SEQUENCES AND SERIES

Harry M. Carpio

The limit concept is the essence of analysis. Indeed, many important analytical constructs are defined using various limit processes. The deri vative and the integral are the two main examples. In calculus, there is without doubt a need for a thorough understanding of limits. "When students fail to understand this idea," Gaughan writes in [3: p.59], "their study of calculus becomes a drudgery of juggling formulas." To this we add: when teachers fail to understand limits, their teaching of calculus is not much different from a 'cooking' demonstration.

This lecture is a basic introduction to the theory of limits of sequences. It is intended for the teacher/participants of the *First Mindanao* Mathematics Teachers' Training-Seminar. The material should cover the minimum needed by these teachers. There is a serious attempt to present it rigorously and, in most cases, detailed proofs are included. After all, a good grasp of the fundamentals is almost synonymous with the ability to prove the basic assertions. Here we introduce a new approach to convergence, which appears to be interesting and attractive.

The lecture is divided into two parts: first, we cover the rudiments of limit theory, then we use it to clarify the meaning of an infinite sum.

Convergence. A **sequence** of real numbers (s_n) is a real-valued function on the set N of natural numbers or positive integers. A sequence is usually described by a formula such as $s_n = 3/n$ or a list such as

 $(3, \frac{3}{2}, 1, \frac{3}{4}, \frac{3}{5}, \dots).$

As functions, sequences are very simple mathematical objects. IBecause of this, they make a suitable vehicle for a leisurely introduction lo the theory of limits.

To show that a sequence (s_n) of real numbers *converges* to a real number s , the old procedure, which goes way back to the time of Augustin

Louis Cauchy (1789-1867), consists of two steps: (1) to find an integer N corresponding to a given $\varepsilon > 0$, and (2) to show that if the index $n \ge N$. then we must have $|s_n - s| < \varepsilon$.

Each of these steps constitutes almost half of the whole procedure and it usually takes some time before the average student can master the intricacies of both. However, only step (2) is essential. One can view this problem from a better perspective if he bears in mind that:

> A sequence (s_n) converges to a real number s if the difference $|s_n -s|$ eventually becomes very, very small.

More precisely, this means that for any specific $\epsilon > 0$, no matter how small, the inequality $|s_n - s| < \varepsilon$ must eventually hold. In particular, we must guarantee this when n is large. This exactly is the content of the definition of convergence.

4.0 DEFINITION. A statement or a condition $C(n)$ holds for large n, if there is a positive integer N such that $C(n)$ holds for all $n \ge N$.

4.1 DEFINITION. We say that a sequence (s_n) of real numbers converges to a limit s, if for each $\varepsilon > 0$, the inequality

 $|s_n - s| < \varepsilon$ holds for large *n*.

In this case we shall write lim $s_n = s$ or $\lim s_n = s$, and we shall say that the sequence (s_n) is a *convergent* sequence; otherwise, we shall say that the sequence (s_n) is *divergent*. $n \rightarrow \infty$

In this definition, all our attention is focused on the difference $|s_n-s|$. In order to prove that the sequence (s_n) converges to the real number s, we must show that this difference can be made small.

Definition 4.1, which is essentially due to Redheffer [1], is based on a mode of expression that has long been a part of the mathematical jargon. The expression 'for large n' is often used in the literature, although it is never defined explicitly; it is simply taken for granted that its meaning is clear and it needs no further explanation. Consider for instance the following statement:

 $n^2 - 7n - 30 \ge 0$ for large *n*.

a Definition 4.0, this statement is true. For if $n \ge 37$, the ti
ti

 $\frac{0}{n}$ $0n \geq 7n + 30$.

 3^{n}
 \geq
 $\frac{1}{2}$ 30
n $h^2 - 7n - 30 \ge 0$ for all $n \ge 37$. #

lustration of Def
.

EMMA. If a, b, and p are positive real numbers, then for any reatly head in the inequality $\frac{a}{(n-k)^p}$ < b holds for large n. a, b, and p are positive real
ality $\frac{a}{(a-b)^p}$ < b holds for the inequality $\frac{a}{(n-k)^p} < b$ holds for large n.
 $\frac{a}{(n-k)^p} < b$ holds for large n. ille $\frac{1}{2}$ $\frac{0}{n}$

 med ccording to the

nteger N, larger
 $a^{1/p} + kb^{1/p}$ e Archimedian property of real numbers, the enough, so that Archimedian iteg $a^{1/2}$ ⁱ, l
kb The enough, so that $\frac{1}{p}$.

 k _e

bvious, since the set of positive integers is *not bounded*.) Hen

(b) $b^{1/p} > a^{1/p}$ for all $n \ge N$. t o:

obvious, since the set of po

k) $b^{1/p} > a^{1/p}$ for all $n \ge b$

 μ Def

definition of the control o k) $b^{1/p} > a^{1/p}$ for larg /p
> large

 $(n-k)^p > a$ for large *n*, and the conclusion follows. #
t lemma is a vital cornerstone in our approach. ell
L

ext lemma is a vital cornerstone in our ap_l

a vital cornerstone in our approach.

TON LEMMA. Let $C_1(n)$ and $C_2(n)$ be two
 $C_1(n)$ holds for large n and $C_2(n)$ holds corners

corners

corners

corners HE CONJUNCTION LEMMA. Let $C_1(n)$ and $C_2(n)$ be two contract the $n \in \mathbb{N}$. If $C_1(n)$ holds for large n and $C_2(n)$ holds for l $\frac{\partial N}{\partial C}$ pp 4.3 THE CONJUNCTION LEMMA. Let $C_1(n)$ and $C_2(n)$ be two condit where $n \in \mathbb{N}$. If $C_1(n)$ holds for large n and $C_2(n)$ holds for large the conjunction $C_1(n)$ & $C_2(n)$ also holds for large n. olds for large n and
 $C_2(n)$ also holds for large n, e conjunction $C_1(n)$ & $C_2(n)$ also holds for large

for $C_1(n)$ & $C_2(n)$ also holds for large n.

spothesis, suppose that $C_1(n)$ holds for $n \ge N_1$, and $C_2(n)$

where N, and N, are positive integers Let $N = \max_{N \ge 1} N_1$ $\begin{align} \n\sum_{i=1}^{n} (i) \n\end{align}$ y hypothesis, suppose that $C_1(n)$ holds for N_2 , where N_1 and N_2 are positive integers.
th $C_1(n)$ and $C_2(n)$ hold for $n \ge N$. When upp
ind
'2(1 $f \circ n \ge N_2$, where N_1 and N_2 are positive integers. Let $N = ma$
en both $C_1(n)$ and $C_2(n)$ hold for $n \ge N$. When this happen 1 and N_2 are positive integers. Let $C_2(n)$ hold for $n \ge N$. When this also holds. Therefore, $C_1(n)$ & C hen both $C_1(n)$ and $C_2(n)$ hold for $n \ge N$. When this hap
ction $C_1(n) \& C_2(n)$ also holds. Therefore, $C_1(n) \& C_2(n)$ bld for $n \ge N$. When this happens, the ds. Therefore, $C_1(n)$ & $C_2(n)$ holds for $C_1(n)$ & $C_2(n)$ also holds. Therefore, $C_1(n)$ & $C_2(n)$ holds for
81 large n . $#$

We immediately have two useful corollaries. Let (s_n) , (t_n) , (u_n) , and (v_n) be sequences of real numbers.

4.3.1 COROLLARY. If $s_n \leq t_n$ holds for large n and $t_n \leq u_n$ holds for large n, then $s_n \le u_n$ holds for large n.

4.3.2 COROLLARY. If $s_n \leq t_n$ holds for large n and $u_n \leq v_n$ holds for large n, then $s_n + u_n \leq t_n + v_n$ holds for large n.

useful results. Limit theorems. How simple and effective is our "new" definition of convergence? As typical illustrations of our approach, we shall prove more

4.4 THEOREM. If
$$
a, k \in \mathbb{R}
$$
, and $p > 0$, then $\lim_{n \to \infty} \frac{a}{(n-k)^p} = 0$.

Proof. Let $\epsilon > 0$. It follows from Lemma 4.2, with $b = \epsilon$, that

$$
\left|\frac{a}{(n-k)^p} - 0\right| = \frac{|a|}{(n-k)^p} < \varepsilon \text{ holds for large } n.
$$

Hence, by Definition 4.1, the desired conclusion follows. $\#$

4.5 THEOREM. If
$$
s_n = k
$$
 for large *n*, then $\lim_{n \to \infty} s_n = k$.

Proof. The hypothesis is equivalent to the statement $|s_n - k| = 0$ for large *n*. The desired conclusion follows from Definition 4.1. $#$

 $n\rightarrow\infty$ 4.5.1 COROLLARY. The constant sequence $(k, k, k, ...)$ converges to k, *i.e.*, $\lim k = k$.

4.6 THEOREM. $\lim_{n\to\infty} s_n = s$ if and only if $\lim_{n\to\infty} |s_n - s| = 0$.

The proof is an easy exercise. #

 $n\rightarrow\infty$ 4.7 THEOREM. $\lim r^n = 0$, if $|r| < 1$.

Proof. Let $0 \le \varepsilon < 1$. Then, clearly, $0 \le (-\log \varepsilon) < n(-\log |r|)$ for large *n*. It follows that $|r^n - 0| = |r|^n < \varepsilon$ for large *n*. #

We shall now prove some standard limit theorems for sequences.

4.8 THE SQUEEZE THEOREM. Let $s \in \mathbb{R}$. If $|s_n - s| \le t_n$ for large n, and $\lim t_n = 0$, then $\lim s_n = s$. $n \rightarrow \infty$ n+ ∞ n+ ∞

Proof. Let $\varepsilon > 0$. By hypothesis, the inequality

 $|s_n-s| \le t_n$ holds for large *n*.

By the second hypothesis and by Definition 4.1,

 $|t_n-0| \leq \varepsilon$ holds for large *n*.

Thus. by Corollary 4.3.1, the relation

 $|s_n-s| \le t_n = |t_n-0| < \varepsilon$ also holds for large *n*.

Therefore, by Definition 4.1, $\lim s_n = s$. #

4.8.1 EXAMPLE. Show that $\lim_{n \to \infty}$ $\frac{\sin(n\pi/2)}{n} = 0.$

Solution. The conclusion follows from the Squeeze Theorem, since

$$
\left|\frac{\sin(n\pi/2)}{n}\right| \le \frac{\left|\sin(n\pi/2)\right|}{n} \le \frac{1}{n} \text{ for all } n. \neq
$$

4.8.2 EXAMPLE. Prove that

$$
\lim_{n \to \infty} \frac{n^2 + 3n - 5}{2n^3 - 5n^2 + n - 4} = 0.
$$

Solution. First, we suppose that n is large enough so that both the numerator and denominator of the given fraction are positive. (Hence, we

 \cup

can do away with the absolute value signs.) Now observe that for all n .

$$
n2 + 3n - 5 \le n2 + 3n2 = 4n2, and
$$

\n
$$
2n3 - 5n2 + n - 4 \ge n3 - 5n2 - 4n2 = n3 - 9n2 = (n - 9)n2.
$$

(To find an upper estimate, we either increase the negative terms to 0) or increase the powers of the positive terms. To find a lower estimate, w_e either decrease the coefficients of the positive terms to 1 or 0, or increase the powers of the negative terms.) Hence, it follows that, for large n , we have the relation

$$
\left|\frac{n^2+3n-5}{2n^3-5n^2+n-4}\right| = \frac{n^2+3n-5}{2n^3-5n^2+n-4} \le \frac{4}{n-9}
$$

Since $\lim \frac{4}{x}$ $\lim_{n\to\infty} \frac{1}{n-9} = 0$, the result follows from the Squeeze Theorem. #

4.8.3 EXAMPLE. Prove that $\lim_{n\to\infty} (\sqrt{n+1}-\sqrt{n})=0.$

Solution. This result follows from the Squeeze Theorem and Theorem 4.4 with $a=p=1/2$ and $k=0$, since

$$
\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \left(\sqrt{n+1} - \sqrt{n} \right) = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{2\sqrt{n}}.
$$

4.9 THE UNIQUENESS THEOREM. If $\lim s_n = L$ and $\lim s_n = L'$, then we shall have $L = L'$.

Proof. Observe that $|L - L'| \le |s_n - L| + |s_n - L'|$ for all *n*. Then, it follows from the hypothesis and Theorem 4.6 that $|L - L'| = 0$. #

A sequence (s_n) is **bounded** if there is a real number B such that $|s_n|$ $\leq B$ for all *n*.

4.10 THEOREM. A convergent sequence is bounded.

Proof. Let $s = \lim s_n$. Then $|s_n - s| < 1$ for large *n*. By Definition 4.0. there is a positive integer N such that

 \langle 1 for all $n \geq N$

n.
N $B = \max \{ 1 + |s|, |s_1|, |s_2|, \dots, |s_N| \}$. Clearly, $|s_n| \leq B$, if $n \leq$
(1+ $|s_1| < B$) Hence if $n > N$ then, by the triangle inequality, $|s_1|, |s_2|, \dots, |s_N|$. Clearly, $|s_n| \le B$, if *n* nce, if *n* > *N*, then, by the triangle inequality v
e oreover, $(1 + |s|) \le B$. Hence, if $n > N$, then, by the triangle inequall have $+ |s|$):
 $s + s$ we shall have

 $|s_n - s + s| \le |s_n - s| + |s| < 1 + |s| \le B$
 $|s_n| \le B$ for all *n*. # $\sum_{i=1}^{n}$

 $\vert n \vert \leq B$ for all *n*. #
OROLLARY. *An une*

4.10.1 COROLLARY. An unbounded sequence diverges.

n
e
at quentles LARY. *An unbounded sequence diverges*.

mits. The next group of theorems yields a powerful and

bying that a sequence converges to a given number. **f limits.** The next group of theorems yields a pover proving that a sequence converges to a given nun r proving that a sequence converges to a given num

ol for proving that a sequence converges to a given number.

THEOREM. If $k \in \mathbb{R}$ and the sequence (s_n) converges to $s \in \mathbb{R}$

sequence (ks_n) converges to ks i.e., $\lim_{n \to \infty} ks = k \lim_{n \to \infty} s_n$. HEOREM. If $k \in \mathbf{R}$ and the sequence (s_n) converges to $s \in \mathbf{R}$
quence (ks_n) converges to ks. i.e., $\lim_{n \to \infty} k s_n = k \lim_{n \to \infty} s_n$. $\begin{align} \n\begin{cases}\n\cdot & k \\
\cdot & \neq \n\end{cases} \n\end{align}$ s_n _b $\frac{0}{\cdot}$ be sequence (ks_n) converges to ks, i.e., $\lim_{n \to \infty} ks_n = k \lim_{n \to \infty} s_n$.

coof. Suppose $k \neq 0$ and let $\varepsilon > 0$. Then, by hypothesis,

n
1 uppose $k \neq 0$ and let $\varepsilon > 0$. Then, by hyp

 $\neq 0$
for or large n .

ll $k \in \mathbb{R}$, $|ks_n - ks| \leq \varepsilon$ holds for large *n*. Hence, by ks_n) converges to ks. # or $\frac{3}{1},$ $(k s_n)$ converges to $k s$. ks.

4.1, $(k s_n)$ converges to ks. #
HEOREM. If (s_n) converges to s, and (t_n) converges to t, the
ce of sums $(s + t_n)$ converges to $s + t$, i.e., $\int_{S_n}^{S_n} (s_n + t_n)$ converges to S_n
lim $s_n + \lim t_n$. $\overline{\mathcal{O}}$

quence of sums $(s_n + t_n)$ converges to $s + t$, i.e.,
 $\lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n$. se of sums $(s_n + t_n)$ converge
 $(s_n + t_n) = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n$.

For each *n*, it follows from the n
0 n but of the strain of the triangle inequality that
 $-(s+t)| \le |s_n - s| + |t_n - t|$.

$$
|(s_n + t_n) - (s + t)| \le |s_n - s| + |t_n - t|.
$$
\n(4.12.1)

 $\varepsilon > 0$. Then, by hype

 $\frac{d}{dt}$ $|s| < \varepsilon/2$ holds for large *n*, and

(2 holds for large)
 $\frac{1}{2}$ large n. Hence, by Corollary 4.3.2, $|s_n - s| + |t_n - t| \le \varepsilon$ holds for large *n*. Th_{us,} Hary 4.3.1 and by (4.12.1),
 $\begin{aligned} \mathcal{L}_1 + t_n &(-s + t)| \leq \varepsilon \text{ holds for large } n. \end{aligned}$

 $| (g + t) - (s + t) | \leq \varepsilon$ holds for

 $n \geq 1$ $+$ (Figure 1.4) $\lim_{s \to \infty} s - s$ $\lim_{s \to \infty} t = t$

Proof. Let $\epsilon > 0$. By hypothesis,

 $|s_n - s| \le \varepsilon/2$ for large *n*, and $|t_n - t| \le \varepsilon/2$ for large *n*.

Since $s_n \leq t_n$ for large *n*, we also have

 $|s - |s_n - s| \leq s_n \leq t_n \leq |t_n - t| + t$ for large *n*.

follows that $s - t \le 0$. Therefore, we have $s \le t$. # Hence, $s - t \le |s_n - s| + |t_n - t| < \varepsilon$ for large *n*. Since ε is arbitrary, it

 M_{\odot} 4.13.1 COROLLARY. If $s_n \leq M$, for large n, and $\lim_{n \to \infty} s_n = L$, then

0, then the sequence $(s_n t_n)$ converges to 0. 4.14 THEOREM. If (s_n) is bounded for large n and (t_n) converges to

Proof. Since there is a $B \in \mathbf{R}$ such that $|s_n| \leq B$ for large *n*, then

 $\mathcal{P}_\text{max} = \mathcal{P}_\text{max} = \mathcal{P}_\text{max}$ is a then note that \mathcal{P}_max

Hence, by Theorems 4.8, and 4.11, we have $\lim_{n \to \infty} s_n t_n = 0$. #

the product sequence $(s_n t_n)$ converges to st, i.e., 5 THEOREM. If (s_n) converges to s, and (t_n) convergent $converges$ to st , i.e.,

$$
\lim_{n \to \infty} s_n t_n = \left(\lim_{n \to \infty} s_n\right) \left(\lim_{n \to \infty} t_n\right).
$$

Proof. First, we observe that for each n, it follows from the triangle inequality that

$$
|s_n t_n - st| \le |s_n| |t_n - t| + |t| |s_n - s|.
$$
\n(4.15.1)

The sequence (s_n) is convergent; hence, it is bounded, by Theorem 4.10. Thus, by Theorems 4.6, 4.11. and 4.14, and the hypothesis,

by Theorems 4.6, 4.11, and 4.14, and the hy
\n
$$
\lim_{n \to \infty} (|s_n||t_n - t|) = 0, \text{ and } \lim_{n \to \infty} (|t||s_n - s|) = 0.
$$

Finally. by Theorem 4.12,

$$
\lim_{n \to \infty} |s_n||t_n - t| + |t||s_n - s| = 0.
$$

Therefore. in view of (4.15.1) and the Squeeze Theorem, it follows that

 $\lim_{n \to \infty} s_n t_n = st. \quad \#$

4.16 THEOREM. If (s_n) converges to s, $s_n \neq 0$ for all n, and $s \neq 0$, then the sequence of reciprocals $(1/s_n)$ converges to $1/s$.

Proof. By hypothesis, $|s|/2 > 0$. Also by hypothesis $|s_n - s| < |s|/2$ holds for large n . Hence, it follows from the triangle inequality that

 $|s| \le |s-s_n| + |s_n| \le |s|/2 + |s_n|$ holds for large *n*.

Hence, the inequality $0 \le |s|/2 \le |s_n|$ holds for large *n*. Now, since each s_n \neq 0, then for any $N\geq1$,

$$
\min \left\{ |s_n| : n \le N \right\} > 0.
$$

Hence, there exists $m > 0$, such that $m \le |s_n|$ for all *n*. Thus, for each *n*

$$
\left|\frac{1}{s_n} - \frac{1}{s}\right| = \frac{|s_n - s|}{|s_n||s|} \le \frac{|s_n - s|}{m|s|}.
$$

 α heorems 4.11 and the Squeeze Theorem, we conclude that
 $\frac{1}{1} = \frac{1}{1}$ #

$$
\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s}.
$$

 $\frac{1}{n} = \frac{1}{s}$. #

HEOREM. Suppose that (s_n) converges to s and (t_n) conv
 $\neq 0$ for all n and $s \neq 0$, then the quotient sequence (t ppose that (s_n) converges to s

n and $s \neq 0$, then the quotier If $s_n \neq 0$ for all n and $s \neq 0$, then the quotient sequence (t_n)
erges to t/s.

rhe
s e By Theorem 4.16, $(1/s_n)$ conv
llows easily from Theorem 4.15 Theorem 4.16, $(1/s_n)$ converges to $(1/s)$. The desistive seasily from Theorem 4.15. # om Theo
nere is a

Hows easily from Theorem 4.15. [#]

KAMPLE. (*i*) There is a tendency among students to use limit

ler carelessly by drawing conclusions without first verifying

s. This habit sometimes leads to embarrassing results as th sily from Theorem 4.15. $\#$
(*i*) There is a tendency amo here is a tendency among students to use limit theorems rather carelessly by drawing conclusions without first verifying

results as the pothesis. This habit sometimes leads to embarrassing results as the

ving illustration shows: If we take for granted that $\lim_{n\to\in$ his habit sometimes leads
tion shows: If we take for
number, then using Theore sult
 $L,$
ve wing illustration shows: If we take for granted that $\lim_{n \to \infty} n = L$,
nonzero real number, then using Theorem 4.17, we shall have take for granted that $\lim_{n \to \infty} n = L$, where

nonzero real number, then using
\n
$$
0 = \lim_{n \to \infty} \frac{1}{n} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} n} = \frac{1}{\lim_{n \to \infty} n} = \frac{1}{L}.
$$

leads to the equation $0 = 1$, which is absurd. The
ing Theorem 4.17 without verifying its hypothesis
(*ii*) Show that $\lim_{n \to \infty} \frac{4n^3 - 3n}{3} = 4$. e equation $0 = 1$, which is absurd. The mistake is the result im 4.17 without verifying its hypothesis. $#$ $#$

(*ii*) Show that
$$
\lim_{n \to \infty} \frac{4n^3 - 3n}{n^3 + 6} = 4.
$$

efi lution. We shat
e observe that hall give a careful algebraic proof of this asset

$$
\lim_{n \to \infty} \frac{4n^3 - 3n}{n^3 + 6} = \lim_{n \to \infty} \frac{4 - \frac{3}{n^2}}{1 + \frac{6}{n^3}}
$$

e show that $\lim (4 - 3/n^2) = 4$. To this end, we must verify that.

convergpr

(t,/s.)

$$
\lim 4=4,
$$

 $\lim_{x \to 3/n^2} (-3/n^2) = 0$. $\frac{12}{2}$ $(4 \text{ and } 4.1)$

4.| |).

ce, by Theorem 4.12, we have
lim
$$
(4 - 3/n^2) = 4 + 0 = 4
$$
,

n show similarly that $\lim (1 + 6/n^3) = 1 + 0 =$
herefore, by Theorem 4.17, we have nat
em

Therefore, by Theorem 4.17, we have
\n
$$
\lim_{n \to \infty} \frac{4n^3 - 3n}{n^3 + 6} = \lim_{n \to \infty} \frac{4 - \frac{3}{n^2}}{1 + \frac{6}{n^3}} = \frac{\lim_{n \to \infty} \left(4 - \frac{3}{n^2}\right)}{\lim_{n \to \infty} \left(1 + \frac{6}{n^3}\right)} = \frac{4}{1} = 4.
$$

Example 4.8.2, the above argument actually proves that
 $\lim \frac{4n^3 - 3n}{n} = 4$.

$$
\lim_{n \to \infty} \frac{4n^3 - 3n}{n^3 + 6} = 4 \ . \qquad #
$$

I
is
is mits; subsequences. The prec **ubsequences.** The preceding theorems add
that (*i*) a given sequence (s_n) has a limit
en number *s*. We now have two method he
1 s
We
hov problem of showing that (*i*) a given sequence (s_n) has a lim problem of showing that (*i*) a given sequence (s_n) has a limit and hat its limit is a given number *s*. We now have two methods of cing such problems. In some cases, however, we are only interested is a given number *s*. We now have two methods of problems. In some cases, however, we are only interested .e., the convergence behavior of the sequence In this such problems. In some cases, however, we
i (*i*), i.e., the convergence behavior of the
ne next theorem is often useful. roblem (i) , i.e., the convergence behavior of the sequence. In this ion, the next theorem is often useful. er
|
| ie
FH Ext theorem is often use.
NRFM Suppose that the

HEOREM. Suppose that the sequence (s_n) is a bo
nonincreasing or nondecreasing) sequence of real num Suj
ng
'. that the sequence (s
ndecreasing) sequence
nonincreasing or nondecreasing) sequence of real nultion
convergent.
Suppose that (s_0) is nondecreasing. Let s be the least Then (s_n) is convergent.

 $\begin{pmatrix} r \\ n \end{pmatrix}$
d b
d f seq
g.
iess *is co*
T. Su $\frac{c}{c}$ uppose that (s_n) is nondecreasing. Let s be the least upp
), as guaranteed by the Completeness Axiom. Let $\varepsilon > 0$ Th ppose that (s_n) is nondecreasing. Let *s* be the least upport as guaranteed by the Completeness Axiom. Let $\varepsilon > 0$. Then upper bound for (s_n) . Thus, some $s_N > (s - \varepsilon)$. For et
Ax
e :
<ε of (s_n) , as guaranteed by the Completeness Axiom. Let $\varepsilon > 0$. Then
is not an upper bound for (s_n) . Thus, some $s_N > (s - \varepsilon)$. For *n*
ince $|s_n| \ge s_N$, we have $|s - s_n| = (s - s_n) < \varepsilon$. # $\frac{s_N}{s}$ ϵ) is not an upper bound for (s_n) . Thus, some $s_N >$
 s_N ince $s_n \geq s_N$, we have $|s - s_n| = (s - s_n) \leq \epsilon$. #

of the example (s_n) *is a sequence formed by rem*
(c,). For example if (s_n) is a sequence of the set f a
he s_n
 s_n prmed by r
f we delet terms of the sequence (s_n) . For example, if we delete all odd

terms of the sequence (s_n), we obtain the subsequence (s_{2n}). The mother sequence is also considered a subsequence of itself. Note that if the mother sequence converges to a limit L , all its subsequences also converge to the same limit L .

18.1 EXAMPLE. Let $a_1 = 1$, $a_2 = \sqrt{2}$, ..., $a_{n+1} = \sqrt{2a_n}$. Prove that (a_n) is nondecreasing and lim $a_n = 2$.

Solution. We can easily show by induction that the sequence (a_n) is nondecreasing and $a_n \le 2$ for all *n*. (Show it.) Suppose now that $\lim_{n \to \infty} a_n =$ L. Since (a_{n+1}) is a subsequence of (a_n) , we also have $\lim a_{n+1} = L$. But the definition of a_{n+1} implies that $L = \sqrt{2L}$. Therefore, $L = 0$ or 2. Since (a_n) is nondecreasing, lim $a_n \ge 1$, so we must have $L = 2$. #

4.18.2 EXAMPLE. If $r \ge 1$, prove that $\lim_{n \to \infty} r^{1/n} = 1$.

Solution. Observe that $r^{1/n} \ge 1$ for all *n* and $(r^{1/n})$ is nonincreasing. (Show it.) Therefore, $\lim r^{1/n}$ exists. Suppose $\lim r^{1/n} = L$. Then \lim $r^{2/n} = L^2$, by Theorem 4.15. But $(r^{1/n})$ is a subsequence of $(r^{2/n})$. = 0 or $L = 1$. But $L \neq 0$, since $r^{1/n} \geq 1$ for all *n*. Hence, $L = 1$. # Hence, we must also have $\lim r^{1/n} = L^2$. Thus, $L^2 = L$ and hence, either L.

4.18.3 LEMMA. Every sequence has a monotone subsequence.

 $s_{n_k} > s_n$ for all $n \le n_k$. (We may start with $n_1 = 1$.) Since s_{n_k} is not the *Proof.* (H. Thurston [6]) Assume that a tail of the sequence (s_n) does not contain a greatest member. Without loss, we may suppose that this tail is (s_n) itself. We shall show that (s_n) has a nondecreasing subsequence (s_{n_k}) . To this end, suppose $n_1 \leq n_2 \leq \cdots \leq n_k$ have been chosen so that greatest member of (s_n) , we may define

 n_{k+1} = min { $n : n > n_k$ and $s_n > s_{n_k}$ }

Clearly, $n_{k+1} > n_k$ and $s_{n_{k+1}} > s_{n_k}$. Moreover, because n_{k+1} is by definition minimal, if $n_k \le n \le n_{k+1}$, then we must have $s_n \le s_{n_k}$. Thus, if

 $n \leq n_{k+1}$, then $s_n \leq s_{n_{k+1}}$. The subsequence (s_{n_k}) is nondecreasing.

by assume that every tail of (s_n) contains a greatest mem-
lect the terms of a nonincreasing subsequence of (s_n) as foll
hoose n_1 so that s_n is the greatest member of $(s_1, s_2, s_3, ...$ aa
s very tail of (s_n) contains a green

ume that every tail of (s_n) contains a greatest member. We
e terms of a nonincreasing subsequence of (s_n) as follows:
 n_1 so that s_{n_1} is the greatest member of $(s_1, s_2, s_3, ...)$. Next,
o that s_{n_2} is the greate so that s_{n_1} is the greatest member of $(s_1, s_2, s_3, ...)$. Nex
that s_{n_2} is the greatest member of $(s_{n_1+1}, s_{n_1+2}, s_{n_1+3}, ...)$ o that s_{n_2} is the greatest member of $(s_{n_1+1}, s_{n_1+2}, s_{n_2+3})$
se n_3 so that s_{n_3} is the greatest member of the sububs
me
ate
ate hoose n_3 so that s_{n_3} is the greatest member of the sub-
 $s_{n_3+2}, s_{n_3+3}, \ldots$, and so on, ad infinitum. The subsequence a_3 so that s_{n_3} is the greatest member of t
+3, ...), and so on, ad infinitum. The subse (s_{n_2+3}, \ldots) , and so on, ad infinitum. The subsequence (s_{n_k}) is
sing subsequence of (s_n) . #
COROLLARY (THE BOLZANO-WEIERSTRASS THEOREM). Every s_{n_k}
Ex $\#$

orollary (The Bolzano-We

ence of real numbers has a con $\begin{array}{c} \n\Gamma \vdash n \\
\vdots\n\end{array}$ Ev
,
, mincreasing subsequence of (s_n)
4.18.4 COROLLARY (THE BOLZ
nded sequence of real numbers h abs
LL
? *0,*
ose

 $\begin{array}{c} \n\text{H}\n\text{B}\n\text{B}\n\text{C}\n\text{S}\n\text{S}\n\text{S}\n\text{S}\n\end{array}$ quence of real numbers has a convergent sub.
Suppose (s_n) is a bounded sequence of
8.3, (s_n) has a monotone subsequence. By 1 ers
18 Suppose (s_n) is a bounded sequence of 18.3, (s_n) has a monotone subsequence. By subsequence, which is bounded, is converger s a bounded sequence of real nui
nonotone subsequence. By Theorem uppose (s_n) is a bounded sequence of real numbers. By 3, (s_n) has a monotone subsequence. By Theorem 4.18, this osequence, which is bounded, is convergent. # ob
or
o 3y
ge
in:
th $\frac{1}{1}$ $#$

quence of partial sums; convergence of infinite sums. Adding
ollection of real numbers is easy. However, the situation is mo
ling when the collection is infinite. If this infinite collection is n
le, there are even greater artial sums; convergence of infi f
evis
ns
n s
i $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ f 1
he:
... real numbers is easy. However, the situation is more
e collection is infinite. If this infinite collection is not
e even greater complications. Here we shall confine
intable case - a case that can be handled satisfactorily use that can be han at
ap when the collection is infinite. If there are even greater complication
the countable case - a case that cases. ir
col i
nfi
or b:
ee hi
su
un
ect bounded, is con
 convergence of

is easy Howey #
ulu
tu: here are even greater complications. Here we shall cor
the countable case - a case that can be handled satisfacte
nces.
Av of infinite sums has important and fascinating application ven greater complications. Here we sh
able case - a case that can be handled sa He
ch
im o
n
ud as
m

inf
eri
s (udy of infinite sums has important and fasc
engineering, and in many major areas of m
of limits (of sequences) plays a vital role in
therefore, not surprising to find this topi If y of infinite sums has important and fascinating app
ngineering, and in many major areas of mathematics.
Flimits (of sequences) plays a vital role in the study c
therefore, not surprising to find this topic included s and in many major areas of mat
begans of limits (of sequences) plays a vital role in the nd
que
t s
<. vsics, engineering, and in many major areas of mathematics. Because ory of limits (of sequences) plays a vital role in the study of infinition is therefore, not surprising to find this topic included in exec
nf
... of limits (of sequences) plays a vital role in the study of infinity, therefore, not surprising to find this topic included in evalculus textbook.
Alculus textbook.
Finite sum of a sequence (u_k) of real numbers is usuall standard calculus textbook. s, therefore, not surprising to find this topic included in e
alculus textbook.
finite sum of a sequence (u_k) of real numbers is usually den
abols i d
lei

iei u_k

The symbols
\n
$$
\sum_{k=1}^{\infty} u_k
$$
, or $\sum u_k$, or $u_1 + u_2 + u_3 + \cdots$.

ymbol $\sum u_k$ is used when it is clear that the surfrom 1 to infinity otherwise the range should be c $\sum u_k$ is used when it is clear that the summ
to infinity, otherwise the range should be clear
ree symbols above is called an *infinite ser* nd
ca
ni from 1 to infinity, otherwise the range should be clearly indicated
of the three symbols above is called an *infinite series*. But the
pls are meaningless, unless there is a definite rule for determining ee symbols above is called an *infinite series*. Bu
neaningless, unless there is a definite rule for deter-
sent. Since we know how to determine finite sums, i S are meaningless, unless there is a definite rule for determining
ey represent. Since we know how to determine finite sums, it is but
91 in

in ni
İ

ur
Dit proach the problem of an infinite sum by

i. The standard technique is to generate finite sum
 $\frac{n}{n}$ pproach the problem of an infinite sum by considering the

the standard technique is to generate finite sums of the form
 $+ u_2 + u_3 + \cdots + u_n = \sum_{k=1}^{n} u_k$.

case. The standard technique is to generate finite sums of the form
\n
$$
s_n = u_1 + u_2 + u_3 + \dots + u_n = \sum_{k=1}^n u_k.
$$

ums are called *partial sums* of the series $\sum_{k=1}^{\infty} u_k$; the sequence of partial sums belonging to the series $\sum_{k=1}^{\infty}$ e^r \mathfrak{f}

is called the *sequence of partial sums* belonging to the series $\sum_{k=1} u_k$. equence of partial sums belonging to the series $\sum_{k=1}^{n} u_k$

bN. If $\lim s_n$ exists, then this value is called the *sur* $\frac{f}{s}$

EFINITION. If $\lim_{n \to \infty} s_n$ exists, then this value is called the *sum*
Acreover, we say that the series *converges* and we write $\frac{n}{n}$
es Fries. Moreover, we say that the series *converges* and we wr
 $\sum_{n=1}^{\infty} u_k = \lim_{n \to \infty} s_n$. χ e

$$
\sum_{k=1}^{\infty} u_k = \lim_{n \to \infty} s_n.
$$

 ϵ $\sum_{n=1}^{\infty}$ fails to have a limit, then we say that the ser **verges.** The
s: the series nould note that the symbol $\sum_{k=1}^{\infty} u_k$ stands for two things: *the seri* the *sum* of the series. This is an abuse of the notation that can In the sum of the series. This is an abuse of the notation thang sometimes; but the use is quite common in the literature.
effect, the preceding definition says that the following e *sum* of the series. This is an abuse of the notation that can be ometimes; but the use is quite common in the literature.

ometimes; but the use is quite con
ct, the preceding definition says ut
:d t
com la

u lefinition says that the following equence
that the following equences ay
 holds:

$$
\sum_{k=1}^{\infty} u_k = \lim_{n \to \infty} \sum_{k=1}^{n} u_k.
$$

.
u t is true that α ⁿ e beginning, many students can hardly reconcile the fact that many students can hardly reconcile the

unds for a *sequence* of finite sums and
 $(3 + 2 + 17)$ Perhans this is all bec inite sum like $(3 + 2 + 17)$. Perhaps this is all because of the sign Σ , which is present in $\sum_{k=1}^{\infty} u_k$. While it is true that ike $(3 + 2 + 17)$. Perhaps this is all because of the stands for a *sequence* of finite sums and not jus
e $(3 + 2 + 17)$. Perhaps this is all because of of
ps just a eries and an ordinary finite sum share many con
the should realize the difference between these ty
ember that *an infinite series is a sequence of part* rdinary finite sum sha
ize the difference bet: hould realize the difference between these two entities. They
er that *an infinite series is a sequence of partial sums*. ety
eq l,
an
ati s present in $\sum_{k=1}^{n} u_k$. V
ry finite sum share ma member that *an infinite series is a sequence of par*
 92 $\frac{1}{2}$

4.19.1 EXAMPLE. Find the sum of the following seri
(*i*)
$$
1 + (-1) + 1 + (-1) + 1 + (-1) + 1 + (-1) + \cdots
$$
;
(*ii*) $(1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + \cdots$

 $1 + (-1) + 1 +$
+ (1/2 – 1/3) + $-1/2$) + $(1/2 - 1/3)$ + $(1/3 - 1/4)$ + ...

 $(1/2 - 1/3) + (1/3 - 1/4) + \cdots$.
At first glance, it appears that the sum in (*i*) is 0.
palysis reveals the contrary. Observe that the *n*th partial i) At first glance, it appears that the sum in (i) is
e analysis reveals the contrary. Observe that the *n*th part
n is odd, and $s_n = 0$, if *n* is even. Since the sequence (1) er, a little analysis reveals the contrary. Observe that the *n*th partial $n = 1$, if *n* is odd, and $s_n = 0$, if *n* is even. Since the sequence (1, 0, 0, ...) does not converge, the series has no sum and is divergent. l,
nt
+ t $1, 0, \ldots$) does not converge, the series has no sum and is div ...

Observe that the *n*th partial sum of the series telesco = $1 - 1/n$ and, hence, $\lim s_n = 1$. Thus, its sum is 1. of the series has no sum and is divergent.

the *n*th partial sum of the series telescopes to the

d, hence, $\lim s_n = 1$. Thus, its sum is 1. # divergent. 1.

EXAMPLE. (*i*) Show that the series $\Sigma^{1/2^k}$ converges. (*ii*) Shot if $0 \le r \le 1$, then $\binom{ii}{i}$

$$
neral that if 0 < r < 1, \text{ then}
$$
\n
$$
\sum_{k=1}^{\infty} r^{k-1} = \frac{1}{1-r}.
$$

ries is called a *geometric series* with *com*
and the angle of the series of the set of t

called a *geometric series* with *common factor r*.
(*i*) The *n*th partial sum of Σ 1/2^{*k*} is the geometric s c
e

Solution. (i) The *n*th partial sum of
$$
\sum 1 / 2^k
$$
 is the geometric series

$$
s_n = 1/2 + 1/2^2 + 1/2^3 + \dots + 1/2^n = \frac{1/2 - 1/2^{n+1}}{1 - 1/2}.
$$

_{ar} m $s_n = 1$. Hence, by definition, $\Sigma 1/2^k = 1$. Part *(ii)* is hand is left as an exercise. # $left$ as an ex

and is left as an exercise. #

HEOREM. (i) Let (u_k) and (v_k) be sequences of real nun

be that the series $\sum u_k$ and $\sum v_k$ both converge. Then $\sum (u_k)$ $\frac{I}{i}$ rie r sequences of :
h converge. The
k · sume that the series $\sum u_k$ and $\sum v_k$ both converge. Then $\sum (u_k + v_k)$
pnverges and $\sum (u_k + v_k) = \sum u_k + \sum v_k$.
(i) If c is a real number, then $\sum c u_k = c \sum u_k$. a
s series}u The series $\sum u_k$ and $\sum v_k$ both
nverges and $\sum (u_k + v_k) = \sum u_k + \sum v_k$
If c is a real number, then $\sum c u_k = c \sum$ *nd* $\Sigma(u_k + v_k) = \Sigma u_k + \Sigma v_k$.
 eal number, then $\Sigma c u_k = c \Sigma u_k$.
 t (*s_n*) and (*t_n*) be the sequences of

c is a real number, then $\sum c u_k = c$

real number, then $\sum c u_k = c \sum u_k$.

et (s_n) and (t_n) be the sequences of partial sums of the
 $\sum v_k$ respectively. It is easy to see that $(s_n + t_n)$ is the) Let (s_n) and (t_n) be the sequences of partial sums of the
nd $\sum v_k$, respectively. It is easy to see that $(s_n + t_n)$ is the
partial sums of the series $\sum (u_k + v_k)$. Since $\lim (s_n + t_n) = \lim$ $m\left(s_n+t_n\right) = \lim$ u_k and $\sum v_k$, respectively. It is

e of partial sums of the series $\Sigma(t_n)$, the conclusion follows readil

(*ii*) is proved similarly. # ence of partial sums of the series $\sum (u_i)$
lim t_n , the conclusion follows readily.
Part *(ii)* is proved similarly. #
93 intial sums of the series $\sum (u_k + v_k)$. Since um
1. seri
with $\sum 1$,
 $n = 1$,
 $n =$
 $\ln n$,
 (ν_k)
 (ν_k)

) is proved simi

RI
rg

k' Suppose the series $\sum u_k$ converges to S, i.e., $\lim_{n \to \infty} s_n = S$.

Iso have $\lim_{n \to \infty} s_n = S$. Since $u_n = s_n = s_n$, it follows that $\lim_{x \to 0}$ to
-HEOREM. If the series $\sum u_k$ converges, then $\lim_{k \to \infty} u_k = 0$
Suppose the series $\sum u_k$ converges to S i.e. $\lim_{k \to \infty}$ THEOREM. he
) we also have $\lim_{n \to \infty} s_{n-1} = S$. Since $u_n = s_n - s_{n-1}$, it follows that
 $u_k = \lim_{n \to \infty} u_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = 0$. s
1

 $u_k = \lim_{n \to \infty} u_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = 0.$

4.21.1 COROLLARY. If
$$
\lim_{k \to \infty} u_k \neq 0
$$
, then $\sum u_k$ diverges.

 $\frac{1}{2}$ ar diverges. x
students seem to hav
does not follow the .2 EXAMPLE. Many students seem to have difficulty remem-
hat if $\lim_{k \to \infty} u_k = 0$, it *does not* follow that the series $\sum u_k$ is
ent. To see this, consider the following series: $\frac{N}{2}$

vergent. To see this, consider the following series:

\n
$$
(1/2 + 1/2) + (1/4 + \dots + 1/4) + (1/8 + \dots + 1/8) + \dots = 1 + 1 + \dots
$$
\n[2 terms]

\n[4 terms]

\n[8 terms]

\n[8 terms]

\netc.

ly, the partial sums of the retainly have $\lim_{k \to \infty} u_k =$ [4 terms] [8 terms] etc.
artial sums of the series become large as k incr
ave $\lim_{k \to \infty} u_k = 0$. th

ave $\lim_{k \to \infty} u_k$ diverges. EXAMPLE. Show that the series $\sum \frac{k-5}{3k+2}$ div $\frac{1}{2}$ $\frac{k+2}{k+2} \neq 0$, we may use Corollary 4.21.1. #
For an infinite series with nonnegative to $\begin{bmatrix} 6 & 0 \\ 1 & 1 \end{bmatrix}$

tes
ge:
ne For an infinite series with nonne
ests are available, namely, the *con*
gral test. For more general cases n infinite series with no nvergence tests. For an infinite series with nonnegative terms,

mple convergence tests are available, namely, the *comparison test*,
 to test, and the *integral test*. For more general cases, we also have

test and the ter
n *t*
, h est
ra
es the test, and the *integral test*. For more general cases, we also have
the test and the *alternating series test*. the *alte* and the *alte*.

HEOREM. Suppose $u_k \ge 0$ for all k. If the seq
s is bounded, then the series $\sum u_k$ converges. $\frac{(s)}{10}$ 'up
d,
. (SUPPOSE $u_k \ge 0$
bounded, then the seri all
_kc

 $\frac{1}{2}$
s. i ums is bounded, then the series $\sum u$
of. Since $u_k \ge 0$, the sequence (s
By Theorem 4.18 (s) is convergent ince $u_k \ge 0$, the sequence (s_n) of partial sur
Theorem 4.18, (s_n) is convergent, because it is b $u_k \ge 0$, the sequence (s_n) of partial sums is not
cm 4.18, (s_n) is convergent, because it is bounded. es
(s By Theorem 4.18, (s_n) is convergent, because it is bout 94 \sharp

E. Show that the series $\sum 1$
Since $1/k^2 \ge 0$ for all k. Then the series $\sum 1/k^2$ co

hc $\frac{d}{k^2}$ of es ince $1/k^2 \ge 0$ for all *k*, Theorem 4.22 applies. We will
quence of partial sums is bounded. We have
 $1/3^2$ + $(1/4^2 + 1/7^2)$ + $(1/9^2 + 1/15^2)$ + $(1/5^2)$ at the sequence of partial sums is bounded. We have
 $(1/2^2 + 1/3^2) + (1/4^2 + 1/7^2) + (1/9^2 + 1/17^2)$ t
.

$$
u \text{ that the sequence of partial sums is bounded. We have}
$$
\n
$$
1 + (1/2^2 + 1/3^2) + (1/4^2 + \dots + 1/7^2) + (1/8^2 + \dots + 1/15^2) + \dots \le
$$
\n
$$
\le 1 + (1/2^2 + 1/2^2) + (1/4^2 + \dots + 1/4^2) + \dots =
$$
\n
$$
= 1 + 1/2 + 1/4 + 1/8 + \dots = 2
$$
\nce, the increasing partial sums is bounded above by 2, #

he increasing partial sums is bounded above by 2. $#$

artial sums is bounded above by 2. #

COMPARISON TEST). Let $u_k \ge 0$, $v_k \ge 0$ for all k and

and Σv , converges, then Σu , converges and Σu . $\frac{C}{k}$ (Espectados)
Finales
Para THEOREM (COMPARISON TEST). Let $u_k \ge 0$, $v_k \ge 0$ for all k and
 $f u_k \le C v_k$, and $\sum v_k$ converges, then $\sum u_k$ converges and $\sum u_k \le$

If $C u_k \le v_k$ and $\sum u_k$ diverges, then $\sum u_k$ diverges. If $u_k \le C v_k$, and $\sum v_k$ converges, then $\sum u_k$ contains $f \cap C u_k \le v_k$ and $\sum u_k$ diverges, then $\sum v_k$ divergent of $\sum v_k$ he
1e
su n c v_{k}

C
et
Si: $\leq v_k$ and $\sum u_k$ diverges, then $\sum v_k$ diverges.
 $\lim_{n \to \infty} u_n$ and t_n be the *n*th partial sums of $\sum u_k$ and $\sum v_k$. Then $d \sum y$
follseri
t; here:
t; here: *Proof.* Let s_n and t_n be the *n*th partial sums of $\sum u_k$ and $\sum v_k$. Then Ct_n . (*i*) Since (s_n) is nondecreasing and $\lim t_n$ exists, it follows that is bounded above by $\lim Ct_n$. By Theorem 4.22, the series $\sum u_k$ nd
The
ed is bounded above by $\lim C t_n$. By Theorem 4.22, the series $\sum u$ erges. bounded above by $\lim C t_n$. By Theorem 4.2.

S.

f (s_n) were bounded above, it would be con-
 $\lim_{n \to \infty} (s_n)$, also $(C s_n)$, is not bounded above. Theorem converges.

 $\frac{s}{c}$ where bounded above, it would be convergent; hence, by also (Cs_n) , is not bounded above. Thus, for any N, we
I for large *n*. Hence, $\lim t_n = \infty$. # ner
ny s_n
 $n >$
 $\langle A \rangle$ $h \geq Cs_n > N$ for large *n*. Hence, $\lim t_n = \infty$. #

XAMPLE. Determine convergence or div

4.23.1 EXAMPLE. Determine convergence or diverge
\n(i)
$$
\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}
$$
\n(ii)
$$
\sum_{n=1}^{\infty} \frac{n^2 + 7}{2n^4 - n + 3}
$$

 $\frac{1}{3}$ Solutions. We shall use the estimation technique used in Example 1.
 $\frac{1}{2}$ $\$ cl:

<u>E</u> 4.8.2. Since

$$
\frac{n^2}{n^3+1} \ge \frac{n^2}{n^3+n^3} = \frac{n^2}{2n^3} = \frac{1}{2} \left(\frac{1}{n}\right),
$$

nce $\sum 1/n$ diverges, then so does $\sum_{n=1}^{\infty}$

(ii) Recall Example 4.8.2 again. Since

$$
\frac{n^2+7}{2n^4-n+3} \le \frac{n^2+7n^2}{2n^4-n^4} = \frac{8n^2}{n^4} = 8\left(\frac{1}{n^2}\right),
$$

and since $\sum 1/n^2$ converges, then so does $\sum_{n=1}^{6} 2n^4 - n + 3$ $\frac{n^2+7}{4}$. #

4.24 THEOREM (RATIO TEST). Let $\sum u_k$ be a series with $u_k \geq 0$ for all k. Assume that there is a number c with $0 \leq c \leq 1$ such that $u_{k+1}/u_k \leq c$ for large k. Then the series $\sum u_k$ converges

Proof. Suppose that $u_{k+1}/u_k \leq c$, if $k \geq N$. Then

 $u_{N+1} \leq c u_N$, $u_{N+2} \leq c u_{N+1} \leq c^2 u_N$, etc.

In general, we have $u_{N+n} \le c^n u_N$. Therefore,

$$
\sum_{k=N}^{N+n} u_k \le u_N + cu_N + c^2 u_N + \dots + c^n u_N \le
$$

\n
$$
\le u_N \left(1 + c + c^2 + c^3 + \dots + c^n\right)
$$

\n
$$
\le u_N \frac{1}{1 - c}.
$$

Thus, in effect we have compared our series with the geometric series, (see Example 4.19.2) and we know that the partial sums are bounded. This implies that our series is convergent. #

that $\lim_{k\to\infty} \frac{u_{k+1}}{u_k}$ < 1. Then the series converges. 4.24.1 COROLLARY. Let $\sum u_k$ be a series with $u_k \geq 0$ for all k. Suppose

4.24.2 EXAMPLE. Show that the series $\sum k / 3^k$ converges.

Solution. Let $u_k = k / 3^k$. Then as $k \to \infty$, we have

$$
\frac{u_{k+1}}{u_k} = \frac{k+1}{3^{k+1}} \cdot \frac{3^k}{k} = \frac{k+1}{k} \cdot \frac{1}{3} \rightarrow \frac{1}{3} < 1.
$$

Corollary 4.24.1, the series is con
 5 TUCOPEM (NTECNAL TECN), Let

HEOREM (INTEGRAL TEST). Let f be a function, which is defi-
a for all $x > 1$, and noninguagging. The series $\Sigma f(x)$ converges DREM (INTEGRAL TEST

or all $x \geq 1$, and noning

improper integral et f be a function, which is de
ising. The series $\Sigma f(k)$ conver sitive for all $x \ge 1$, and nonincreasing. The series $\sum f(k)$ contains the improper integral $\int_{-\infty}^{\infty} f(k) k^2$ The
oni ϵ ly if the improper integral $\int_{1}^{\infty} f(x)dx$ conv
coof. Since f is nonincreasing, we have #
cti

nce f is nonincreasing, we have ne l \therefore

$$
f(2) \le f(x) \le f(1), \text{ for } 1 \le x \le 2,
$$

$$
f(3) < f(x) < f(2) \text{ for } 2 < x < 3.
$$

$$
f(2) \le f(x) \le f(1), \text{ for } 1 \le x \le 2,
$$

$$
f(3) \le f(x) \le f(2), \text{ for } 2 \le x \le 3, \text{ etc.}.
$$

since, it follows that

Let
$$
f(2) \leq \int_{1}^{2} f(x) \, dx \leq f(1), \quad f(3) \leq \int_{2}^{3} f(x) \, dx \leq f(2), \text{ etc.}
$$

\nLet $f(x) \leq \int_{1}^{3} f(x) \, dx \leq f(3)$, $f(4) \leq \int_{2}^{3} f(x) \, dx \leq f(4)$.

$$
f(2) + f(3) + \dots + f(n) \le \int_1^\infty f(x) dx.
$$
 (4.25.2)

 $\frac{1}{2}$ pa $\int_{1}^{x} f(x)dx$ converges, then the partial sums of the series $\sum f(x)$
Therefore, the series converges, by Theorem 4.22. ner
nv
? t bunded. Therefore, the series converges, by The

Therefore, the series converges, by Theorem 4.22.
the converse, suppose that the series $\sum f(k)$ converged in to get y
se the converse, suppose that the series $\sum f(k)$ cor
(1) again to get ∞ o prove the conver

1.25.1) again to get
 $\int_0^{\pi} f(x) dx \le f(1) +$ \mathfrak{p} $\frac{1}{2}$

$$
\int_{1}^{n} f(x)dx \le f(1) + f(2) + \dots + f(n-1) \le \sum_{k=1}^{\infty} f(k). \tag{4.25.3}
$$

Theorem 4.18, $\lim_{n\to\infty} \int f(x)dx$ exists. #
1 EXAMPLE Prove that the series $\sum 1/k^2$ n'o

at the series $\Sigma 1/k^2$ con
tin Example 4.22.1. L

4.25.1 O'
O $\frac{1}{2}$ his is also done in Example 4.22.1. Let $f(x) = 1/x^2$. Then
97

The MinDANAO ForUM
\n
$$
\int_{1}^{\infty} f(x) dx = \lim_{n \to \infty} -(1/x)|_{1}^{n} = \lim_{n \to \infty} (1 - 1/n) = 1.
$$
\n
$$
\int_{1}^{\infty} f(x) dx
$$
 converges. By the Integral Test, $\sum 1/k$

 $f(x)dx$ converges. By the Integral Test, $\Sigma 1/k^2$ is convergence Σu , (where the set also approximately properties)

By
t $\frac{4}{5}$ eries $\sum u_k$ (whose terms u_k are possibly negative) is said to *absolutely* if the series $\sum |u_k|$ converges. bse terms u_k a
e series $\Sigma |u_k|$ c

so $\frac{b s}{b}$ **bsolutely** if the series $\sum |u_k|$ converges.

HEOREM. A series $\sum u_k$ that converges absolutely is con

Define:
 u_k if $u_k > 0$ ($-u_k$ if $u_k < 0$) $\frac{S\epsilon}{D}$ ib.
. ≥ 0

$$
u_k^+ = \begin{cases} u_k, & \text{if } u_k \ge 0, \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad u_k^- = \begin{cases} -u_k, & \text{if } u_k \le 0, \\ 0, & \text{otherwise.} \end{cases}
$$

both u_k^+ and u_k^- are nonnegative. Moreover, since

 k^+ and u_k^-

 $\leq |u_k|$ and $u_k^- \leq |u_k|$ for all k

/lo
rg $|u_k| \le |u_k|$ and $|u_k| \le |u_k|$ for all
both $\sum u_k^+$ and $\sum u_k^-$ c

 $\sum u_k^+ - \sum u_k^- = \sum (u_k^+ - u_k^-) = \sum u_k$. # nd
#

THEOREM (ALTERNATING SERIES TEST). Let $\sum u_k$ be a ser
(i) | u_k | decreases to 0, and (ii), u_k is alternately positive A1
cr
ie EF
d
t.
k il THEOREM (ALTERNATING SERIES TEST). Let $\sum u_k$ be a seriet \int (i) $|u_k|$ decreases to 0 and (ii) u_k is alternately positive and e . Then the series is convergent.
pof. Let us write the series $\sum u_k$ in the form o
ve
ie:

n tl e series $\sum u_k$ in the form

 $c_k \geq 0$, and $c_k \geq 0$. Let

$$
s_n = b_1 - c_1 + b_2 - c_2 + \dots + b_n,
$$

\n
$$
t_n = b_1 - c_1 + b_2 - c_2 + \dots + b_n - c_n
$$

 $s_{n+1} = s_n - c_n + b_{n+1}$ and $0 \le b_{n+1} \le c_n$, we subtract mo
an we add afterwards by b_{n+1} . Hence, $s_{n+1} \le s_n$. By a $s_n - c_n + b_{n+1}$ and $0 \le b_{n+1} \le c_n$, we subtract more fro
e add afterwards by b_{n+1} . Hence, $s_{n+1} \le s_n$. By a simil y c_n than we add afterwards by b_{n+1} . Hence, $s_{n+1} \le s_n$. By a sim $\frac{y}{8}$ s_n

we have $t_{n+1} \ge t_n$. Clearly, $s_n \ge t_n$ for all *n*. Hence, we mu
 $\ge s_3 \ge \cdots \ge L \ge \cdots \ge t_3 \ge t_2 \ge t_1$. have

 $\frac{1}{n}$
here real number *L*. But $\lim_{n \to \infty} (s_n - t_n) = \lim_{n \to \infty} c_n = 0$. Hence, it foll
= $\lim_{n \to \infty} t_n = L$. Therefore, the series converges to *L*. # me real number L. But $\lim_{n \to \infty} (s_n - t_n) = \lim_{n \to \infty} c_n = 0$. Hence $\lim_{n \to \infty} t_n = L$. Therefore, the series converges to L. L.

e s
sec $\frac{1}{10}$ $\in \mathbf{R}$ and let (u_k) be a sequence of real numbers. The seri \mathbf{f} he
. x^k is called a *power seri*

HEOREM. Assume that there is a number $r \geq 0$ such that the $4s$ \overline{c} series

$$
\sum_{k=1}^{\infty} |u_k| \, r^k
$$

rh
bs
rb or all x such that $|x| \le r$, the power series $\sum_{k=1}^{\infty}$

bse
Fh
r^k The absolute value of the term $u_k x^k$ of the given series is x^k . The conclusion follows from the Comparison Test. # bsolute value of the term $u_k x^k$ of
the conclusion follows from the Com $#$

k
 $\frac{u}{s}$ llo
f t est
|
| **adius of convergence** of the power series $\sum u_k x^k$ is the least $k=1$
d of the numbers r for which we have the convergence stated of α
n ound of the numbers r for which we have the con
m 4.28. If there is no such number, then we say If the numbers r for which we have the convergence stated in If there is no such number, then we say that the radius of infinite. ta
d 28 . If there is no such number, then we say that the radius of e is infinite. te v

ber:

verg

isn

isn

coon

= s,

s eques

in
OR
ml: THEOREM (ROOT TEST). Let $\sum u_k x^k$ be a port R_0
 iS [EST). Let $\sum u_k x^k$ be a power series an
here $s \in \mathbf{R}$. If $s \geq 0$ then the radius of con where $s \in \mathbb{R}$. If $s > 0$ then the radius of containts of containts at to $1/s$. If $s = 0$, the radius of convergence f
no f the series is equal to 1/s. If $s = 0$, the radius of c
 $|u_k|^{1/k}$ becomes arbitrarily large as $k \to \infty$, then if e series is equal to $1/s$. If $s = 0$, the radius of con $\frac{d}{dt}$ $\left\|u_k\right\|^{1/k}$ becomes arbitrarily large as $k \to \infty$, then the radius of ce is 0.

Proof. Without loss, we may assume that $u_k \ge 0$ for all k. Suppose that $s > 0$, and let $0 \le r < 1/s$. Let $\varepsilon = |rs - 1| > 0$. By hypothesis, the numbers $u_k^{1/k} r$ tend to sr, as $k \to \infty$, and hence (since $rs \le 1$) are $\le 1 - \varepsilon$ for all sufficiently large k. Hence, the series $\sum u_k r^k$ converges, by comparison with the geometric series $\sum (1 - \varepsilon)^k$.

If, on the other hand, $r > 1/s$, then $u_k^{1/k} r$ approaches $sr > 1$, and, hence, we have $u_k^{1/k} r \ge 1+\epsilon$ for sufficiently large k. Then comparison with the series $\sum (1-\epsilon)^k$ shows that the series $\sum u_k r^k$ diverges. We leave the cases $s = 0$ and $s = \infty$ to the reader. #

4.29.1 EXAMPLE. The series $\sum_{n=1}^{\infty}$ has a radius of convergence

equal to 1, because

 $\lim_{n\to\infty}\left(\frac{1}{n^2}\right)$ $\lim_{n \to \infty} \frac{1}{n^{2/n}} = 1.$ #

REMARK. Experience shows that we can teach part of this material successfully, if we take the trouble to explain and motivate our presenta tions. On the part of the students, this would require a certain degree of maturity. On our part, it would require a higher level of expertise.

REFERENCES

- [1] Redheffer, Ray, Some thoughts about limits, Math Magazine 62, (1989) 176-184
- [2] Buck, R.C., Advanced Calculus, 3e, McGraw-Hil1, 1978
- [3] Gaughan, Edward D., Introduction to Analysis, 2e, Wadsworth, 1975
- [4] Lang, Serge., A First Course in Calculus, 3e, Addison-Wesley, 1973
- [5] Leithold, L., The Calculus with Analytic Geometry, 6e, Harper $\&$ Row, 1990
- 6] Thurston, H., Λ simple proof that every sequence has a monotone subsequence, Math Magazine 67, (1994)