SEQUENCES AND SERIES

Harry M. Carpio

The limit concept is the essence of analysis. Indeed, many important
analytical constructs are defined using various limit processes. The deri-
vative and the integral are the two main examples. In calculus, there is
without doubt a need for a thorough understanding of limits. ~“When
students fail to understand this idea,” Gaughan writes in [3; p.59], “their
study of calculus becomes a drudgery of juggling formulas.” To this we
add: when teachers fail to understand limits, their teaching of calculus is
not much different from a ‘cooking” demonstration.

This lecture is a basic introduction to the theory of limits of
sequences. It is intended for the teacher/participants of the First Mindanao
Mathematics Teachers' Tiraining-Seminar. The material should cover the
minimum needed by these teachers. There is a serious attempt to present it
rigorously and, in most cases, detailed proofs are included. After all, a
good grasp of the fundamentals is almost synonymous with the ability to
prove the basic assertions. Here we introduce a new approach to
convergence, which appears to be interesting and attractive.

The lecture is divided into two parts: first, we cover the rudiments of
limit theory, then we use it to clarify the meaning of an infinite sum.

Convergence. A sequence of real numbers (s,) is a real-valued
function on the set N of natural numbers or positive integers. A sequence
is usually described by a formula such as s, = 3/n or a list such as

. A1, 0, %)

As functions, sequences are very simple mathematical objects.
Because of this, they make a suitable vehicle tor a leisurely introduction
to the theory of limits.

Lo show that a sequence (s,) of real numbers converges 10 a real

humber s the old procedure, which goes way back to the ume ot Augustin
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[ ouis Cauchy (1789-1867). consists of two steps: (1) to find an integer N
corresponding to a given € > 0, and (2) to show that if the index n > N,
then we must have |s, — 5| < €.

Fach of these steps constitutes almost half of the whole procedure and
it usually takes some time before the average student can master the
intricacies of both. However, only step (2) is essential. One can view this
problem from a better perspective if he bears in mind that:

A sequence (s,) converges lo d real number s if the
difference |s, — s| eventually becomes very, very small.
More precisely, this means that for any specific € > 0, no matter how
small. the inequality |s, — s| < € must eventually hold. In particular, we
must guarantee this when »n is large. This exactly is the content of the
definition of convergence.

4.0 DEFINITION. A statement or a condition C(n) holds for large n, if
there is a positive integer N such that C(n) holds for all n = N.

4.1 DEFINITION. We say that a sequence (s,,) of real numbers conver-
ges to a limit s, if foreache =0, the inequality

;.s'” - si <¢ holds for large n.

In this case we shall write lim s, = sor lim s, =s. and we shall say
n—r L

that the sequence (s,) 1S a convergent sequence; otherwise, we shall say
‘that the sequence (s,) is divergent.

In this definition, all our attention is focused on the difference |s,— Sl
In order to prove that the sequence (s,) converges o the real number s.
we must show that this difference can be made small.

Definition 4.1. which is essentially due to Redheffer [1]. is based ond
mode of expression that has long been a part of the mathematical jargomn
The expression ‘for large n’ is often used in the literature, although it 15
never defined explicitly; it is simply taken for granted that its meaning 1S
clear and it needs no further explanation. Consider for instance the
following statement:

n —7n—30=0 forlarge n.
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Based on Definition 4.0, this statement is true. Forif n > 37, then
W =3/m="Tn+30n="7n+30.
Hence. ' —Tn-30>0 forall n> 37. #

Here 1s another illustration of Definition 4.0.

4.2 LEMMA. If a, b, and p are positive real numbers, then for any real

number k the inequality — 4 <y holds for large n.
(n—k)"

Proof. According to the Archimedian property of real numbers. there
is a positive integer N, large enough, so that

NV P > VP 4 gpVp

(Almost obvious, since the set of positive integers is not hounded.) Hence.

(n—k) b7 > VP forall n> N.
Hence, by Definition 4.0,
(n—k) b7 > 4" for large n.

Theretore, h(n— k)" > a for large n, and the conclusion follows. #
The next lemma is a vital cornerstone in our approach.

4.3 THE CONJUNCTION LEMMA. Let C(n) and Cy(n) be two conditions
on n, where n € N. If C\(n) holds for large n and Cy(n) holds for large n,
then the conjunction C,(n) & C,(n) also holds for large n.

Proof. By hypothesis, suppose that Cy(n) holds for n > N|. and (',(n)
holds for n > N,, where N and N, are positive integers. Let N = max{\,
N>}, Then both C',(n) and Cy(n) hold for n = N. When this happens, the

Tonjunction C1(n) & Cy(n) also holds. Therefore, C'\(n) & C,(n) holds for
arge n.  #
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We immediately have two useful corollaries. Let (s,,), (7,)). (u,), and
(v, ) be sequences of real numbers.

4.3.1 COROLLARY. If s, < t, holds for large n and 1, < u, holds fo,
large n, then s, < u, holds for large n.

4.3.2 COROLLARY. If 5, < 1, holds for large n and u, < v, holds

for large n, then s, + u, < 1, + v, holds for large n.

Limit theorems. How simple and effective is our “new’” definition of
convergence? As typical illustrations of our approach, we shall prove more
useful results.

a

4.4 THEOREM. If a. k € R, and p =~ 0, then lim =0

n ,,(,,,,/()/

Proof Letg > 0.1t follows from Lemma 4.2, with » — ¢, that

a al

(n—k)” _(n—k)/7

< ¢ holds for large n.

Hence. by Definition 4.1, the desired conclusion follows.  #

4.5 THEOREM. If s, = k for large n, then lim s, = k.

H—>»x

Proof. The hypothesis is equivalent to the statement |s,— k[ = 0 for
large n. The desired conclusion follows from Definition 4.1. #

4.5.1 COROLLARY. The constant sequence (k, k, k, ... ) converges 10 K,
ie., lim k=k.

n—>»0

4.6 THEOREM. lim s, =s ifandonlyif lim .Sn - ,s" =0.
n—o n—ow

The proof is an easy exercise. #

4.7 THEOREM. lim r"" =0, if |r|<1.
n— o0
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Proof. Let0 <€ < 1. Then, clearly, 0 < (~log &) < n(~log |r|) for large

n. It follows that |7 — 0] = |r|" <¢ for large n. #

We shall now prove some standard limit theorems for sequences.

4.8 THE SQUEEZE THEOREM. Let s € R. If |s,— s| < t, for large n,

and lim t, =0, then lim Sy =
n—»© n—oo

Proof. Let &> 0. By hypothesis, the inequality
|'s,— s| < t,, holds for large n.

By the second hypothesis and by Definition 4.1,
|1,,— 0] <€ holds for large n.

Thus. by Corollary 4.3.1, the relation
|s,—s|<t, =|t,- 0| <e also holds for large n.

Therefore, by Definition 4.1, lim s, =s. #

. sin(mt/2)
4.8.1 EXAMPLE. Show that lim —————~ =0,
n— © h

Solution. The conclusion follows from the Squeeze Theorem, since

sin(rm/2)| _ fsin(m/2) <1 foralln. #
n ‘ R &

4.8.2 EXAMPLE. Prove that

2
-5
lim —" +32” =0,
n—-wo2n” —5n° +n-4

Solution. First, we suppose that n is large enough so that both the nu-
Merator and denominator of the given fraction are positive. (Hence, we
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can do away with the absolute value signs.) Now observe that for 4 7

)

n +3n-5<n’+3n° =4n’, and

' —swiain—4 >0’ -5t —4n’ = 0 —9n° = (n — 9)n’.

(To find an upper estimate, we either increase the negative terms (o 0,
or increase the powers of the positive terms. To find a lower estimate,
cither decrease the coefficients of the positive terms to 1 or 0, or increase
the powers of the negative terms.) Hence, it follows that, for large n, we
have the relation

n2+3n—5

_ n’+3n-5 4
2n’ —5n® +n—-4 n-=9

2n3—5n2+n—4

Since lim = 0, the result follows from the Squeeze Theorem. #

n—oo N —

4.8.3 EXAMPLE. Prove that lim (\/n +1 - ﬁ) =

n—> 0

Solution. This result follows from the Squeeze Theorem and Theorem
4.4 witha=p=1/2 and k=0, since

i

1 1
N T Tnt e n

4.9 THE UNIQUENESS THEOREM. If lim s, = L and lim s, = L',
then we shall have L = L'.

Proof. Observe that |L — L'| <|s,— L| + |s,— L'| for all n. Then, it
follows from the hypothesis and Theorem 4.6 that |L — L'|=0. #

A sequence (s,,) is bounded if there is a real number B such that EA
< B for all n.

4.10 THEOREM. A convergent sequence is bounded.

Proof. Lets=1lim s,. Then |s,— s| <1 for large n. By Definition 4.0-
there is a positive integer N such that
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|5, —s|<1foralln=N.

Now let B=max { 1 +1s|, |sy|, Isgls ... » | sy | }. Clearly, |s,| < B.ifn<
N Moreover, (1 +|s|) < B. Hence, if n > N, then, by the triangle inequality,
we shall have

|s,]= |s,=s+s|<|s,—s|+|s|<1+][s|<B.

Therefore, |s,| < B foralln. #

4.10.1 COROLLARY. An unbounded sequence diverges.

Algebra of limits. The next group of theorems yields a powerful and
elegant tool for proving that a sequence converges to a given number.

4.11 THEOREM. If k € R and the sequence (s,) converges [0 S € R,

then the sequence (ks, ) converges to ks, i.e., lim ks, =k lim s, .
n—® n—»o

Proof. Suppose k # 0 and let € > 0. Then, by hypothesis,
‘Sn — s\ < |—2-| holds for large n.

Therefore, for all k € R, |ks, — ks| < & holds for large n. Hence, by
Definition 4.1, (ks,) converges to ks. #

4.12 THEOREM. If (s,,) converges to s, and (1,) converges to t, then
the sequence of sums (s, + 1,) convergesitos +1, ie.,
lim (s, +1,)= lim s, + lim 7,
n—» oo n—® n—»

Proof. For each n, it follows from the triangle inequality that

(5, +1,) ~ (s +0)| s, = o] +]ea =1} (4.12.1)
Now let € > 0. Then, by hypothesis,

|5, — s| <¢/2 holds for large n, and

|1, — 1| < €/2 holds for large 7.
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Hence. hy Corollary 4.3.2, |s, = s| [, — 1]~ & holds for large , ¢
by Corollary 4.3.1 and by (4.12.1),  Thyg

(s, +1,)—(st0[=¢ holds for large n. #

413 THEOREM. If lim s, =s. lim 1, =t and s, <1 for ..
S now n> n =l Jor large ,

then we have s < 1.

Proof. Let & > 0. By hypothesis,
s, — s < &/2 for large n,and |1, — 1]~ £/2 for large n.

Since s, <, for large n, we also have

s =18, =S| < s, Sty S, M for large n.

Hence. s — 1 < |s,— s| +|t, — 1] < ¢ for large n. Since € is arbitrary, i
follows that s — 7 < 0. Therefore, we have s <. #

4.13.1 COROLLARY. If s, < M. forlarge n, and lim s, =L then

n—

we have L <M.

4.14 THEOREM. If (s,) is bounded for large n and (1,) converges lo

(. then the sequence (s, 1,) converges (0 0.

Proof. Since there is a B € R such that |5, | < B for large n, then

s, 1, =0l =|s,1,1< Blt,] for large n.

non

[ence. by Theorems 4.8. and 4.11, we have lim 5,1, = 0. #
H—>7r

4.15 THEOREM. [If (5,,) converges (o s, and (1,) converges lo 1,

the product sequence ( s”I,, ) converges (o s, i.c..

then

lim 5,1, :( lim "‘”j( lim I,YJ.
1> r —r L

n—x

86



HARRY M. CARPIO

Proof. Firsto we observe it for each n, it follows from the triangle
mequality that

l‘,,’,; ’\'ll. |'\'/1H,u ,‘ I l’“‘\‘u ‘| (4|§|)

Ihe sequence (s,) 1s convergent; hence, it is bounded, by Theorem 4.10.
I'hus. by Theorems 4.6, 4,11, and 4.14, and the hypothesis,

lim (l-\',,”l,, ID 0, and lim (M‘-V,, : s}) ()
">

n-»x

Finally. by Theorem 4.12,

[im \.\',,“I,, I‘ » [/Il.\'” - .\'l = 0.

n-—>»x
Iherefore, in view of (4.15.1) and the Squeeze Theorem, it follows that

lhm s 1 =xst. #

non
=

416 THEOREM. If (s,) converges to s, s, # 0 for all n, and s # 0,
then the sequence of reciprocals (1/,,) converges to 1/s.

Proof. By hypothesis. |s|/2 > 0. Also by hypothesis [s,— s| < |s|/2
holds for large n. Hence, it follows from the triangle inequality that

Is| < |s = w5, | + 18, < |s}/2 + |5, holds for large n.
Henee, the inequality 0 < [s)/2 < |s,,| holds for large n. Now, since cach s,
#0. then forany N = 1,

min {’.s'”‘ tn< N} > 0.

Henee, there exists m > 0. such that m < |s,,| for all n. Thus, for each n

|
n l' ‘.\'” - .\" ""n - A\"

15y 8| l_\-” “\l ;n\.xr '
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Using Theorems 4.11 and the Squeeze Theorem, we conclude that

4.17 THEOREM. Suppose that ('s,) converges to s and (1) converges
tot If s, #0forallnands# 0. then the quotient sequence (t,/s
converges 1o 1/s.

Proof. By Theorem 4.16, (1/s,) converges to (1/s). The desired
conclusion follows easily from Theorem 4.15. #

4.17.1 EXAMPLE. (i) There is a tendency among students to use limit
theorems rather carelessly by drawing conclusions without first verifying
the hypothesis. This habit sometimes leads to embarrassing results as the
following illustration shows: If we take for granted that limn = L. where L

H—>L

is a nonzero real number, then using Theorem 4.17, we shall have

lim 1 ! 1
0= lim —= ril—t;lwn: lim ":_L_
n— n n—oo n—>w

This leads to the equation 0 = 1, which is absurd. The mistake is the result
of using Theorem 4.17 without verifying its hypothesis. #

4n3 -3n

(if) Show that lim =4.

n— o n3+6

Solution. We shall give a careful algebraic proof of this assertion-
First we observe that

Next. we show that lim (4 — 3/n’ ) = 4. To this end, we must verify that:

lim4 =4, (Theorem 42)
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lim (-3/) 0. (Theorems 4.4 and 4.11),
Henee. by Theorem 4,12, we have
lim (4 -3/m" ) 4104,

We can show similarly that lim (1 + 6/n’y =1 + 0 1,

Therefore, by Theorem 4.17. we have

3 y im|
o 4T =3n . 2 \ "J 4
lim - im i z 4,
na>r N+ 0 N> r 6 . 6 ]
b+ lim| | :
n 1"

Asin Example 4.8.2. the above argument actually proves that

, 411" 3n
Inn—‘”f - =4,

norr 46

Existence of limits: subsequences. The preceding theorems address
the problem of showing that (i) a given sequence (5,,) has a limit and
(77) that its limit is a given number s. We now have two methods of
attacking such problems. In some cases. however, we are only interested
on problem (i), i.c., the convergence behavior of the sequence. In this
sttuation, the next theorem is often useful.

418 THrorREM. Suppose that the sequence (s,) is a hounded
monotone (nonincreasing or nondecreasing) sequence of real numbers,
Then (s,)) is convergent.

Proof. Suppose that (s,) is nondecreasing. Let s be the least upper
bound of (s, ). as guaranteed by the Completeness Axiom. Let s - (. Then

(v =€) is not an upper bound for (s,). Thus, some s, - (s - £). For n

= Nosinee 5, > vy . we have

N 'Yu| = (s - Sp) e

A subsequence of a sequence (s,) is a sequence formed by removing
clements or terms of the sequence (5,). For example, if we delete all odd
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terms ol the sequence (v, ), we obtaim the subsequence (g, ). The
n > "ll)th
Cr

the Mothe,
CTRE 1o th

sequence salso considered o subsequence of itself. Note that if
sequence converges tooa it £ all it subsequences also cony
same hioat /

AAR L EXAMPLE Leta, — Voay, V2, . a

(a, ) is nondecreasing and i «a,, = 2
Horr

SNolution We can easily show by induction that the sequence (g

nel \/2:1,, Prove that

) 15
nondecreasing and a, = 2 for all . (Show i) Suppose now that lim a
n

i L Bu

the detinion of a,,  imphes that 1 J21 . Therefore, I 0 or 2 Since

[-Smee (a,, ) s asubsequence of (a,), we also have lima, |

(ay) s nondecreasimg, him a,, = 1, so we must have /. 2. #

4082 EXAMPLE I 7 = 1, prove that Tim #"77" - )

no»s

n

. , | : ,
SNolution. Observe that r 1 forall mand ("7 ) s nonincreasing

. . . . . ¥, . 1/
(Show 1t) Therefore, im »" exists. Suppose hm " [ Then lim
bl Y / . v ./n
ro " 7. by Theorem 4.15. But (#'"") is a subsequence of (")
o I " "
Hence, we must also have m 7"~ 1”7 Thus, 1.” L and hence. either [

Oorl —1.But L #0.since """ =1 for all n. Hence, [ 1 #

4.18.3 LEMMA. Lvery sequence has a monotone subsequence

Proof. (11 Thurston [6]) Assume that a tail of the sequence (s,) does
not contain a greatest member. Without loss, we may suppose that this tail
1s (y,) uself. We shall show that (s, ) has a nondecreasing subsequence
(3, ). To this end. suppose ny = n, < -+ < ny have been chosen so that
Sp, 8 forall n<n . (We may start with ny — 1.) Since s, is not the

greatest member of (s,,), we may define

e, - mintnin> o and s, - Sn, |
1 P . 14 / dC‘
Clearly, ny - ngand s, s, = Moreover, because ny. 15 by |
B _ e , Thus. if
finition minimal, if n, < n <n; . then we must have s, < 5, ['hus

i g Tl eithanmiarios (« . .creasing.
e oy thenos, <, I'he subscquence (s, ) is nondecrea

90



HARRY M. CARPIO

Now assume that every tail of (s,)contains a greatest member. We
may select the terms of a nonincreasing subsequence of (s,,) as follows:
Choose n; so that Sn, 1s the greatest member of (s, 54, 53, ... ). Next,

choose ny so that s, is the greatest member of (s, 41,8, +2,5n +3 )
Then, choose n3 so that s, is the greatest member of the subsequence
(Spy 413y +20Smy 430 ) 5 and so on, ad infinitum. The subsequence (s, ) 1s

a nonincreasing subsequence of (s,). #

4.18.4 COROLLARY (THE BOLZANO-WEIERSTRASS THEOREM). [Lvery
hounded sequence of real numbers has a convergent subsequence.

Proof. Suppose (s,) is a bounded sequence of real numbers. By
Lemma 4.18.3, (s,) has a monotone subsequence. By Theorem 4.18, this
monotone subsequence, which is bounded, is convergent. #

Sequence of partial sums; convergence of infinite sums. Adding a
finite collection of real numbers is easy. However, the situation is more
demanding when the collection is infinite. If this infinite collection is not
countable, there are even greater complications. Here we shall confine
ourselves to the countable case - a case that can be handled satisfactorily
using sequences.

The study of infinite sums has important and fascinating applications
in physics. engineering, and in many major areas of mathematics. Because
the theory of limits (of sequences) plays a vital role in the study of infinite
sums, it is, therefore, not surprising to find this topic included in every
standard calculus textbook.

An infinite sum of a sequence (u;, ) of real numbers is usually denoted
by the symbols

a0
Z“k’ or lek, or uytuy tuy + .
k=1

(The symbol 2 u; is used when it is clear that the summation index
ranges from 1 to infinity, otherwise the range should be clearly indicated.)
Any of the three symbols above is called an infinite series. But these

symbols are meaningless, unless there is a definite rule for determining
What they represent. Since we know how to determine finite sums. it is but
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natural to approach the problem of an infinite sum by considering the
finite case. The standard technique is to generate finite sums of the form

n
S, Uy tuy, tuy e U, = Zu,\.
k=1

These sums are called partial sums of the series AE u, o the sequence
=1

(5,) 1s called the sequence of partial sums belonging to the series Y,
k=1

4.19 DEFINITION. If lim ,, exists. then this value is called the sum of
1-—>»00

the series. Morcover, we say that the series converges and we write

s

Z”A = lim s,

k=1 n—>»0
It (s,,) fails to have a limit, then we say that the scries diverges. The

s
rcader should note that the symbol Y, stands for two things: the series
k=1

itself and the sum of the series. This is an abuse of the notation that can be
conlusing sometimes: but the use is quite common in the literature.

In cftect. the preceding definition says that the following equation
holds:

1n—>x

0 n
Z”k = lim Z“k-
k=1 k=1

In the beginning. many students can hardly reconcile the fact that an

infinite series > u, stands for a sequence of finite sums and not just @
k=1
single finite sum like (3 + 2 + 17). Perhaps this is all because of the
summation sign X, which is present in Y u, . While it is true that an
k=1 .

infinite series and an ordinary finite sum share many common propertics
the students should realize the difference between these two entities. 1he:
must remember that an infinite series is a sequence of partial sums.
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4.19.1 ExaMPLE. Find the sum of the following seres:

(1D TN H (=) + (=) + -

iy (1 =12+ (1/2=1/3)+(1/3 = 1/4) + -+

Solution. (i) At first glance, it appears that the sum in (i) 15 0
[However, a little analysis reveals the contrary. Observe that the nth partial
sum s, = 1,if nisodd, and s, =0, if n is even. Since the sequence (1. 0.
1.0.1,0,...)does not converge, the series has no sum and is divergent.

(i) Observe that the nth partial sum of the series telescopes to the
value 5, = 1 — 1/n and, hence, lims, = 1. Thus, itssumis 1. #

4.19.2 EXAMPLE. (i) Show that the series Z]/Zk converges. (ii) Show
in general thatif 0 <r < 1, then

Zrk - = ——l .
ey 1-r
This series is called a geometric series with common factor r.
Solution. (i) The nth partial sum of 2.1/ 2% is the geometric series
1/2-1/2"""
1-1/2

s, =12+122 +1/2° + -+ +1/2"=

Clearly lim s, = 1. Hence, by definition, Zl/2k = 1. Part (ii) 1s handled
similarly and is left as an exercise. #

4.20 THEOREM. (i) Let (u; ) and (v, ) be sequences of real numbers
and assume that the series Yu;, and 2. v, both converge. Then 2 (uy +v, )
also converges and Y(uy, +vy) = Tu v

(ii) If ¢ is a real number, then Zcuy, = ¢ Lu .

Proof. (i) Let (s, ) and (¢, ) be the sequences of partial sums of the
series Yu, and Y v, respectively. It is easy to see that (s, +7,) is the
sequence of partial sums of the series 2.(uy +v; ). Since lim (s, +7,) = lim
s, + lim¢, , the conclusion follows readily.

Part (ii) is proved similarly. #
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421 THEOREM. [f the series 2 uy, converges, then lim wu, = (

k-
Proof. Suppose the series 2 u, converges to S, 1e., hm s, S
n-»s
Clearly, we also have lim s, | =S Since u, ~ 5, — 5, . 1t follows tha

n-—»r

m w,= hmw,~ lims, - lims, =0 #
k> n-—>s n-—»7s n-—yr

4.21.1 COROLLARY. If lim wuy # 0. then 2 u, diverges

k>

4.21.2 EXAMPLE. Many students seem to have difficulty remem-
bering that if lim wu; = 0. it does not follow that the series 2uy is

»r

convergent. To see this. consider the following series:

(124 1/2)+(1/4+ - +1/4)+(1/8 + - +1/8)+ - =1 +1+ -

[2 terms] [4 terms] [8 terms) etc.

Clearly. the partial sums of the series become large as k increases although
we certainly have lim u;, =0.

k>

; . k-5 ..
4.21.3 EXAMPLE. Show that the series Z T diverges.
I+ &

: . . k-5
Solution. Since m ——— # 0, we may use Corollary 4.21.1. #
ks 3k +2

Convergence tests. For an infinite series with nonnegative terms.
three simple convergence tests are available, namely, the comparison test.
the ratio test. and the integral test. For more general cases., we also have
the root test and the alternating series test.

4.22 THEOREM. Suppose u, > 0 for all k If the sequence (s,)0f
partial sums is bounded, then the series 3 u, converges.

Proof. Since u;, > 0, the sequence (s,) of partial sums is nonde-
creasing. By Theorem 4.18. (s,) is convergent, because it is bounded. #
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4.22.1 EXAMPLE. Show that the series Y. 1/k converges.

Solution. Since 1/ > 0 for all k. Theorem 4.22 applies. We will
show that the sequence of partial sums is bounded. We have

(2]

L4 (1274135 ) h (147 + o 17y + (1/82 4 oo +1/152 )+ -+ <

<TH+(1/22 + 122+ (1/4% 4 +1/4%) + - =
L+ 12+ 1/4+1/8 4. =2

[Hence, the increasing partial sums is bounded above by 2. #

4.23 THEOREM (COMPARISON TEST). Let 1, 2 0. v, 20 for all k and
C-0.)1lf u, = Cv,, and Zv,( converges, then Zu,\, converges and > U, <
(v If Cuy < viand X uy diverges, then Y. v, diverges.

Proof. Let s,and 1, be the nth partial sums of > u, and 2 v, . Then
s, = C1,.(i) Since (s,) is nondecreasing and lim/,, exists, it follows that
(s,)1s bounded above by lim Cr,. By Theorem 4.22, the series > i,
converges.

(1) 1f (s, ) were bounded above, it would be convergent; hence. by
assumption. (s, ). also (C's, ), is not bounded above. Thus, for any N, we
have ¢, = C's,> N for large n. Hence, lim ¢, = o. #

4.23.1 EXAMPLE. Determine convergence or divergence:

o 2 o0 2 7
i Y I

n=1" +1 n=12n

Solutions. (i) We shall use the estimation technique used in Example
4.8.2. Since

n’ S n’ =rz2 =l(l)
n 41 waend 2n0 2

o8] 2
“ n

and since 3_1/n diverges, then so does Z .
n=11"*

95



THE MINDANAO FORUM

(77) Recall Example 4.8.2 again. Since

n>+7 <r13+7n2 8n’ 8(1)
2n4—n+3-2n4—n4 n 2)

) bl
> n+7
4

: 2
and since 2 1/n" converges. then so does #

po12n” —n+3

4.24 THEOREM (RATIO TEST). Let 2 u; be a series with w, > 0 for gj]
k. Assume that there is a number ¢ with 0 < ¢ < 1 such that w,/u, <
for large k. Then the series 2. u, converges

Proof. Suppose that w, ., /u, < c,if k= N. Then

2
Un 4 SCU‘\'. ll‘\'+2 SCUN+| <c Uy ctc..

In general, we have uy,, < ¢"uy . Therefore,

N+n
Zuk Suy +cuy +ctuy + - +cuy <
k=N
2 3
Su;\z(1+c+c +c’+ - +c'")
]
SUN =
1-c¢

Thus. in effect we have compared our series with the geometric series, (see
Example 4.19.2) and we know that the partial sums are bounded. This

implies that our series is convergent.  #

4.24.1 COROLLARY. Let X uy be a series with u,> 0 for all k. Suppose

.U ,
that lim —*L <1 Then the series converges.
k— 0 uy

4.24.2 EXAMPLE. Show that the series > k / 3k converges.

Solution. Let u;, =k /3* Then as k — , we have
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I'hus by Corollary 4.24.1, the series is convergent. #

4.25 THEOREM (INTEGRAL TEST). Let f be a function, which is defined
and positive for all x > 1, and nonincreasing. The series 2f(k) converges if

and only if the improper integral J‘lm f(x)dx converges.
Proof. Since f is nonincreasing, we have
f2) £fix) <A1), for 1 <x<2,
f(3) < fix) £A2), for 2<x<3, etc..

Hence. it follows that

f(2)< ff(x)dxs ), f3)< Ef(x)dxsf(2), etc. . (4.25.1)

This implies that

A2)+A3) + - + fin) < ff(x)dx. (4.25.2)

Hence, if P’(x)dx converges, then the partial sums of the series > f(k)

are bounded. Therefore, the series converges, by Theorem 4.22.

To prove the converse, suppose that the series 2 f(k) converges. We
use (4.25.1) again to get

[ feode < A1) +£2) + -+ fin-1)< X f (k). (4.25.3)
k=1

Hence, by Theorem 4.18, lim | f(x)dx exists. #

n—»w0

4.25.1 EXAMPLE. Prove that the series X 1/k° converges.

Solution. This is also done in Example 4.22.1. Let fx) = | v . Then
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[/ Codx = tim =1/ x) = tim (1= 1/m) = 1.

- 0 2.
I'hus 'flf(x)a’x converges. By the Integral Test, 2 1/k" is convergent. #
A series 2 u; (whose terms 1, are possibly negative) is said tq
converge absolutely if the scries 2| u, | converges.
4.26 THEOREM. A series 2. uy that converges absolutely is convergen.
Proof. Define:

o up, 1fuy 20,
k 0. otherwise

J—uk. ifu, <0,

and U, = )
k ] 0. otherwise.

Then both u; " and u;, ~ are nonnegative. Moreover, since

w, < |uyland u, < |uy| forall &,
it follows that both >, “and X 1, converge and so does

Su -Yu = X —u ) = Tu. #

4.27 THEOREM (ALTERNATING SERIES TEST). Let 2w he a series
such that (i) |u, | decreases to 0 and (ii) wis alternately positive and
negative. Then the series is convergent.

Proof. Let us write the series 2, in the form

by—c thy—cy + -,
with b, 20, and ¢, 20. Let

s,=by—c +by—cy +-- + b,

t,=b—ci+by—c; +-- +b,-c,.

: X = s m
Since s,,;=5,—-¢,+b,,; and 0 < b, <¢,, we subtract more fr.o
. .1 <s,. By asimilar

s, by ¢, than we add afterwards by b,,,. Hence, s,
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argument, we have 1, ., 2¢,. Clearly, s, >/, for all n. Hence, we must
have

12852832 - 2L > ... > L2t 2>1,.

for some real number L. Butlim (s, —¢,) = lim ¢, = 0. Hence, it follows
that lims, =lims, = L. Therefore, the series converges to L. #

Let x € R and let (u;) be a sequence of real numbers. The series
o

> ukxk is called a power series.
k=1

4.28 THEOREM. Assume that there is a number r > 0 such that the
series

o0
Zl“k|’k
k=1

el
converges. Then for all x such that |x| < r, the power series Zukxk

k=1
converges absolutely.

Proof. The absolute value of the term u,x* of the iven series is
k g

lu ”)«,/ < |uy |rk_ The conclusion follows from the Comparison Test. #

Q0
The radius of convergence of the power series Zukxk is the least
k=1
upper bound of the numbers r for which we have the convergence stated in
Theorem 4.28. If there is no such number, then we say that the radius of
convergence is infinite.

4.29 THEOREM (RoOT TEST). Let Zukxk be a power series and

» : 1/ . . :
assume that 11m114k| L s, where s € R. If s > 0 then the radius of con-
vergence of the series is equal to 1/s. If s = 0, the radius of convergence is

e : 17k i ' . |
infinite. Jf uk| hecomes arbitrarily large as k — oo, then the radius of
Convergence is (),
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Proof. Without loss. we may assume that %, 20 for all k. Suppoge
that s > 0. and let 0 < r < 1/s. Let € = |[rs — 1| > 0. By hypothesis, the

numbers u}( kytend to sr. as k — oo, and hence (since rs < 1) are <] _
for all sufficiently large k. Hence, the series Zukrk converges. by compa-
rison with the geometric series 2 (1 - ).

[f. on the other hand, r > 1/s, then 3! "% r approaches sr > 1. and,
hence. we have ,,}"”‘r > 1+¢ for sufficiently large k. Then comparison

with the series 2 (1 —s)l‘ shows that the series Zzzkr/‘divergcs. We
leave the cases s =0 and s = to the reader. #

n

X
. : % _ :
4.29.1 EXAMPLE. The series Zj has a radius of convergence
n:In‘-

cqual to 1, because

1 1/ n 1
lim(—j) = lim =1 #

/
n—>o\ pn- n—om n2, n

REMARK. Experience shows that we can teach part of this material
successfully. if we take the trouble to explain and motivate our presenta-
tions. On the part of the students, this would require a certain degree of
maturity. On our part, it would require a higher level of expertise.
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