
SEQUENCES AND SERIES 

Harry M. Carpio 

The limit concept is the essence of analysis. Indeed, many important 
analytical constructs are defined using various limit processes. The deri 
vative and the integral are the two main examples. In calculus, there is 
without doubt a need for a thorough understanding of limits. "When 
students fail to understand this idea," Gaughan writes in [3: p.59], "their 
study of calculus becomes a drudgery of juggling formulas." To this we 
add: when teachers fail to understand limits, their teaching of calculus is 

not much different from a 'cooking' demonstration. 
This lecture is a basic introduction to the theory of limits of 

sequences. It is intended for the teacher/participants of the First Mindanao 
Mathematics Teachers' Training-Seminar. The material should cover the 
minimum needed by these teachers. There is a serious attempt to present it 
rigorously and, in most cases, detailed proofs are included. After all, a 
good grasp of the fundamentals is almost synonymous with the ability to 
prove the basic assertions. Here we introduce a new approach to 
convergence, which appears to be interesting and attractive. 

The lecture is divided into two parts: first, we cover the rudiments of 
limit theory, then we use it to clarify the meaning of an infinite sum. 

Convergence. A sequence of real numbers (S,) is a real-valued 
function on the set N of natural numbers or positive integers. A sequence 
is usually described by a formula such as s, = 3/n or a list such as 

(3. ½,1, %,%,...). 

As functions, sequences are very simple mathematical objects. 
IBecause of this, they make a suitable vehicle for a leisurely introduction 
lo the theory of limits. 

lo show that a sequence (s, ) of real numbers converges to a real 
nunber s, the old procedure, which goes way back to the time ot Augusin 
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Louis Cauchy (1 789-1 867). consists of two steps: (1) to find an integer N 
corresponding to a given [>0, and (2) to show that if the index n> N 

then we must have s,, -s < [. 
Each of these steps constitutes almost half of the whole procedure and 

it usually takes some time before the average student can master the 
intricacies of both. However, only step (2) is essential. One can view this 
problem from a better perspective if he bears in mind that: 

A sequence (S,) converges to a real number s if the 

difference s,, -s eventually becomes very, very small. 

More precisely, this means that for any specific [ >0, no matter how 
small, the inequality |s,, - s <[ must eventually hold. In particular, we 

must guarantee this when n is large. This exactly is the content of the 

definition of convergence. 

4.0 DEFINITION. A statement or a condition C(n) holds for large n, if 

there is a positive integer N such that C(n) holds for alln N. 

4.1 DEFINITION. We say that a sequence (s, ) of real numbers conver 

ges to a limit s, if for each [ >0, the inequality 

s, -s <e holds for large n. 
In this case we shall write lim s, = s or lim S, = s. and we shall say 

that the sequence (s,, ) is a convergent sequence; otherwise, we shall say 

that the sequence (s, ) is divergent. 
In this definition, all our attention is focused on the difference S,,- s 

In order to prove that the sequence (s, ) converges to the real number s. 

we must show that this difference can be made small. 

n’o 

Definition 4.1, which is essentially due to Redheffer [l], is based on a 

mode of expression that has long been a part of the mathematical jargon. 

The expression for large n' is often used in the literature, although it is 

never defined explicitly; it is simply taken for granted that its meaning is 
clear and it needs no further explanation. Consider for instance the 

following statement: 

n'-7n-30 > 0 for large n. 

80 



HARRY 
M. 
CARPIO B

ased 
on 

D
efinition 

4.0, 

this 

statem
ent 

is true. 

For 
if n 37, 

then 

n
>

3
/n

=
7

n
 

+
 

3
0

n
>

7
n

 
+

 

30. 

H
ence, 

n
-

7n 
- 30 

>
0

 

for 
all 
n >

37. 
# 

Here 
is 
another 4.2 

LEM
M

A. 
If a, b, and 
p are 

positive 

real 

num
bers, 

then 
for 

uny 

real wnber 
k the 

inequality 

<h 

holds 
for 

large 
n. (n-kyP 

Proof. 

A
ccording 

to 
the 

A
rchim

edian 

property 
of real 

num
bers, 

there 

is 
a positive 

N
h

P
 

>
 

a'P
 (A

lm
ost 

obvious, 

since 
the 
set 
of 

positive 

integers 
is not 

bounded.) 

H
ence. (n

 
- k) b P

>
 

a
P

 
for 
all 

n
>

 
N. 

Hence, 
by 

D
efinition 

4.0. 

(n
 

- k) b
P

>
 

a
P

 
for 

large 
n. 

Therefore, 

b(n 
- kyP 

>
a
 

for 

large 
n, and 
the 

conclusion 

follow
s. 

# 

The 

next 

lem
m

a 
is 
a vital 

cornerstone 
in

 

our 

approach. 

4.3 

THE 

CONJUNCTION 

LEM
M

A. 

Let 

C
(n) 

and 

C
(n) 

be 

tw
o 

conditions 

on 
n, where 
n e N. IFC

(n) 

holds 
for 

large 
n and 

C
n

) 

holds 
for 

large 
n, 

lhen 
the 

conjunction 

C,(n) 
&

 

Cz(n) 

also 

holds 
for 

large 
n. 

Proof. 
By 

hypothesis, 

suppose 

that 
C

 
(n) 

holds 
for 
n N,, 

and 
C, (n) holds 

for 
n >

 N
. 

w
here 

, and 
N, are 

positive 

integers. 

Let 
N

 
=

 

m
ax{N

,, 

Na}. 

Then 

both 
C

 
(n) 

and 

C
n

) 

hold 
for 
n >

 N. W
hen 

this 

happens, 
the conjunction 

C
() 

&
 

Can) 

also 

holds. 

Therefore, 

C
(n) 

&
 

C
n

) 

holds 
for large 

n. 
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We immediately have two useful corollaries. Let (s,). (1, ). (u, ), and 
(v,) be sequences of real numbers. 

4.3.1 CoROLLARY. If s, < I, holds for large n and i, < u, holds fo 
large n, then s, < u, holds for large n. 

4.3.2 CoROLLARY. If s, < I, 
for large n, then s, t u, < , + v, 
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useful results. 

Limit theorems. Hovw simple and effective is our "new" definition of 
convergence? As typical illustrations of our approach, we shall prove more 

4.4 THEOREM. Ifa, ke R. andp > 0, then lim 

-0 = 

Proof. Let [> 0. It follows from Lemma 4.2, with b=[, that 

la 
(n- kyP 

holds for large n and u, < V, holds 
holds for large n. 

n-’O 

(n-k) 
Hence, by Definition 4.1, the desired conclusion follows. # 

4.5 THEOREM. If S, =k for large n, then lim s, =k. 

<E holds for large n. 

n-’o(n- k)P 

Proof. The hypothesis is equivalent to the statement |s,, - k = 0 for 
large n. The desired conclusion follows from Definition 4.1. # 

n’0 

4.5.1 COROLLARY. The constant sequence (k, k, k, ... ) converges to K 
i.e., lim k =k. 

The proof is an easy exercise. 

n’oo 

4.6 THEOREM. lim S, =s ifand only if lim s, -s= 0. 

4.7 THEOREM. lim r" = 0, if |r|<1. 

= 0. 
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Proof. Let0 <[<1. Then, cl�arly, 0 < (-log [) <n(-log rl) for large 
n. It follows that |r" -0| = r<e for large n. 

We shall now prove some standard limit theorems for sequences. 

HARRY M. CARPIO 

4.8 THE SQUEEZE THEOREM. Let se R. If |s, -s < , for large n, 
and lim t, = 0, then lim s, =s. 

n’0 n’0 

Proof. Let [ >0. By hypothesis, the inequality 
|s,- s|s I, holds for large n. 

By the second hypothesis and by Definition 4.1, 

|4,-0| <[ holds for large n. 

Thus. by Corollary 4.3.1, the relation 

S,- s S I, =|,-0|<[ also holds for large n. 

Therefore, by Definition 4.1, lim s, = s. 

4.8.1 ExAMPLE. Show that lim 

sin(7/2) sin(rn/2)| 

Solution. The conclusion follows from the Squeeze Theorem, since 

4.8.2 EXAMPLE. Prove that 

n+3n-5 
lim 
n’o 2n-5n +n-4 

n’ 0 

= 0. 

sin(nr/2) 

for all n. # 

=0. 
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Solution. First, we suppose that n is large enough so that both the nu 
merator and denominator of the given fraction are positive. (Hence, we 



can do away with the absolute value signs.) Now observe that for all 

n'+3n -5 <n + 3n = 4n, and 

2n'- 5n tn-4 >n'-5n - 4n = n'-9n = (n- 9)r. 

(To find an upper estimate, we either increase the negative terms to 0 
or increase the powers of the positive terms. To find a lower estimate. we 
either decrease the coefficients of the positive terms to 1 or 0, or increase 
the powers of the negative terms.) Hence, it follows that, for large n. ue 
have the relation 

n +3n-5 

2n-5n +n- 4| 
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Since lim 
4 

n’o n�9 

n+3n -5 
2n'-5n +n-4 

Vn+1+ 

Vn+1+n 

=0, the result follows from the Squeeze Theorem. # 

4.8.3 EXAMPLE. Prove that lim (Vn+1-Vn)=0. 
n’o 

< 

Solution. This result follows from the Squeeze Theorem and Theorem 
4.4 witha=p= 1/2 and k=0, since 

n+i-) 

4 

n�9 

1 

Vn+1+n 

4.9 THE UNIQUENESS THEOREM. If Iim s, = L and lim s, =L, 
then we shall have L= L'. 

# 

Proof. Observe that |L L'|<|s,- L| + |s,- L| for all n. 
follows from the hypothesis and Theorem 4.6 that |L - L'|=0. 
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4.10 THEOREM. A convergent sequence is bounded. 

A sequence (s,,) is bounded if there is a real number B such that |s,l 
<B for all n. 

Then, it 

# 

Proof. Let s = lim s,. Then s,, - sl| < 1 for large n. By Definition 4.0. 
there is a positive integer N such that 
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|s,-
s <

1
 

for 
all 

n
N

. Now 
let 

B
= 

max 

{
1

+
 

|sl, 
Jsil, 
Isl, 

.., 

|S
l. 

Clearly, 

|s,,|s 
B, if 
n

s N. M
oreover, 

(1 
+

 
|s) 
s B. Hence, 
if n >

 
N, then, 
by 
the 

triangle 

inequality, 

we 
shall 
have |s,|=

 

|s,-

stsls 

|s,-
s +

 
|sl <1 
+

 
Js sB. 

Therefore, 
4.10.1 

COROLLARY. 

An 

unbounded 

sequence 

diverges. Algebra 
of lim

its. 

The 

next 

group 
of theorem

s 

yields 
a pow

erful 

and elegant 
tool 
for 

proving 
that 
a sequence 

converges 
to

 
a given 

number. 4.11 

THEOREM
. 

If 

k
e
 

R
 

and 

the 

sequence 

(s, 
) converges 
to 
s ¬

 
R, 

then 
the 

sequence 

(ks, 
) converges 
to 
ks, 
i. e., lim

 

ksy 
=

 
k lim

 

s,. n
’
0

 

n
’
0

 

Proof. 

Suppose 
k+

 
0 and 
let 
[ >0. 

Then, 
by 

hypothesis, 

holds 
for 

large 
n. 

<
 

[ holds 
for 

large 
n. Hence, 
by # 

Therefore, 
for 
all 
k e R, |ks, 
- ks 

Definition 

4.1, 

(ks, 
) converges 
to

 
ks. 

4.12 

THEOREM
. 

If 
(s, 
) converges 
to 
s, and 

(I,) 

converges 
to

 
t, then the 

sequence 
of sum

s 
(S, 
t i,) 

converges 
to 
s +

 
t, i.e., 

lim
 

(s, 

+
I,)=

 

lim
 

s, 
+

 

lim
 

: 
n

’
0

 

n
’
0

 

n
’
 

0 Proof. 
For 

each 
n, it follows 

from 
the 

triangle 

inequality 
that (4.12.1) 

Now 
let 

[>
0. 

Then, 
by 

hypothesis, 

|Sy 
-s 

<[/2 

holds 
for 

large 
n, and 

|,-
|<

 
[/2 

holds 
for 

large 
n. 
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|s,| 
S B

 
for 
all 
n. # 
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n’ lim , 

the product sequence (s,!,) converges to s., L.e., 
4.15 THEOREM. If(. 

n-’0 

Iim s,{, - lim S 

Hence, by Theorems 4.8, and 4.1 1, we have lim sn =0. # 

iS,, 4y -0|=|s, ,s B|,| for large n. 

Proof. Since there is a Be R such that |s,, < B for large n, then 

0. 1hen the sequence (s, I) converges to 0. 
4.14 THEOREM. If (5, ) is bounded for large n and (,) converges lo 

we haveL<M. 

4.13.1 COROLLARY. If s, S M, Jor large n, and lim s, = L, then 

follows that s -1s0. Therefore, we have s < 1. # 
Hence. s -IS |s,-s| + |, -1<[ for large n. Since [ is arbitrary. it 

S-S, - S]S s, S I, S|, - tt for large n. 

Since s, Si, for large n, we also have 

n’0 

|S, - s<[/2 for large n, and , -1<[/2 for large n. 

Proof. Let g>0. By hypothesis, 

n’0 4.13 THEOREM. 1/ lim s, =s, lm , =1.and for large n, 
then we have s <1. 

(s,, + ,) - (s +)|<[ holds for large n. # 

by Corollary 4.3.1 and by (4.12. 1). 
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Hence. hby Corollary 4.3.2, |s, -s +|, -1<[ holds for large n. 
Thus, 

(S,) converges to s, and (,) converges lo 1, 1hen 



Proof. First, we observe i:t for cach n, it follows from the triangle 
inequality that 
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The sequence (s, ) Is convergent; hence, it is bounded, by Theorem 4.10. 
Thus, by Theorems 4.6, 4.11. and 4.14, and the hypothesis, 

lim 

Finally. by Theorem 4.12, 

lim , -d+lnls, -s= 0. 

lim s,, = S. 

Therefore. in view of (4.15.1 ) and the Squeeze Theorem, it follows that 

4.16 THEOREM. If (s, ) converges to s, S, 0 for all n, und s 0, 
then the sequence of reciprocals (1/s,) converges to 1/s. 

(4.15.) 

Proof. By hypothesis. Js/2 > 0. Also by hypothesis |s,- s< Is/2 
holds for large n. Hence, it follows from the triangle incquality that 

Is |s-s,| + |s,|< |s/2 + |s, | holds for large n. 

min :ns N>0. 

Hence, the incquality 0 < s/2<|s,| holds for large n. Now, since cach s, 
+0, then for any N1, 

Tlence, there exists m > 0, such that m <|s,| for all n. Thus, for each n 

m)sl 
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Theorems 
4.11 

and 
the 

Squeeze 

Theorem, 
we 

conclude 
that 

=
 

S 

1 
n

’0
 

Sn 
lim

 
4.17 

THEOREM. 

Suppose 
that 

(s,) 

converges 
to 
s and 

(i,) 

convergpr 

to 
t. If 
s, 
±

 
0 for 
all 
n and 
s 0, then 
the 

quotient 

sequence 

(t,/s.) Converges 
to 
t/s. 

Proof. 

By 

Theorem 

4.16, 

(1/s,) 

converges 
to 

(1/s). 

The 

desired conclusion 

follows 

easily 

from 

Theorem 
4.15. 4.17.1 

EXAMPLE. 
(i)) 

There 
is a tendency 

anmong 

students 
to 
use 

limit theorems 

rather 

carelessly 
by 

drawing 

conclusions 

without 
first 

verifying 

the 

hypothesis. 
This 

habit 

sometimes 

leads 
to 

embarrassing 

results 
as the 

following 

illustration 

shows: 
If 
we 

take 
for 

granted 
that 

lim 
n =L, 

where 

is 
a nonzero 
real 

number, 
then 

using 

Theorem 

4.17, 
we 

shall 

have 

1 L
 lim
 

n 
1 

lim
 

1 
im

 
n 

0= 
lim

 n
’
0

 
n 

This 

leads 
to 
the 

equation 
0 =

 
1, which 
is absurd. 
The 

mistake 
is the 

result of using 

Theorem 
4.17 

without 

verifying 
its 

hypothesis. 
# 

=
 

n 
’ o 

n
+

6
 

3 

(ii) 

Show 
that 

lim
 

Solution. 
We 

shall 

give 
a careful 

algebraic 

proof 
of this 

assertion. 

3 �2 n 

4 

6 

lim
 1

+
 

n
’
0

 

4n' 

-3n 

Next, 
we 

show
 

that 
lim

 
(4 
- 3/n) 
=

 
4. To 
this 

end, 
we 

must 

verify 
that. (Theorem 

4.5) lim
 

4 =
 

4, 

88 
4. 

A
n-3n 

First 
we 

observe 
that 

n
’0

 
n° 
+

6
 

lim
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s 
4.4 

and 

4
.| 

|). 

lim
 

(-3
/n

) 
0. 

lence. 
by 

Theorem
 

4.12. 

we 

have 

lim
 

(4 
- 3/n 

)=
 

4 +() 
=

 4, 

We 

can 

show
 

sim
ilarly 

that 

lim
 

(| 
+

 

6/n') 
=

| 
+

 
0

=
 

1. Therefore, 
by 

Theorem
 

4.17, 
we 

have 
lim 
4 

3 4 

=4. 

4 =
 6 

lim
 lim1 

4
y

-3
n

 
n

'+
6

 

3 

3 

|+
 3 

As 
in 

Exam
ple 

4.8.2. 
the 

above 

argunent 

actually 

proves 

that 

3
1

 # 4
. 

4) lim
 

Existence 
of lim

its; 

subsequences. 

The 

preceding 

theorem
s 

address 

the 

problem
 

of show
ing 

that 
(i) 
a given 

sequence 

(s,, 
) has 
a lim

it 

and (ii) 

that 
its 

lim
it 

is 
a given 

num
ber 

s. W
e 

now
 

have 

tw
O

 

m
ethods 

of attacking 

such 

problem
s. 

In 

som
e 

cases, 

how
ever, 

we 

are 

only 

interested 

on 

problem
 

(i). 

i.c., 

the 

convergence 

behavior 
of the 

sequence. 
In 

this situation, 

the 

next 

theorem
 

is 

often 

useful. 4.18 

THEOREM
. 

Suppose 

hut 

the 

sequence 

(s,) 
is 
u bounded 

nO
nO

tone 

(nonincreasing 
0r 

nondecreasing 
) sequence 
of real 

num
bers. 

Then(s, 
) is 

convergenn. 

Proof. 

Suppose 

that 
(s, 
) is nondecreasing. 
Let 
s be 

the 

least 

upper 

bound 

of(s, 
). as guaranteed 
by 
the 

Com
pleteness 

Axiom
. 

Let 

[>
 

0. Then 

we 

have 
|s - s,|=

 

(s-
s, ) <E. 

A
 

subsequence 

ofa 

sequence 
(s, 
) is a sequence 

form
ed 

by 

rem
oving 

elem
ents 

or term
s 

of the 

sequence 
(s,, 
). For 

exam
ple, 

if 
we 

delete 
all 

odd 

89 

lim
 

(x
-

[) 
is 

not 
an 

upper 

bound 
for 

(s, 
). Thus, 

som
e 

S >
 

(s
-

&). 

For 
n 2 N, 

since 

s
, 

2 S 



lems of the sequence (s, ), we obtan the subscqucnce The mother scqucnce is also considered a subsequence of itsclf. Note that if the mother sequence converges to a limit , all its subsequcnces also converge to the same liit . 

4.I8.1 EXAMPLE. Let a, - 1, a, - 2. 
(4, ) is nondecreasing and limn a, 2 
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Sotion We can casily show by induction that the scquence (a,) is 
nondecreasing and a, s 2 for all n. (Show it.) Suppose now that lim a 

L. Since (a,,,) is a subsequence of (a, ), we also have lima, s|L But 
the detinition of a,. implies that /l. V21. . Therefore, I. 0 or 2. Since 
(ay) is nondecreasing, lim a, I, so we must have I. - 2. 

4.18.2 EXAMPLE. If rz 

Sohtion. Observe that "I for all n and (r") is nonincreasing. 

(Show it.) Therefore, lim r" exists. Suppose limn r" L. Then lim 
r2n I', by Theorem 4.15. But (r") is a subsequence of (r2"), 

Sn 

0 or L = 1. But L 0, since r"21for all n. Hence, L - 1. # 

J2, Prove that 

4.I8.3 LEMMA. Every sequence hus a monotone subsequence 
Proof (|. Thurston |6) Assume that a tail of the sequence (s,) does 

not contain a greatest member. Without loss, we may suppose that this tail 
is (s,) itself. We shall show that (s,) has a nondecreasing subsequence 
(s,. ). To this end, suppose n, < n, < < n, have been chosen so that 

s,, for all n <n, . (We may start with n, = 1.) Since s, is not the 

greatest member of (s, ). we may define 

n+= min | n :n> n and s,, > S, 

n< ny+j then sn 

Clearly. n+|n and Sn,., Sn Moreover, because n1 is by de-

finition minimal, if n, <n<n+|. then we must have s, S Sn, 

< Sn, 

90 

Thus, if 

The subsequence (Sp, ) is nondecreasing. 

l, prove that lim " I 

Hence, we must also have linm =1 Thus, L'-L and hence. either I. 
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ow
 

assum
e 

that 

every 

tail 
of (s,) 

contains 
a greatest 

) is 

Choose 
n so 

that 
s
, 

is the 

greatest 

m
em

ber 
of 

(s, 
S

, 
S3, 
.. 
). Next, choose 

n, 

so 
that 
Sn, 
is the 

greatest 

m
em

ber 
of 

(S
, 

+
S

n
, 

+2, 
Sn, 
+3 

..). 

4.18.4 

COROLLARY 

(TH
E 

BO
LZA

N
O

-W
EIERSTRA

Ss 

THEOREM
). 

E
very 

bounded 

sequence 
of real 

num
bers 

has 
a convergent 

Proof. 

Suppose 

(s,) 
is 
a bounded 

sequence 
of 

real 

Sequence 
of 

partial 

sum
s; 

convergence 
of 

infinite 

sum
s. 

A
dding 

a 

finite 

collection 
of 

real 

num
bers 

is 

easy. 

H
ow

ever, 

the 

situation 
is 

m
ore 

a case 

that 

can 
be 

handled 

satisfactorily 

dem
anding 

when 

the 

collection 
is infinite. 
If this 

infinite 

collection 
is not 

using 
sequences. 

The 

study 
of infinite 

sum
s 

has 

im
portant 

and 

fascinating 

applications 

in 

physics, 

engineering, 

and 
in 

m
any 

m
ajor 

areas 
of 

m
athem

atics. 

B
ecause 

the 

theory 
of lim

its 
(of 

sequences) 

plays 
a vital 

role 
in 

the 

study 
of infinite 

sum
s, 

it is, 

therefore, 

not 

surprising 
to 

find 

this 

topic 

included 
in every 

standard 
calculus 
textbook. 

An 

u
, 

or 
u, t u, tu

 
t ** 

X
u, 

or 

k
=

| (The 

sym
bol 

E
u, 

is used 

when 
it is clear 

that 

the 

sum
m

ation 

index 
k ranges 

from
 

l to 
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m
em

ber. 
We may 

select 
the 

term
s 

of a nonincreasing 

subsequence 
of (s,, 
) as 

follow
s: 

Then, 

choose 
n So 

that 

Sp. 
is 

the 

greatest 

menmber 
of 

the 

subsequence 

(Sy,+bSny 
+2, 
Sny 
+3, 

..), 
and 
so 
on, 
ad 

infinitum
. 

The 

subsequence 

(s,,, a nonincreasing 

subsequence 
of 
(s, 
). 

subsequence. 

num
bers. 

By 

Lem
m

a 

4.18.3, 

(s,) 

has 
a m

onotone 

subsequence. 

By 

T
heorem

 

4.18, 

this m
onotone 

subsequence, 

w
hich 

is bounded, 
is 

convergent. 

countable, 

there 

are 

even 

greater 

com
plications. 

Here 

we 

shall 

confine 

ourselves 
to

 

the 

countable 

case 

infinite 

sum
 

of 
a sequence 
(u

 
) of real 

num
bers 

is 

usually 

denoted 

by 
the 
sym

bols 

infinity, 

otherw
ise 

the 

range 

should 
be 

clearly 

indicated.) 

Any 
of the 

three 

sym
bols 

above 
is called 
an 

infinite 

series. 

But 

these 

Sym
bols 

are 

m
eaningless. 

unless 

there 
is 
a definite 

rule 
for 

determ
ining 

W
nat 

they 

represent, 

Since 

we 

know
 

how
 

to
 

determ
ine 

finite 

sum
s, 

it is but 
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 natural 
to

 

approach 

the 

problem
 

of 
an 

infinite 

sum
 

by 

considering 

the finite 

case. 

T
he 

standard 

technique 
is to 

generate 

finite 

sum
s 

of 

the 

form
 

+
 

k=
l 

k=1 

T
hese 

su
m

s 

are 

called 

partial 

sum
s 

of th
e 

series 

l
i
 

the 

sequence 

(S,, 
) is 

called 

k=
] 

4.19 

DEFINITION. 
If 

lim
 

s,, 

exists, 

then 

this 

value 
is called 

the 

sum
 

of 

th
e 

series. 

M
oreover, 

we 

say 

that 

the 

series 

cO
nvergeS 

and 

we 

w
rite 

=
 lim

n 
S

:
 

k
=

| 

In
 

effect. 
the 

k=
l 

If 

(s,, 
) fails 
to 

have 
a lim

it, 

then 

we 

say 

that 

the 

series 

liverges. 

The 

reader 

should 

note 

that 

the 

sym
bol 

u, stands 

for 

tw
o 

things: 

the 

series itself 

and 
the 

szm
 

of 

the 

series. 

This 
is an 

abuse 
of 

th
e 

notation 

th
at 

can 
be C

onfusing 

som
etim

es: 

but 

the 

use 
is 

quite 

com
m

on 
in 

th
e 

literature. 

lim
 

k n
’
k

=
l
 

k=1 

W
hile 

it is true 

that 
an 

k=1 

In 

the 

beginning, 

m
any 

students 

can 

hardly 

reconcile 

the 

fact 

that 
an 

single 

finite 

sum
 

like 
(3 
+

 

2
+

 

17). 

Perhaps 

this 
is all 

because 
of 
the 

infinite 
series 
u, stands 

for 
a sequence 
of 

finite 

sum
s 

and 

not 

just 
a 

infinite 

92 

the 

sequence 
of partial 

sum
s 

belonging 
to 

the 

series 

Eu, 

preceding 

definition 

says 

that 

the 

follow
ing 

equation 

holds: 

series 
and 
an 

ordinary 

finite 

sum
 

share 
m

any 

com
m

on 
properue 

the 
students 

should 

realize 

the 
difference 

betw
een 

these 
tw

o 

entitieS. 
T

 

sum
m

ation 
sign 

2, 
which 

is present 
in

 

u, 

m
ust 

rem
em

ber 

that 
an 

infinite 

series 
is 
a sequence 
of partial 
sum

s. 

k=l 
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EXAM
PLE. 

Find 
the 

sum
 

of the 

follow
ing 

series: (i) 
1 +

-l) 
+

 
1 +

(-1) 
+

 
1 +

 

(-1) 
+1 

+(-1) 
+

 

(ii) 
(1 - 1/2) 
+

 

(1I2 
- 1/3) 
+

 

(1
/3

-
1 /4) 
+

 

Solution. 
(i) 

At 

first 

glance, 
it appears 

that 

the 

sum
 

in 
(i) 
is 
0. 

However, 
a little 

analysis 

reveals 
the 

contrary. 

Observe 
that 
the 
nth 

partial 

sum
 

s,, =
1, 

if 
n is odd, 

and 
s,, =

 
0, if n is even. 

Since 
the 

sequence 
(1. 
0. 

(ii) 
O

bserve 
that 

4.19.2 

EXAMPLE. 
(i)) 

Show 
that 
the 

series 

E1/2* 

converges. 
(ii) 

Show
 

in 

general 

that 
if 0<

r<
1, 

then 

k
=

| This 

series 
is 

called 
a geom

etric 

series 

with 

com
m

on 

factor 
r. 

Solution. 
(i) 

The 

nth 

partial 

sum
 

of Z1/2* 
is 
the 

geom
etric 

series 1/2-1/ 
27+1 1

-1
/2

 

+
 

. +
 

1/2" 
=

 S, 
=

 

1/2 
+

 
1/2 
+

 

1/23 

Clearly 
lim

 
s, =

 
1. Hence, 
by definition, 

E1/2* 

=1. 

Part 
(in) 
is handied 

4.20 

THEOREM
. 

(i) 

Let 
(u 
) and 

(v
) 

be 

sequences 
of real 

num
bers 

and 

assum
e 

that 
the 

series}u 

an
d

v
, 

both 

converge. 

Then 

Z(u, 

+
v,) also 

converges 
and 

(u, 

+V
;) 

=
 

Lu, 
+

 

vy. (ii) 
Ifc 
is a real 

num
ber, 

then 

cu, 
=

 

c
u

,. 

Proof. 
(i) 
Let 

(s,) 
and 

(
,)

 
be 
the 

sequences 
of partial 

sum
s 

of the see 

that 
(s, 
+

 
I, 
) is 
the Since 

lim
 

(s, 

tt,) 
=

 

lim
 

series 

u, 

and 

v,, 

respectively. 
It is 

easy 
to 

Sequence 
of 

partial 

sum
s 

of 
the 

series 
( u t vå ). 

S, 
+

 

lim
t,, 

the 

conclusion 

follows 

readily. 

Part 
(ii) 
is proved 

sim
ilarly. 

93 
the 
nth 
partial 

sum
 

of the 

series 

telescopes 
to

 
the 

1, 0, 1, 0, ... 
) does 
not 

converge, 

the 

series 
has 
no 

sum
 

and 
is divergent. 

value 
s, =

 

l-

1/n 

and, 

hence, 
lim

 
s, 
=

 
1. Thus, 
its 

sum
 

is 
1. 

sim
ilarly 

and 
is left 
as 
an 

exercise. 
# 
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Proof. 

Suppose 

the 

series 

up converges 
to

 
S, ie., 

lim
 

s, 
=

 
S 

4.21 

THEOREM
. 

If the 

series 

L
u, 

converges, 

then 

lim
 

uy 

=
0

. 

C
learly, 

we 

also 

have 

lim
 

s,, 

=S. 

Since 
u, 

=
S

, 
- S

n
-, 

it follow
s 

that 

n
’
1

 

lim
 

s,-
=0. 

lim
 

S
, 

lim
 

u
z=

 

lm
 

un n
’
0

 4.21.1 

COROLLARY. 
If lim

 
u, 

0. then 

u, diverges. 

k
’
 M

any 

students 

seem
 

to
 

have 

difficulty 

rem
em

 

bering 

that 
if lim

 
u, 
=

 
0

, 
it does 

not 

follow
 

that 

the 

series 

}uk 
is 

convergent. 
To 

(1/2 
+

 

1/2) 
+

 

(1/4 
+

 

+
 

1/4) 
+

 

(1/8 
+

 

+
 

1
/8

)+
.. 

=
1

+
1

+
 

etc. 

[8 
term

s] 

[4
 

term
s] 

[2 
C

learly, 
the 

partial 

sum
s 

of 
the 

series 

becom
e 

large 
as 
k increases 

although 

we 

certainly 

have 

lim
 k
’
0

 diverges. 

k
-5

 
3k 
+

2 

4.21.3 

EXAM
PLE. 

Show
 

that 

the 

series +
0, 

we 

may 

use 

C
orollary 

4.21.1. 
# 

k
-5

 ko
3

k
 

+
2

 

Solution. 
Since 
lim

 

C
onvergence 

tests. 

For 

an 

infinite 

series 

with 

nonnegative 

term
s. 

three 

sim
ple 

convergence 

tests 

are 

available, 

nam
ely, 

the 

com
parison 

test. the 

ratio 

test, 

and 

the 

integral 

test. 

For 

m
ore 

general 

cases, 

w
e 

also 

have the 

root 

test 
and 

the 

all 
k. If the 

sequence 

(S,)0j 

u, 
converges. 

4.22 

THEOREM
. 

Suppose 
u, >

0
 

for partial 

sum
s 

is 

bounded, 

then 
the 

series Proof. 

Since 

u, 
>

 
0, the 

sequence 

(s, 
) of partial 

sum
s 

is nonde 

creasing. 
By 

Theorem
 

4.18, 

(s,) 
is 

convergent, 

because 
it is bounded. 
# 

94 

FORUM
 

see 
this, 

consider 

the 
follow

ing 
series: 

4.21.2 
EXAM

PLE. 

term
s] 

u, =0. 

alternating 
series 
test. 
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EXAM
PLE. 

Show
 

that 
the 

series 

1/k 

converges. 

Solution. 

Since 

1/k 
>

 0 for 

all 
k. Theorem

 

4.22 

applies. 

We 

will show
 

that 

the 

sequence 
of partial 

sum
s 

is bounded. 

W
e 

have |+
(1/2+

1/3 

)+1/4 

+
... 

+1/7)+(1/8 
+

 
... 

+1/15 
) +

 
... 
s 

=
 

+
.. 

+
 

|/4
) 

+
 

.. 

<
|+

(1/2 
+

 
1/2)+

(1/4 
=

 

=
|+

 

1/2 
+

 

1/4 
+

 

1/8 
+

 

Hence, 

the 

increasing 

partial 

sum
s 

is 

bounded 

above 
by 
2. # 

4.23 
THEOREM

 

(CO
M

PA
RISO

N
 

TEST). 

Let 
u, 

>0, 
V, 

>
0

 
for 
all 
k and 

Proof. 

Let 
s, and 
, be 

the 

nth 

partial 

sum
s 

of u, and 

v,. 

Then S, S C
i,. 

() 

Since 

(s,) 
is 

nondecreasing 

and 

lim
,, 

exists, 
it follow

s 

that (s, 
) is 

bounded 

above 
by 

lim
 

Ct, 
. By 

Theorem
 

4.22, 

the 

series 

u, 

converges. 
(ii) 
If 

(s, 
) were 

bounded 

above. 
it would 
be 

convergent; 

hence, 
by assum

ption, 

(s,, 
). also 

(C
s, 

), is 

not 

bounded 

above. 

T
hus, 

for 

any 
N, we have 

,, 2
C

s, 
>

 N
 

for 

large 
n. H

ence, 

lim
 

t,, =
 

0. 

4.23.1 

ExA
M

PLE. 

D
eterm

ine 

convergence 
or 

n
+

7
 

-n
+

3
 

(i) 

Solutions. 
(i) 

We 

shall 

use 
the 

estim
ation 

technique 

used 
in

 

Exam
ple 

4.8.2. 
Since 

2
3

 

n
'+

1
 

n
'+

n
 

+] 

and 

since 

1/n 

diverges, 

then 
so 

does 
95 

2 

C
>0. 

(i) 
/ u s C

v
, 

andE
v, 

converges, 

then 
u converges 

and 

2
u

 
S (E

v;:(ii) 
lf 
Cu 
s vy 
and 

u diverges, 

then 

vy diverges. 
divergence: 



(ii) Recall Example 4.8.2 again. Since 

n+7 
214 -n+3 2n - n 

THE MINDANAO FORUM 

n'+7n2 8n 

and since l/n converges, then so does 

N+n 

k=N 

8 

4.24 THEOREM (RATIO TEST). Let u be a series with u, > 0 for all 
k. Assume that there is a mumber c with 0<c<lsuch that 
for large k. Then the series u, converges 

Proof. Suppose that uy./u, s c, ifk2 N. Then 

In general, we have uNan s c"uN.Therefore, 

<UN 

Be12n -n+3 

1-c 

u suy t cuy tc»uy t +e"uy s 

suy(l+e+e' +e'+... +e") 

n' +7 

that lin "+<1. Then the series converges. 

# 

Thus, in effect we have compared our series with the geometric series, (see 
Example 4.19.2) and we know that the partial sums are bounded. This 
implies that our series is convergent. 

4.24.1 COROLLARY. Let Eu, be a series with u, > 0 for all k. Suppose 

96 

4.24.2 ExAMPLE. Show that the series Lk /3* converges. 

Solution. Let u, = k /3. Then as k ’ o, we have 

/ Se 
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1 
1 

k+1 
3 

k 

k+! 
k 

Thus 
by 

Corollary 

4.24.I, 

the 

4.25 

THEOREM
 

(INTEGRAL 

TEST). 
Let 

fbe 
a function, 

which 
is defined 

and 

positive 
for 
all 

x>
1, 

and 

nonincreasing. 

The 

series 

LAk) 

converges 
if 

and 

only 
if the 

im
proper 

integral 

f(x)dx 

converges. 

Proof. 

Since 
f is nonincreasing, 
we have 2) sfr) 

s1
), 

for 

lsx<
2, 

A3) 

<fx) 

<f2), 
for 

2<x<3, 
etc. 

Hence, 
it follow

s 
that 

f(2)s 

[f*
 

)ax 
s f(l), 

f(3)s 

dr s f(2), 

etc.. 

(4.25.1) This 
im

plies 
that 

(4.25.2) 

A2) 

+A3) 

+
. 

+
 

fn) 

sf()d
x

. 

converges, 

then 
the 

partial 

sum
s 

of the 

series 

SAk) 

Hence, 
if èu 
)dx 

are 

bounded, 

Therefore, 
the 

series 

converges, 
by 

Theorem
 

4.22. To 

prove 

the 

converse, 

suppose 

that 

the 

series 

k) converges. 

W
e use 

(4.25.1) 

again 
to 
get 

(4.25.3) 

)dx 
s f1) 

+{2) 
+

 
. +

 

fn-1) 
s f(k). k=l exists. 

Hence, 
by 

Theorem
 

4.18, 

lim
 n
’
o

 4.25.1 

EXAM
PLE. 

Prove 

that 
the 

series 

1/k 

converges. 

Solution. 

This 
is also 

done 
in 

Exam
ple 

4.22.1. 
Let 

fx) 
=

 

1
/x

. 

Then 

97 
series 
is convergent. 
# 
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 fr)dx=

 
lim

 

-(1/x)" 
=

 

lim
 

(| 
- 1/n) 
=

 
1. 

n
’
O

 converges. 

By 
the 

Integral 

Test, 

1/k 
is 

convergent. 

T
hus 

possibly 

negative) 
is 

said 
to converges. 

A
 

series 

u (w
hose 

term
s 

uy 

are converge 

absolutely 
if the 

series 

u 

4.26 

THEOREM
. 

A
 

series 

u, that 

converges 

absolutely 
is 

convergent. 

Proof. 
D

efine: - uk, 
if u, 

s0, and 

u
, 

if up >
 

0, 

0. otherw
ise. 

+
 U7 
=

10. 
otherw

ise 

u are 
nonnegative. 

and 

+
 Then 
both u s|u

 
| and 
u s |u

| 
for 
all 
k, 

it follow
s 

that 

both 

u, and 

u converge 

4.27 

THEOREM
 

(A
LTERN

A
TIN

G
 

SERIES 

TEST). 

Let 

u, be 
a series 

decreases 
to

 
0 and 

(ii) 
u, 
is 

alternately 

positive 

and series 
is convergent. 

such 

that 
(i) 
|u

 negative. 
Then 
the write 

the 

series 

u, in 
the 

form
 

Proof. 
Let 
us 

with 
b, 

>0, 

and 
c, >0. 

Let 

s, 
=

 b - C
 

+
 b -C

 
t +

 
b,, 

,, 

c
, 

we 

subtract 

m
ore 

Since 

s,+1 
=

 
S, 

-Cy 
t b,4l 

and 

0
s
 

b, 

S, 
by 
c, than 

we 

add 

afterw
ards 

by 

b
,.. 

98 

M
oreover, 

since 
and 
so 
does 

=
b

-
C

 
t b, 
- Cy t t ,, - Cp: 

from
 Hence, 

s,a1 
S S,. 
By 
a sim

ilar 
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. 
CARPIo argum

ent, 
we 

have 

I
+

2
 

I,,. 

Clearly, 
s, 
>

 
t, for 
all 
n. H

ence, 

we 

m
ust have 

for 

som
e 

real 

num
ber 

L. But 

lim
 

(s, 
- L

)=
 

lim
 

c, =0. 

H
ence, 

it follow
s 

that 

lim
 

s, =
 lim

 
t,, =

 
L. Therefore, 
the 

series 

converges 
to 
L. # 

Let 
x e R

 

and 

let 

(u
, 

) be 
a sequence 
of 

real 

num
bers. 

T
he 

series E
u

x
 

is 

called 
a pow

er 

series. 

k=
l 4.28 

THEOREM
. 

A
ssum

e 

that 

there 
is 
a n

u
m

b
err>

0
 

such 

that 

the series 
k=1 

k=1 

converges. 

Then 

for 

all 
x such 

that 
x , the 

pow
er 

series converges # 

of 

th
e 

given 

series 
1s u

s
u

,
 

. The 

conclusion 

follow
s 

from
 

the 

Com
parison 

Test. 

Proof. 

The 

absolute 

value 
of 

the 

term
 

u, x 

k=l 

The 

radius 
of 

convergence 
of the 

pow
er 

series 

u x* 
is the 

least upper 

bound 
of the 

num
bers 

r for 

w
hich 

we 

have 

the 

convergence 

stated 
in Theorem

n 

4.28. 
If there 
is no 

such 

num
ber, 

then 
we say 

that 

the 

radius 
of C

onvergence 
4.29 

THEOREM
 

(RO
O

T 

TEST). 

Let 

L
ux^ 

be 
a pow

er 

series 

and =
s, 

w
here 

s e R. fs
 

>
0

 

then 

the 

radius 
of con vergence 

of the 

series 
is equal 
to

 

l/s. 

Ifs 
=

 0, the 

radius 
of 

convergence 
is infinite. 

If 
u becom

es 

arbitrarily 

large 
as 
k ’ o, then 
the 

radius 
of 

99 

absolutely. 
is 
infinite. 

ussum
e 

that 
lim

u"K
 

CO
N

vergence 
is 
0. 



Proof. Without loss, we may assume that 20 for all k. Suppose 
that s > 0, and let 0 <r < 1/s. Let [ = |rs - 1| > 0. By hypothesis, the 
numbers ur tend to sr, as k ’o, and hence (since rs < ) are <1 -E 

for all sufficiently large k. Hence, the series uyr^ converges, by compa 

If. on the other hand, r > l/s, then ur approaches sr > 1, and. 

hence, we have krzl+e for sufficiently large k. Then comparison 
with the series (1-[)* shows that the series ur diverges. We 
leave the cases s = 0 and s = 0 to the reader. # 

4.29.1 EXAMPLE. The series 

equal to 1, because 

THE MINDANAO FORUM 

lim 
n’on 

1/n 

REFERENCES 

1 
= lim n’0 2/n 

=1. # 

REMARK. Experience shows that we can teach part of this material 
successfully, if we take the trouble to explain and motivate our presenta 

tions. On the part of the students, this would require a certain degree of 
maturity. On our part, it would require a higher level of expertise. 
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rison with the geometric series E(1 -e)*. 
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