CALCULUS IN PHYsSICS

Remigio Tee

Calculus is probably the most important mathematical tool of physics:
it is the primary language of physics. Many of the concepts and laws of
physics are most precisely expressed or formulated in the language ol
calculus. Without calculus Newton would have been unable to formulate
his monumental synthesis of the laws of motion (dynamics) and the
theory. of universal gravitation. Indeed. Newton mvented  calculus
primarily to settle questions related to his work in physics. Motion
involves change and the precise statement of instantancous velocity and
imstantancous acceleration requires calculus. In his initial analysis of the
moon’s motion around the carth Newton assumed that the carth and the
moon could be treated as point masses attracting cach other through
gravity even though both the ecarth and the moon have nonzero
dimensions. After inventing calculus Newton was able to justify this
assumption by proving that the gravitational attraction between two
spherically symmetric masses is cquivalent to that of two point masses
separated by a distance equivalent to the center-to-center distance between
the two spherical masses. With calculus, Newton was then able to derive
the orbits of the moon and planets as well as Keplers™ three laws of
planetary motion. Eclipses. once regarded with fear and terror by the
populace for countless millennia had now become predictable physical
events. All these because of calculus. Today, calculus and its descendants
(differential  equations, calculus of wvariations, integral equations.,
differential geometry. vector and tensor analysis. etc.) are the everyday
working tools of physics. To go into details of even the simplest
applications of these fields to physics would require more time and
preparation than what we have. We shall therefore limit ourselves to a few

common examples.

Newton and the calculus. The first major discovery in the physics of
motion was made by Galileo. He discovered the following:

LAW OF INERTIA. No force is required to maintain uniform motion

(constant .s‘peed ul()n;: a slraig/lf /MII/?).
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Before Galileo’s discovery everyone believed that force is required t,
maintain motion; that a rolling cart, left to itself, would eventually come 1o
rest because force is needed to keep it going. Newton, who was born the
year Galileo died, adopted Galileo’s law of inertia and restated it as a law
of motion.

NEWTON’'S FIRST LAW OF MOTION. A hody at rest will remain at res;
and a body in  motion will continue moving with constant velocity
(constant speed along a straight path) unless acted upon by external force

Galileo’s law of inertia states what happens to the body’s motion
when there is no force acting on it. The next logical question is to ask what
happens when there is force acting. Newton discovered the law governing
this situation. This law. now called Newton’s second law of motion. is
stated mathematically as /= ma. It says that the effect of an external force
on the motion of a body is to cause it to accelerate (that is, to change its
velocity) in such a way that the direction of the acceleration is the same as
the direction of the force and its magnitude is directly proportional to the
force and inversely proportional to the mass of the body.

It would be noted that the precise mathematical statement of the first
and second laws of Newton already require calculus since the velocities
and accelerations appearing in the laws are instantancous values. not
averages. Thus if the force is not constant the instantancous acceleration 1s
not the same as the average acceleration so that calculus is required. For
one-dimensional motion, the mathematical statements are as follows:

position, x = x(1)
locit dx
velocity, Py =
Y dt

dv  d’x

acceleration, a=—-=
dr dr?

Newton’s second law, /"= ma
Newton’s second law, together with calculus, enables us to determin€
the motion of a body when subjected to a given force. Altemati\'?ly -

allows us to determine the force acting on a body when its motion 15
known.
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ST EXAMPLE. Let us determine the motion of an object attached to a
spring or rubber band. According to Hooke’s law, a spring or rubber band
when stretched by an amount x will exert a force given by /= —kx.

Applying Newton’s second law to this force, we obtain

I = ma,
dv
—kx =m—,
dl
dv  dx )
—kx=m-— - (by the chain rule),
dx dt
dv
—kx=m— v,
dx
—kxdx = mvdy,

IX — kxdx = J.v mvdv (notice the sloppy notation on the upper limits),
. "

X0

st mi
2 2 2 2

kxg mvg' o> mv?
+ B +

2 2 2 2

The last equation above is an example of a conservation law. It states

2

1 : :
that the quantity %kxz +-mv- has the same value for all time. This

2
value is called the energy of the body consisting of the potential energy
1 ! :
(’ /ocz) and the kinetic energy (5 mvzj . The concepts of work. potential
energy and force are intimately interrelated. For certain  forces (called
conservative forces) the potential energy V' and force F obey the
relationship
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dV

}"= ——— (one dimension), F =-VV (two or more dimensions)
ax

The potential energy V ata point x is defined as the work done by the

force I in going from point x to an arbitrarily fixed reference point x,
Mathematically. the work done is defined as

X0 i .
V = Fdx (one dimension),

X0 , . .
V= _[ F .dl (two or more dimensions).
X

In the case of Hooke’s law, F = — kx. Therefore,

CFdy = [ = kxdx

1 ) | R
= —’zl(x() +2k:x i

To define potential energy for this case. we arbitrarily choose the

. . | 2 . . .
reference point x, = 0 so that V' == kx~. The introduction of the concept

of energy simplifies the determination of the motion of the body. Thus.

| I 2
5:5 +5h.
2©E Kk /ZE
v = £ \/— -—Xx“ T \/—
mn m V m 2L
2F
Ny \/ :
dl m 7L
dx 2E
——— = + _C”
‘; koo m
Voo
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) k
To integrate, we set sin 0 = ”EE x so that

— cos 0
f & de—+,/2—E J;dt
0 V1-sin’6 mn
) k
£w=+—n
0 m
k
9—90 = =+ — I,
m

k
9=iJ—t+%
m
R RE . J? j
: = —_— — — +. /| — +
. X p sin O p sm(_ el AR B

The motion of the body is therefore oscillatory.

5.2 EXAMPLE. Let us now study the motion of an object moving at a
constant rate in a circular path. (See the figure below.)

s =r0, 0 in radians,

‘r — f— I' — Collstﬂlltﬁ
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m

-

do v
-—— = — = constant.
dar r

Figure 1

The location of the mass m is given by the vector
r— ircosf +jrsinf.

Differentiating twice. we have

d 0 0
V= j’: = ir(-sin0) (dl + jr(cos 0) "[/,' . and
dv 0)° (d0N?
a= " =ir (- cos 0){ ‘d/vj +j r(=sin ())E\ (d, \1
(dOJZ[' 0+ jrsin0]
= | — | lircosO+jrsin
\dt
(&)
= —|—]| r
di
2
‘(Y
= ——r.
32

This says that the direction of the acceleration (and. hence. the foree)
is opposite that of r, that is. toward the center of the circle. It shows that. l‘f
a body moves in a circular orbit at a uniform rate, the force acting on It
must be directed toward the center of the circular path. In this way-
Newton discovered that the moon is being attracted by the earth and
the planets by the sun.
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Correctly concluding that it is the same force that causes objects to
fall to the ground, Newton was able to show that the force varies as
mverse square of the distance from the attracting body. He called the
force gravity. All these Newton did more then 300 years ago. Since then
physics has rapidly expanded and developed into many areas
(clectromagnetism, relativity, quantum mechanics, etc.), where calculus is
indispensable. In electrostatic, for instance, to find the electric field E(r)
and the electrostatic potential ¢(r) at point r due to a continuous charge
density o(r') one must perform the following volume integrations:

E(r) = J'G(r’)(r— )

e~

av'.

o(r) = |

o(r')
r—r|
These integrals are related by the equation

E(r) = -Vo(r).

To obtain the magnetic field B due to a static current distribution
requires a more complicated vector integration involving vector cross-
product.

Extremum principles and variational calculus. Minima and
maxima problems often occur in physics. The laws of the light reflection
and refraction, for instance, can be unified into one law.

FERMAT’S PRINCIPLE OF LEAST TIME. The path taken by light from
one point to another is the one that takes the least amount of travel time.

Indeed, most (if not all) of the laws of physics can be stated as ex-
tremum (minimum or maximum) principles. The level of mathematical
sophistication required is generally higher than those encountered in
inlruducmr_\' or ordinary calculus. Whereas extremum problems ordinarily
encountered in calculus require numbers or values for answers, most extre-
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mum problems in physics require functions for answers.
require the calculus of variations. The initial developme
came about as a result of Bernoulli’s solution of the b
problem.

Such Problem
nt of thjg fielq
rachistochmme

The problem is this: Consider two points (x,.v,) and (X305) in
vertical plane on the earth's surface. What would be the -\'hap;: of
.. ] . i . a
[rictionless slide, connecting the two points, which allows the [eqs; trave]
time?

(‘rll.‘ll)

Figure 2

The solution is the cycloid. An ancient mathematical problem called
Dido’s problem is of similar nature. A typical problem in calculus is to
find the dimensions of the rectangle enclosing the biggest area for a given
perimeter L. The answer is the square with side /4. Dido’s problem asks
what geometrical figure will give the greatest area for a given perimeter
L. The answer is the circle.

The most common one-dimensional problem in the calculus of
variation is to find the curve y(x) passing through the points (x,.v,) and
(x5,y,) such that the integral

X2.¥2) v
= f f(y.y:x)dx. where y = @
X1 0 ) dx

is an extremum. The desired curve y(x) is given by the Euler-Lagrange
equation

i(if)_ﬂ_o
dc\oy) ey

The multidimensional version of the Euler-Lagrange equation is
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0
(afj __f_:()' k=1,2,3, ....n.
dx\0yy) Oy

5.3 EXAMPLE. Let us find the curve with the shortest length
connecting two points p, and p, in a plane. Thus,

P

1=r”¢=j« = W+())¢u=j|+y2¢,md

)

f=e3t =(1452)"
The Euler-Lagrange equation gives

(’_f)_a_f_n
oy) 0y

&l

i 4 }—()zﬂ. or

dx yi+ V2
y =

— constant .
\/l +y° 4

so that

: 2
a2y2=l+y“,
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[hus the shortest path connecting two points i, a

line. The constants b and ¢ are determined by making (e l‘il:e is 4 "
the two points. ® pagg mlugg:
In 1834 Hamilton discovered a reformulation QfNeWtOI]‘
as a variational principle. This is a more general refopy, s
principle can be extended to othe.r areas of physics Outsige ), e gy
mechanics. In Hamilton’s formulation, a Lagrangian Sunctiop Le o
s defined to be the difference between the Kinetic energ S
potential energy V. The action S between two points oy, the g ang g,

particle is defined by b of the

SQCO
Ulati()n : nd la\\

(B M .
S:LLM—LL&%Om,

where f, and £, determine the first and second points, respectively,

HAMILTON’S PRINCIPLE. Qut of the infinitely-many possiple Cllrveg
connecting point 1 and point 2, the actual path x(t) taken by the particle ils-
the curve that gives an extremum value for the action S,

This was originally called Hamilton’s principle of least action since
in most cases S is minimum. In this form the Euler-Lagrange equation
becomes

1(6_L) oL _,
dt\ox) ox

It must be emphasized that the coordinate x may not necessarily b¢

Cartesian. In multi-dimensional form with generalized coordinates ¢y 4>
¢, ..., qp the Euler-Lagrange equation becomes

d[aLj oL
—ls=|==—=l:

4 . .\/
The one-dimensional Newton’s second law can be der!
Lagrangian

ed from ¢
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| 7 |
L=—mv- =V(x) = ~mx? -V(x).
) 2

ya ra

Thus.

afan) oL,

dr\ox (')r ’
oV

I(mx)+*é7—0 or

-oV d( ) = mt
n .

. 0 1X) = mx

But ¥ is the acceleration and —

= I, the force, so that /"= mu.
X

Hamilton’s principle serves as the unifying principle of the entire
physical universe. In electomagnetism, the path of the particle is obtained
from the Lagrangian

1
L:;mv2 —qP+qv-A,

where ¢ is the scalar potential and A is the magnetic vector potential.
Quantum field theory is formulated entirely in the Lagrangian-
Hamiltonian formalisms and the general theory of relativity can also be
incorporated in this approach.

Einstein and relativity. In the hands of Einstein, Newton’s theory of
gravitation became a geometrical theory called the theory of general
relativity. The formulation of this theory requires Riemannian geometry
and the special theory of relativity.

Riemannian geometry requires that the geometry of space near any
given point is Euclidean, meaning the Pythagorean theorem holds in the
neighborhood of that point. In two-dimensional Riemannian geometry,
this implies that one can construct in the neighborhood of any point a local
Cartesian coordinate system x, y such that

(ds)? = = (dx)? (dy)z.
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In polar coordinates (r, 0), this metric is given by

(ds)? = (dr)? +r2(do)?.

ds
dy

dx

Figure 3

Both Cartesian and polar coordinate systems are said to be orthogong
systems where cross-terms such as dxdy or drd® do not occur in the metrj
or distance formula (ds)’. To illustrate a non-orthogonal system, consider
the oblique coordinates u, v as shown below.

!

ds

dx
Figure 4
By the cosine law,

(ds)? = (du)? +(dv)% =2 cos O dudv .

In this metric a cross-term occurs which disappears when 6 = 90°, ie.
when u and v are orthogonal.

In n-dimensional Riemannian geometry the general form of the metric
1S

(ds)z = Zzglj du,-duj :
i
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For orthogonal coordinate systems the metric reduces to

(ds)* = D giidujdu; .
1

The geometry of nature is, however, not Riemannian. Einstein
discovered that the universe is governed by a four-dimensional pseudo-
Riemannian geometry whose metric is determined by the distribution of
matter. In this four-dimensional space there is no such thing as
gravitational force. Instead, material bodies simply behave according to
the generalized law of inertia where the concept of constant speed along a
strafght line i1s replaced by a four-dimensional speed along a geodesic
curve (constant tangent vector). In this space nothing is at rest since the
time coordinate always moves.

According to Einstein’s principle of equivalence, at any given point in
the four-dimensional spacetime one can construct a coordinate system x.
y. z. t such that

(ds)? = c2(dr)* — (ax)* —(dy)” - (dz)?,

where ¢ is the speed of light and 1 is time. This is called a local inertial
coordmate system. Unlike the Riemannian metric, the Einstein metric
(ds) may be positive, negative or zero. These correspond to particles with
speed less than ¢, greater than c, or equal to c, respectively. The second
possibility is disallowed by special relativity.

The Einsteinian metric has the general form

= Zz,gydu,duj .
l

For (ds)? > 0, the distance between two points along a given curve uj(s) is
given by

- J' ‘/;%: g;jdu;du,

JEEe
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Lo find the geodesic (or shortest curve) between the tw Point

S,

applies calculus of variations to s to obtain the extremum,
| agrange equation then gives the geodesic equation

1u du
TR

\

The for
h" [/lllcr.

For flat spaces there exist global inertial coordinate systems. In g, a

coordinate system [} =0 so that the geodesic equation becomes

This is just the equation of a straight line. Thus for flat spaces the geodes;c
law reduces to Galileo’s law of inertia.

The geometric theory of gravity proposed by Einstein is known as the
general theory of relativity. Once the metric of the space is found the
geodesics are easily determined. In this space, material bodies simply
follow the geodesic curves. The planet, for instance, follow geodesic paths
in four-dimensional space time as they orbit around the sun.

How is the metric determined in a given distribution of matter or
energy? The metric is governed by the Einstein field equation

I B &nG
Ry =5 giR=+=5"Tj:

where R,-j = Ricci tensor, R = scalar curvature, T,-,» = energy-momentum

tensor.

The Lagrangian-Hamiltonian formulation allows the use of
generalized coordinates ¢, ¢, ¢3 ..., qp. Their corresponding
generalized momenta are defined by

oL
Py = a—qk—

where L is the Lagrangian of the system. For classical physics (mechanic*
electromagnetism), g and pj are numbers so that
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qx I’k Pk k V.

|y quantum mechanics. the generalized coordinates and the generalized
n U

\mentum arc not necessarily numbers and
L

gk~ Prdk =i

where i J-1 and h — Planck’s constant divided by 2n. Heisenberg
found matrix representations of ¢4 and p, , while Schroedinger obtained
o calculus representation of these  quantities. In the Schroedinger
rcprcscnlali(m ¢y 18 a number and

h 0

pk — i (‘)‘/k .

The energy £ is represented by lhgr_' I'hese quantities are supposed to

operate or act on the wave function W . Thus, for the harmonic oscillator
whose energy is given by

| |
E=—mv?+—kx?
2 2

2
- (mv) +lkx2
2m 2

2

P )

S+ - kx®,  p=mv =momentum,
2m 2

I

the qua - . . . o
¢ Quantum-mechanical version in the Schroedinger representation is

T e

el S Y ] 2

Ihal‘ ‘&+5/oc .
X

f'S'ci[/r his is called the Schroedinger equation for the quantum harmonic
\()Ivc:tor-. Many problems in atomic, molecular and solid state physics are
using the same prescription.
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One cannot possibly hope to get a deep understanding of physics
without mastering calculus. The preceding survey gives only a glimpse of
a very limited area, yet, it already reveals the great power of calculus.
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