INTEGRATION AND SOME
APPLICATIONS

Emmanuel M. Lagare

It has been the traditional view, albeit inaccurate, that differential
calculus and integral calculus be treated separately. With such a
perspective, teachers lose the pedagogical advantage of viewing these two
facets of the calculus like two sides of the same coin and exploiting the
synergy of both.

This intimate connection between derivatives and integrals was first
discovered by Newton and Leibnitz and has formed the linchpin in the
development of physics. It has also played a major role in the application
of calculus to the real world.

The lecture will substantively cover only single integrals although
multiple (particularly double) integrals will be briefly touched. The focus
will be the concept of the sum and the role it plays in the application of
integration.

Proofs will be generally omitted in these notes due to space
limitations. However, you can find the proofs in the texts mentioned in the
bibliography or any good calculus text which are now increasingly
available in local reprints at the bookstores. The assumption throughout is
that other concepts with bearing on integration have been discussed or will
be discussed by other speakers.

Partitions and integration. The concept of partitions or divisions
play a chief role in the development of the theory of integration.
Depending on the specifications of partitions, we arrive at a different
integral. What we shall be discussing will be partitions which will give
rise to the Riemann integral.

3.1 DEFINITION. A partition D of [a,b] 1s a collection of points
Vo V) o ) such that a =y, <y; < - <y, =b. The norm ||D|| of

the partition D is the largest of the differences (y, =y, ), 1= 1,2, n
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3.2 Exavere. Let  « = 1. h=4. One such partition is
D: a=1<12<15<18<21<25 303436384~}
I'or this partition, the norm is ||D||= 3.0 -2.5 ~ 0.5, #

lhe next definition gives the requirements for a function f tohe

Riemann integrable. This definition was given by Riemann. An equivalen;
definition was given by Darboux.

3.3 DEFINITION. Tet / be a function with domain the interval of real
numbers [« h]. and range which is a subset of the real numbers. We sa
that fis integrable on |« h| if we can find a number / with the property that
given & > 0 there exists a & ~ 0 such that whenever a division D
satisfies the conditions that [|D]| <6 and x; isin [y, .y, |. fori=1.2,

.., we have

n
| XSGy =] <
=1
We say that / is the (Riemann) integral or definite (Riemann) integral of
fover [a,h]. This value is denoted by _rf(x)dx . In some sense, the value
{

of I is given by

lim > () =vior).-

|D|—0

h
[ 7 ()
“ i=1

When f(x) > 0, each term in the above summation is the area of the
rectangle of width y,—y,, and length f(x;). As |D|— 0 the widths
become smaller and smaller and the sum of the rectangles better and bettef
approximates the area under the curve of f(x;) from « to b.

3.4 EXAMPLE. Let f(x)=2x and D as given above. Choosing the
x7's as follows:

<

Xy =12, x; =13, x3=17, x4 =20, xg =23, xo =28, x7 =32, X3 = 3>
.\'() — 37, xl() = 39.,
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then we have

10

DS, i) = £12)(02) + £(13)(03) + £ (17)(0.3)+ £(2.0)(03)

—

i=1
+/(2.3)(0.4)+(2.8)(0.5)+ £ (32)(0.4) + £(35)(0.2) +

+/(37)(0.2)+ £(39)(0.2)

15.12. #

|

3.5 DEFINITION. Let Fand f be two real-valued functions defined on
la.h] suchthat F'(x) = f(x) forall x e [ah]. Then we say that F is
the antiderivative of f in [a,h).

REMARK. One class of Riemann integrable functions is the class of
functions which are derivatives of some functions. In fact. integration as
inverse to differentiation has been always emphasized in calculus courses.
The mverse process cannot always be performed. However, in cases where
it can be done, computation is made much easier.

3.6 THEOREM. The following formulas can be shown by obtaining the
derivative of the right-hand side using the definition (see also the pre-
ceding remark).

(a) Ia’x =x+C

n+l

X
y n 1": + (" e |
(b)_[x dy =~ n# -l

1

(¢) I— dx =Inlx[+C
%

(d) Jaxdx ="+ C

(c)_[sinxdx = cosx +(C
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(H jcus xdx = —sinx+(

(2) jSCC').\‘ dx = tanx + C

(h) J‘csczx dx = —cotx+C
(1) Isec xtanx dx = secx+C,
() jcsc xcotxdx = —cscx +C,

(k) Isec x dx = Inlsec x +tan x|+ C,
(i) _[csc xdx = Incscx —cotx|+C,
(m) J'tan x dx = Inlcos x|+ C,
(n) jcot xdx = -In|sinx|+C,

ax

(0) [a¥dx = —+C., a>0,

na
1

x2+1
1

l—x2

(p) j

dx =arctanx + C,

dx =arcsinx + C,

C)) I

1
(r) | ——=—=dx =arcsecx +C.
J’x\/xz -1

3.7 THEOREM. IfF and G are both antiderivatives of f then GLY)
= F(x) + C where C is any constant.

Proof. Differentiate G — F and use the fact that the antiderivative of
the zero function is a constant function. #

This theorem says that any antiderivative of f'can be obtained from”
by choosing the constant C as needed.
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From Definition 3.3, we can see immediate applications of the
definite integral which will be discussed later.

/
3.8 THEOREM. If F is the antiderivative of f, then J.,_f(x)dx = F(bh) -
da
Fa), i.e., the integral of fover [a,b] is F(b) - F(a).

Proof. F is continuous for each x e [g,h] since F is the antideri-
vative of  f By the Mean Value Theorem, F(y,)-F(y, )

S )i =yioy) for some x;in [y, ;,y,]. The conclusipn follows from this
observation. #

3.9 THEOREM. If g is a differentiable function on [a,b], then

[Teere = 22" ¢
a n+1l

3.10 DEFINITION. If f is integrable on [a,b], then we define

[ reode =~ [ s,

Simple properties of the integral. Viewing the definite integral as an
area gives a meaningful interpretation of the following theorems.

3.11 THEOREM. If f is integrable on [a,b], then

[F(x)ax=0
for all cin|[a,b].

3.12 THEOREM. If f" is integrable on the intervals [a,c], and |c,b)
where a < c < b, then fis integrable on [a,b] and

J:)f(x)dx = J:f(x)dx + ff(x)dx_
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3 ) | )
3121 EXAMPLL. F\ dx f Xt I ‘ v dx
) )

1o | | |
e +-(1=) = #
3(8 ) 3( g 3

is integrable on the intervals [a.b] and

3.12.2 COROLLARY. If f
interval |a.c| and

| b where a < ¢ = h. then fis also integrable on the

[ o = [ reods = 1o

3.13 THEOREM. If f is integrable on |a.b] and k is anv constant. then

kf is integrable on |, b] and

fkf(.\‘)u'x =k f./'(.r)d\‘.

(&2 -\ 1=
S ]

314 THEOREM . If fand g are integrable on |a.b). then |+

tegrable on |a.b] and

/

j?( F(v) + g(x)dy = Jb./'(.\-)dr + fg(.\-u\-.

A . I 5 . .
3.14.1 EXAMPLE. L(.\'“ + 2x)dx _\'.\"d\‘ t J RAVZA
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3.15 THEOREM. [If fand g are integrable on [a,b] and if fx) = g(x),
then

[re0des [gxar

3.16 THEOREM. If fis integrable on [a,b] and m < f(x)< M for all
xin |a.b], then

m(b -ay< [0 f(x)dx < Mb - a),

3.17 THEOREM. If the function [ is continuous on the interval [a,b],
there exists a number ¢ € [a,b] such that

J:f(x)dx = fle)(b - a).

3.17.1 EXAMPLE. Let f be the function f(x)= X%, witha =0 and b
=2. Then

~

D 2V3
» €=

I:xzdx =

. #

W) | o0

and f(c)(b-a)=(2)2-0) =

W) | o0

The succeeding two theorems show the link between the integral and
the derivative. Their names suggest the importance of the ideas presented.

3.18 THEOREM. (FIRST FUNDAMENTAL THEOREM OF CALCULUS). Let
the function f be continuous on the interval [a,b] and let x be any
number in [a,b). If F is the function defined by

X
Fx) = L S (1),
then I (x) = fix) for all x € lab].
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319 THEOREM. (SECOND FUNDAMENTAL THEOREM OF CALCULUS),
Lot the function £ be continuous on the interval |ab] andlet g be
funcrion such that ¢'(x) = Ax) forall x ¢ |a.bl. Then

o
l~‘f (VA = g(h) - gla).

3.20 DEFINITION. A partiion D @ a=Vy <V~ 0 =V, b of
[a.b] is said to be regular it the subintervals [v,. v, ] are of equal
lengths forall; = 1.2, .. n

3.21 THEOREM. If the function fis confinuous on the closed interval
la.b] and the numbers a = x5 <xp < = <X, = h form a regular partition

of |a.b]. then

0 . b - . A ‘
f(x)dx :(_—L'l[.r(_\-(,)+2,/(.\-l)+ s A2 (X, ) /(,\-,,)]

: n

Integration techniques. We shall look at some of the most useful
techniques for evaluating integrals.

(1) INTEGRATION BY PARTS. Under certain integrability conditions.
e.g.. continuity of the derivatives /" and ¢ the following formula holds:

I‘f‘(.\')g’(.\')d.\' = f(x)g(x)— jg(.\‘),/"(.\‘ Ydx .

N
-

EXAMPLE. Integrate _f.\"‘c"' dx .

Solution. Let fix) = v~ and g'(x)dx = x e’ dx, then f'(x)dx = 2xdx and

~

12
g(x)= —e* . Hence,

~

s

¥’ 21 x° 2
j.\' e’ dx=x e - —e" 2xdx

[
=3
()
-
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I 2 1 .2
= x’—¢* _Eex +C. #

EXAMPLE. Integrate Ixzexdx.

Solution. Let fix) = x* and g'(x)dx = e* dx, then f'(x)dx = 2xdx and

g(x) = e*. Hence,
_[xzexdx = x2%e* — 2jxexdx +C",

Now let f(x)=xand g'(x)dx = e*dx, then f'(x)dx = dx and g(x)=e*.
Hence,

Ixexdx = xe* — Iexdx =xe* —e* +C" and
J-xzexdx:xzex —2Ixexdx+C’
= x2e* —2(xe* —e* +C")+C"

= x2e* —2xe* —2¢* +C, where C = C’+2C". #

EXAMPLE. Integrate Iexcosx dx .
Solution. Let f{x) = ¢* and g'(x)dx = cos x dx, then f'(x)dx = eX and
g(x) = sin x. Thus,

_[excos xdx = e”*sin x — Iexsinx dx+C'.

Now let f(x)=e* and g'(x)dx =sinx dx then f'(x)dx = e dx and g(x)

= —cosx. Hence,

je"sin xdx=—e*cosx+ J-e"‘cos xdx+C" and

_fe"cos xdx =e*sinx — J.exsin xdx+C'
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= ¢Vsinx — (e cos x + J‘e"'cos xdx+C"y+ (o
Theretore.

ch‘cos xdy= e'sinx + e cosx+C whereC = C'—C" 4

(2) TRIGONOMETRIC SUBSTITUTIONS. Integration by trigonomet;
substitution is based on the Pythagorean identities. There are three types

(,)J' du — ., a>0.Let u = asinB. Then du = a cos 0 d and

I )
Va  —u~ = acos 0.

W du I(?sin 0)” cos 0 dO

Vo-u?

-9 jsinle do

LEXAMPLE. j
3cos O

9 1.
= —(0-—-smn20)+ C
2 2

9

—(arcsin (’i)— 0 — 112 Y+, #
J

N dut N 20 and
(11) j —. d > 0. Let w=uatan 0. Then du = a sec 0t
\/(l' +u-
Na© +u asec 0

. du 2sec’0 do
FXANPLLL I -~

I\/4 l ué

2sec 0
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Jsec 0do

In [sec O + tan O]+ C

Vé+u® u

In —
2

I

du
i) |——=——=,a > 0. Let u = a sec 0. Then du = sec 0 tan 0 dO
(i) | )

andu® —a* = atan 0.

_ J-Ssec 0 tan O dO
Stan O

EXAMPLE IL
. \/u2—25

'fsec 0 db

In sec O + tan 6| + C

u+\/u2—25

= |n|= +C. #
5

(3) PARTIAL FRACTIONS. This method is based on the fact that a

P(u )
rational function of the form Qiu) can be expressed as a sum of simple

partial fractions. . C )
For instance, suppose ((u) is a product of nonrepeating linear factors.

Let Ou) = Ly (u)Ly(u), where Ly () and Ly (u) are linear. Then for some

A4, B e R,

65



THE MINDANAO FORUM

P(u) A B
IQ(M) du I[ L () + [q(u)} du .

Su-3 A B
EXAMPLE. I————(u+1)(u_3) du= J'{(u+l)+(u—3):|du

A(u-3)+ B(u+1)
= I du
(u+1)(u-3)

(A+Bu + (B-34)
= I du
(u+1)(u-3)

2 3 B )
B J.Lu+1)+(u—3)}du (A+B=>5,and B-34=-3)

2In [u+1+3n|u-3+C.

The last integral is obtained by equating the coefficients of the numerators
in the first integral and the fourth integral. #

REMARKS. (1) If O(u) is a product of nonrepeating linear factors, i..,

if Ou) = L (u)Ly(u), where L (1) = Ly(u), then, there exist real num-
bers A and B such that,

P(u) A B
du= du .
o™ I[Ll(ufq(uf} !

(2) If O(u) has a quadratic factor, say, Q(u) = L(u)M(u), where
L(x) is linear and M(u) is quadratic, then, there exist real numbers 4.
and C such that,

P(u) A  Bu+C
[ - j[L(u)+ M(u)}du.
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Applications. We shall now consider some applications of the
integral.

3.22 DEFINITION. Let the function f be continuous on [a,b] and
f(x)=0 for all x in [a,b]. Let R be the region bounded by the curve y
= f(x), the x-axis, and the lines x =a and x = b. Then the area A of the
region R is given by

A= [ Fixyds.

3.22.1 EXAMPLE. Take f to be the line passing through the origin
with slope 1. Let a=1 and »=3. Then

3
3 |
A=J;xdx=;x2 O-1)=4. #

r4

x=1

3.23 DEFINITION. Let S be a solid such that S lies between planes
drawn perpendicular to the x-axis at @ and b. If the area of the plane
section of S drawn perpendicular to the x-axis at x is given by A(x),
where A is continuous on [a,b], then the volume of S, V. is given by

y= ﬂﬁuxya.

3.23.1 EXAMPLE. Let S be a pyramid with a square base whose
plane is perpendicular to the x-axis at the origin. If the side of the base is
10 units and the height is 6 units, what is the volume of S§?

Solution. The area of the plane section of S drawn perpendicular to
the x-axis at x units from the origin is a square. Using ratio and proportion
on the right triangle formed by the altitude and the base we have

30—5x)2

J

A(x) = (

67
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o)

) J 30 - 5x -
I f‘,.i(_\‘)(l’.\‘ = £ ( . j dx

S
L‘ 2(900 — 300x + 25x7 )dx
9

6

1 2,25 2 S
6(900.\‘—150)( +?x ) = 200 cubic units. #

x=0

3.24 THEOREM (DISC METHOD) Let the function [ be continuous on
the closed interval [ab] and assume fix) =20 for all xin[ab]. If S
the solid of revolution obtained by revolving about the x-axis the region
hounded by the curve y=fix), the x-axis, and the lines x =a and x=
b, andif V is the volume of S, then

v= =[P dr.

3.24.1 ExaMPLE. The region between the curve y = Jx, 0<x<4
and the x-axis is revolved about the x-axis to generate a solid. Find the
volume of the solid.

V= nJ:[\/}']zdx = 8n. #

3.25 THEOREM. (WASHER METHOD) Let the functions f and § }T"
continuous on the closed interval [a,b] and assume f(x) =2 0 for all x lf'
[a,b]. If S is the solid of revolution obtained by revolving about the g
axis the region bounded by the curve y = f(x) and y = g(x) and ¢
lines x =a and x = b, then the volume, V. of S is given by

) b 5
V= [,u./(x)r — () )dx .
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3251 ExanpLe. The region bounded by the curve v =" + 1 and

the line 1= —x + 3 is revolved about the x-axis to generate a solid. Find

the volume of the sohid.

1177

>

326 THEOREM (SHELL METHOD). Let the function f he continnous on
the closed interval |a.b] where a =0 and assume  fix) =0 for all x in
[a.h). If S s the solid of revolution obtained by revolving about the x-
axis the region bounded by the curve y = f(x). the y-axis, and the lines  x
—u and x="h andif 'V isthe volume of S then

h
V= ZnJ‘,\_’/(x)dx.
(@]

3.26.1 ExampLE. The region bounded by the curve y — Jxo the x-
axis and the line x = 4 is revolved about the y-axis to generate a solid.
Find the volume of the solid.

Solution. Using the preceding formula for the volume. we have

x) =—. #

J||l\)

= 2n J:.\'\/;a'x = 27(

A iy=0)

327 DEFINITION. Suppose the function /is continuous on the closed
[a.h]. Further suppose that there exists a number L having the

interval
For any &€ > 0 there is 6 ~ 0 such that for every

following property:
partition D of the interval [a.h] it is true thatif | D < o, then we have
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‘;ZI‘Plil l)l /.\ < €.

then L is called the arclength of the curve  y = fix) from the point
[(a.fla)) to the point  B(h.f(h)).

3.28 THEOREM. [f the function f and its derivative f ' are Continuoyg

on |abl. then the length of the curve y = flx) from the point (a flay
(o the point (b.f(b)) is given by

b [ 5
L= L\)rlwt[‘f’(.\‘)]"dx.

5.28.1 EXAMPLE. Find the length of the arc of the curve y = x*?

from
the point (1.1) to the point (8.4).

Solution. The arclength is given by

8 2 o 1 849x 44
L=£\/;[§x')]dx—§dex.

Let u=9x""+4. Then du=6x"dx. Hence,

_ 0 o, _ _1_(% ]/2)
L = ﬁl.@u du= 8 3u

40

1 i
— (403/2 _133/_)‘ #
u=13 21

3.29 DEFINITION. The moment of mass of a particle of mass m loca-

ted x units away from the origin is given by mx.

3.30 DEFINITION. A rod of length L meters has its left endpoint at the
origin. If d(x) kilograms per meter is the linear density at a point x meters

from the origin, where & is continuous on [0,L], then the total mass o
the rod is M kilograms, where

M= LL S(x)dx .
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3.31 DEFINITION. A rod of length /. meters has its left endpoint at
the origin. If 8(x) kilograms per meter is the linear density at a point  x
meters from the origin, where & is continuous on  [0,L], then the
moment of mass of the rod with respect to the origin is given by

L
M, = L xS(x )dx .

The center of mass is at

L= Mo
X M

3.31.1 EXAMPLE. A 10-meter-long rod thickens from left to right so

that its density is given by 8(x) =1 +% kg./m.. Find the rods center of

mass.

Solution. The mass M and the moment M, of the rod is given by the
equation

S\ (|10
10 X
M = (1+—)a’x= ( —) = 15 kg.,
10 ~
and the equation
10
2 3
10 x X X 250
M, = l+—|dx = | —+— = —kg.-—m..
0 ix(ﬂo)x (2 30} 3 emm
x=

Hence, the center of mass is at

250
MQ ~ 3 lfg—m- _ 2(_) #
M [5kg. 9
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332 Dremnimion. Let L be a homogencous lamina whose
arca density s & kilograms per square meter and which is hnundtd by 1h,
curve 1 - f(x). the x-axis. and the lines v =« and x The functi., :
f1s continuous on [a.h] and flx) = 0 forall x € |q, /7| H' M, km:
aram-meters 1s the moment of mass of Ilielamuml with respect 1, the .
axis. then

Um\tdn'

)
My =k [/ (x)dx
/ a

[T My kilogram-mcters is the moment of mass of the lamina |
respect to the x-axis, then

] h o
My = 5kj”|,f(,\-)|2 (lx

[ M kilograms is the total mass of the lamina [. then

withy

= k-[/;‘f'(x)dx.

If (x.y) isthe center of mass of the lamina [.. then

| ¢h
) j[/(x)J &y, i J:x,-(.w\- v,

’ i’ h /-
j fode M [ roow Y

3.32.1 EXAMPLE.  Find the center of mass of the region bounded by
flx)=2 Jx. x=4 and the x-axis.

Solution. From the preceding formulas

3

4 R
M =k F2&dx = —kx'° 1 =)—k.
0 3 o

My = fkfz\ﬂ dy =

T N
f4xdx = —k(2x7) ~32k
) 2

IJI—
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4

\{‘ = kE.\-(zJ;)dx = 2k £x~‘ 2dx o j‘_l(_xﬁ;) — l()k
| > x=0

128

M, 16k 3o My LI

=——=——=— and y=—, =", = ¢
32

S ’ M 3-321( .

433 DEFINITION. Let the function F be continuous on the closed
interval [a.b] and F(x) be the force acting on an object at the point x on
the x-axis. Then if W is the work done by the force as the object moves

from a to b,
W= I:F(x)dx :

3.33.1 EXAMPLE. A leaky bucket is lifted to a height of 20 feet. If the
bucket starts with 16 Ibs. of water and leaks it at a constant rate emptying
the water as it reaches the full height, how much work was done in lifting

the water?

Solution. The force used in lifting the bucket diminishes with the
height traveled by the bucket and is proportional to the height. (We shall
disregard the weight of the bucket.) This force is given by

20—x 4
F(x)= 16(—%‘) =§(20—x), SO

20 4 4 NS
w= " =(0-x)dx= —(20x —Zx%) =160 lbs.. #
5 5 2 x=0

3 34 DEFINITION. Suppose that a flat plate is submerged vertieally in a
liquid for which a measure of its mass density is p. The length of the plate
at a depth of x units below the surface of the liquid is f{x) units, where f
is continuous on the closed interval [a,5] and fix) 2 0 on [a,b]. Then if F
is the measure of the force caused by liquid pressure on the plate,
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h . "
A I;»Q\/ )dx . where g is the gravitational constan.

334.1 EXAMPLE. A trough having a trapezoidal cross sectiop
of water. If the trapezoid is 3 feet wide at the top. 2 feet wide ag the hl(\ f
and 2 feet deep. Find the total force owing the water pressure o, Unm M
of the trough. ¢ eng

301

Solution. In this problem  f(x) = ) Z{\ which is obtaineg from y,

equation of the line which form one side of the trapezoid. The fore Fo
is

h - |
I j PEX Lﬁ "2 ,\')dx

2,( s
PEL4Y "1t

-l

2

x=0

14
~m—:—MNWs #

3.35 DEFINITION. Let the curve (' have the parametric equation ¢
f(r) and y = g(1). Suppose there exists a number L having the property:
Forany €~ 0 thereisa 6~ 0 such that for every partition 1) of the
interval [a.h] for which |[D| <o, then

- ll<g.

Then we write

L= lm ZI’, Wb

IDl>077]

and 1 is called the length of arc of the curve C from the point (fla).g(@®
the point (f(h).g(h)).
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3.36 THEOREM. [If the function I cnd < are continuous on the

~

. / , s .
y/mud interval [U-b] then the Junction v/ Gy also  continuous
on the closed interval |a.b] and if D is a partitiona =1t,- 1, < -+ < Ip

b of the interval [a.b) and zj and i are any numbers in (1. 1j ). then

! 5 T b5 5
lim D \F) (GO A I VIFO] + 1G] dr
DI->0 g

3.37 THEOREN. Let the curve ' have parametric equations  x = A1)
and v = g(h). and suppose that " and g are continuous on the closed
interval [a.b). Then if L units is the length of arc of the curve ' from
the point (fla).g(a)) 1o the point (f(h).g(h)), then

L= [N OF + 1 0F

3.38 DEFINITION. Let / be a function defined on a closced rectangular
reeion R. The number £ is said to be the limit of sums of the lorm

Z./v(i“l’]i )'\iA
=1

il" [ satisfies the property that for any € > 0 thereisa 6 ~ 0 such that

for every partition ) of R for which [[D| < ¢ and for all possiblc
choices of the point (£,.m;) inthe ith rectangle 7= .20 ..0n
W |

<€.

‘Zﬂé,.n,)A/,l— i

=1

Isuch L exists, we write
/Iim Zf(f;,,m)AiA = ”f(X,}')dA
)0
i =1 R

339 THEOREM.  Suppose [ is  a function of 1wo variables that i
Continuous on a closed rectangular region R in the xv-plane. and
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fixy) 20 forall (xy) in K. If V cubic units is the volume of the solid §
having the region R as its base and having an altitude of flx.y) units q
the point (x,y) in R, then

n

Vo= dim Y fEam)aA = [[ 10
1Dl>075; f

It would be difficult if not impossible to find the double integral of a
function from the definition. Fortunately, a lot of the double integrals we
would be interested in can be found using techniques we have learned in
single integration. The following theorem shows how this can be done.

3 40 THEOREM (FUBINI'S THEOREM). If f is integrable on a rectangle
R=Ii(xy):a<x<bhc=sys d ' and suppose that for each value y in

[c,d] the integral F(y)= rf(x,y)dx exists. Then F is integrable on
[e.d] and

Hf(x,y)dA = _[Cd F(y)dy= f[ ]’:f(x. y)dX}dy
R

3.40.1 COROLLARY. Let A be the region given by A= { (x.)) py) £
x<q(y),csy<s d } where p and g are continuous functions on [c.d]
with values in [ab). If [ is continuous and real valued on A then f 1S
integrable on A and

[[ £z y)da= f [jzg ;f(x, y)dx]dy.
A

ltems 38 to 40.1 can be altered using f(€;.n;.Ci) and ”j‘f(x,y.:)d"

to give properties for the triple integral. -

A lot of applications use integrals evaluated on a domain which 15 ‘;
path rather than of regions with areas. A discussion on these type ©
integrals are available in most calculus books.
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I et us end with a note that what have been discussed here are just the
introductory part of applications, We hope that this training will serve as
an appetizer for your mathematical feast,
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