate a solid. 

Find the volume of the solid. 

Solution. Using the preceding formula for the volume, we have 

l'= 2n Nrar = 2n(=x 
4 

ly=0 

128 

69 

5 

3.27 DEFINITION. Suppose the function is continuous on the closed 

interval la.bl. Further suppose that there exists a number L having the 

following property: For any [ > 0 there is o > 0 such that for everv 

partition D of the interval [a,b] it is true that if D<, then we have 



Then L is called the arclength of the curve y=f*) from the point 
A(afa) to the point B(b,fb). 

3.28 THEOREM. If the function f and its derivative f'are continuous On la,bl, then the length of the curve y =f(x) from the point (a, fa) lo the point (6,fb)) is given by 

L-i+/'ofar. 
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3.28.1 EXAMPLE. Find the length of the arc of the curve y = from 
the point (1.1) to the point (8,4). 

Solution. The arclength is given by 

40 
, udu = 

Let u=9x +4. Then då=6xdx. Hence. 

18 J3 
1(2 

M= ö(r)dx . 

N9x+ 4 
-dx. 

18 

|40 

V3 

å=13 

3.29 DEFINITION. The moment of mass ofa particle of mass m loca ted x units away from the origin is given by mx. 

(40% -132). # 

3.30 DEFINITION. A rod of length L meters has its left endpoint at the 
origin. If &<) kilograms per meter is the linear density at a point x meters 
from the origin, where is continuous on [O,LI, then the total mass of 
the rod is M kilograms, where 

70 



3.31 DEFINITION. A rod of length L meters has its left endpoint at 
the origin. If Sx) kilograms per meter is the linear density at a point 
meters from the origin, where 8 is continuous on [0,L], then the 
moment of mass of the rod with respect to the origin is given by 

Mo =xö(x )cdx . 

The center of mass is at 

3.31.1 EXAMPLE. A 10-meter-long rod thickens from left to right so 

Imass. 

Mo 
M 

that its density is given by S(x) = 1+ 

M= 

and the equation 

Solution. The mass M and the moment Mo of the rod is given by the 
equation 

M, 1+d= 

X= 

EMMANUEL M. LAGARE 

Hence, the center of mass is at 

Mo 

10/ 

M 

250 

3 
kg.-m. 

15 kg. 

x+ 

50 

20 

10 

71 

lx=0 

kg./m.. Find the rods center of 

30 

= 15 kg., 

Ix=0 

| 
250 

3 
kg.-m.. 



area density is k kilograms per square meter and which is bounded d by the 

3.32 DEEINITION. Let I be a homogeneous lamina whose Constant 
curve '=). the x-axis. and the lines X =4 and x = h. The function 1 is continuous on (ab] and /(x) 0 for all x e [a,b]. If M kilo-gram-mcters is the moment of mass of the lamina L with respect to tlhe y. axis. then 

If M kilogram-imcters is the moment of mass of the lanina L itl 

M, = 
1 

2 

If M kilograms is the total mass of the lamina L. then 

M = *[fd. 

THE MINDANAO FoRUM 

If (xy) is the center of mass of the lamina L. then 

M =k 

M 

fx) =2 yx, r=4 and the x-axis. 

M, 

4 

M 

3.32.1 EXAMPLE. Find the center of mass of the region bounded by 

Solution. From the preceding formulas 

3 

and 

32 

3 

1 

72 

M 

-32k. 

respect to the x-axis, then 



M, 16k 
M 32 

k 

W- F(a)dt. 

3 
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and y = 

204 
5 

My 
M 

F() = 1(20-*). 

W-(20- x)d* = 
4 

4k 

5 

SO 

128 

5 

73 

32 

4.33 DEFINITION. Let the function F be continuous on the closed 

interval [a,b] and F(x) be the force acting on an object at the point x on 

the x-axis. Then if W is the work done by the force as the object moves 

from a to b, 

3 
-k 

3.33.1 EXAMPLE. A leaky bucket is lifted to a height of 20 feet. If the 

bucket starts with 16 lbs. of water and leaks it at a constant rate emptying 

the water as it reaches the full height, how much work was done in lifting 

the water? 

Solution. The force used in lifting the bucket diminishes with the 

height traveled by the bucket and is proportional to the height. (We shall 

disregard the weight of the bucket.) This force is given by 

ly=0 

12 

20 

5 

ly=0 

= 16k 

= 160 lbs.. # 

3.34 DEFINITION. Suppose that a flat plate is submerged vertically in a 

liquid for which a measure of its mass dernsity is p. The length of the plate 

at a depth of x units below the surface of the liquid is fx) units, where f 

is continuous on the closed interval [a,b] and fx) >0 on [a,b]. Then if F 

is the measure of the force caused by liquid pressure on the plate, 



of the trough. 

3.34.1 EXAMPLE. A trough having a trapczoidal cross section is full 
and 2 feet deep. Find the total force owing thc water pressure on one end 

of water. If the trapczoid is 3 feet wide at the top, 2 feet wide at the bottom 
Solution. In this problem f(r) = 

THE MINDANAO FORUM 

Then we write 

where g is the gravitational constant. 

cquation of the line which form one side of the trapezoid. The force F is 

(3 1 ) 

= Pg 

= 2 pgr 

14 

n 

3 

4 

14 

2 4 

12 

L= limP-. 
|D0j= 

y=0 

3.35 DEFINITION. Let the curve C have the parametric equation = 
f) and y = g). Suppose there exists a number L having the property: 

For any 6>0 there is a ô>0 such that for every partition D of the 
interval a.b) for which |D<å, then 

(62.5 Ibs. ). # 

which is obtained Irom the 

and Z is called the length of arc of the curve C from the point (/a).ga) t 
the point (b).g(b). 
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1 36 THEOREM. If the fnction F Cnd 6 are contnuous On the 

closed interval a.b] then the function v- G is also continuous 
on the closed interval |a.b] and if D is u partition a = lh I< < ln 

lim X\F=,)|F +[Gw;)A NFOF +|GO d. 
D’0j= 

EMMANUEL M. LAGARE 

3.37 THEOREM. Let the curve C have parametric equations x =) 
und y=g(). and suppOse that ' and g' re continuous on the closed 

inteval la.bl. Then if L units is the leng1h of arc of the crre C fiom 
the point ((la).g(a)) o the point Ab).gb). then 

3.38 DEFINITION. Let f be a function defined on a closed rectangular 
region R. The number L is said to be the limit of suns of the form 

if L satisties the property that for any [ > 0 there is a ð >0 such that 
for every partition D of R for which |D| <6 and for all possible 
choices of the point (,.n,) in the ith rectangle i = 1.2. ... n 

i=1 
f�, )A,1- L<. 

If suclh L exists, we wvrite 

0 
R 

5.39 TIEOREM. Suppose f is a function of w0 Variables thu is 
cMimons on a closed rectangulur region R. in the xrplane. and 
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-bof the interval [a.b] and =j and wË are any numhers in (li.1. ; ). then 



xy) > 0 for all (x,v) in R. If V cubic units is the volume of the solids 

having the region R as its base and having an altitude of fx,y) units at 

the point (x,y) in R, then 

V= 

THE MINDANAO FORUM 

n 

R 

lim f5;.n)A,4 = 
|D0j=l 

It would be difficult if not impossible to find the double integral of a 

function from the definition. Fortunately, a lot of the double integrals we 

would be interested in can be found using techniques we have learned in 

single integration. The following theorem shows how this can be done. 

A 

R 

3.40 THEOREM (FUBIN'S THEOREM). If f is integrable on a rectangle 

R= {(x,y) : asx sb, c y sd} and suppose that for each value y in 

exists. Then F is integrable on 
(c.d] the integral F(Y) = [(x, y )dr 
[c,d] and 

3.40.1 COROLLARY. Let A be the region given by A ={ (x. y) :po) 

xS qo), c Sy< d} where p and q are continuous functions on C,d] 

with values in [a,b]. If f is continuous and real valued on A, then f is 

integrable on A and 

Items 38 to 40.1 can be altered using Ei.n.L) and y, z)dl 

to give properties for the triple integral. 

A lot of applications use integrals evaluated on a domain which is 

path rather than of regions with areas. A discussion on these type 

integrals are available in most calculus books. 
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Let us end with a note that what have been discussed here are just the 
introductory part of applications. We hope that this training will serve as 
an appetizer for your mathematical feast. 
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