
CALCULUS IN PHYSICS 

Remigio Tee 

Calculus is probably the most important nathematical tool of physics: 
it is the primary language of physices. Many of the concepts and laws of 
physics are most precisely expressed or formulated in the language of 
calculus. Without calculus Newton would have been unable to formulate 
his monumental synthesis of the laws of motion (dynamics) and the 
theory. of universal gravitation. Indeed. Newton invented calculus 
primarily to settle questions relatcd to his work in physics. Motion 
involves change and the precise statement of instantancous velocity and 
instantancous acceleration requires calculus. In his initial analysis of the 
moon's motion around the earth Newton assumed that the carth and the 

moon could be treated as point masses attracting cach other through 
gravity even though both the carth and the moon have nonzero 
dimensions. After inventing calculus Newton was able to justify this 

assumption by proving that the gravitational attraction between two 
spherically symmetric masses is cquivalent to that of two point masses 
separated by a distance cquivalent to the center-to-center distance betwecen 
the two spherical masses. With caleulus. Newton was then able to derive 
the orbits of the moon and planets as well as Keplers three laws of 
planetary motion. Eclipses, once regarded with fear and terror by the 
populace for countless millennia had now become predictable physical 
events. AIl these because of calculus. Today, calculus and its descendants 
(differential equations., calculus of variations, integral equations. 
differential geometry, vector and tensor analysis, etc.) are the everyday 

working tools of physics. To go into details of even the simplest 
applications of these fields to physics would require more time and 

Newton and the caleulus. The first major discovery in the physics of 
motion was made by Galileo. He discovered the following: 

LAW OF INERTIA. No force is required to maintain uniform motion 

(constant speed ylongu straight path) 
J01 

preparatjon than what we have. We shall therefore limit ourselves to a few 

common examples. 
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 Before 

G
alileo's 

discovery 

everyone 

believed 

that 

force 
is 

required 
to m

aintain 

NEW
TON'S 

FIRST 

LA
W

 
OF 

M
OTION. 

A
 

body 
at 

rest 

will 

rem
ain 

at rest m
otion 

w
ill 

continue 

m
oving 

with 

constant 

velocitv 

(constant 

speed 

along 
a straight 

path) 

unless 

acted 

upon 
by 

external 

force. 

and 
a body 
in 

G
alileo's 

law
 

of 

inertia 

states 

w
hat 

happens 
to

 

the 

body's 

motion 

w
hen 

there 
is no 

force 

acting 
on 
it. The 

next 

logical 

question 
is 
to 

ask 

what happens 

when 

there 
is 

force 

acting. 

N
ew

ton 

discovered 
the 

law
 

governing 

this 

situation. 

This 

law
, 

now
 

called 

N
ew

ton's 

second 

law
 

of m
otion, 

is 

stated 

m
athem

atically 
as 
F 
=

 

ma. 
It says 

that 
the 

effect 
of 
an 

external 

force on 

th
e 

m
otion 

of a body 
is 
to 

cause 
it to 

accelerate 

(that 
is, 
to

 

change 
its 

velocity) 
in 

such 
a way 

that 

the 

direction 
of 

the 

acceleration 
is 

the 

sam
e 

as 

the 

direction 
of 

the 

It would 
be 

noted 

that 

the 

precise 

m
athem

atical 

statem
ent 

of 
the 

first and 

second 

law
s 

of 

N
ew

ton 

already 

require 

calculus 

since 

the 

velocities 

and 

accelerations 

appearing 
in

 

the 

law
s 

are 

instantaneous 

values. 

not averages. 

T
hus 

if 

the 

force 
is not 

constant 
the 

instantaneous 

acceleration 
is 

not 

the 

sam
e 

as 

the 

average 

acceleration 
so 

that 

calculus 
is required. 
For one-dim

ensional 

m
otion, 

the 

m
athem

atical 

statem
ents 

are 
as 

follow
s: 

x =X
() 

position, 

dx d
t 

V
=

 

velocity, 

d'x 

dv di? 

di a
=

 

acceleration, 
N

ew
ton's 

second 

law
, 

F
=

 

m
a 

N
ew

ton's 

second 

law
, 

together 

with 

calculus, 

enables 
us 
to 

determ
ine 

the 

m
otion 

of 
a body 

when 

subjected 
to 
a given 

force. 

Alternatively, 
1 

allow
s 

us 
to 

determ
ine 

the 

force 

acting 
on 
a body 

when 
its 

m
otion 

know
n. 102 

m
otion: 

that 
a rolling 
cart, 

left 
to

 

itself. 

would 
eventually 

com
e 

to 

rest 

because 

force 
is needed 

to
 

keep 
it going. 

Newton, 

who 

was 
born 
the year 

Galileo 
died, 
adopted 

G
alileo's 

law
 

of 

inertia 
and 
restated 
it as 
a lau: of motion. 

force 

and 
its 

m
agnitude 

is directly 

proportional 
to 
the force 

and 

inversely 

proportional 
to

 
the 

m
ass 

of the 

body. 
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5.1 

EXAM
PLE. 

Lct 
us 

determ
ine 

the 

m
otion 

of an 

object 

attached 
to

 
a spring 

or rubber 

band. 

A
ccording 

to 

H
ooke's 

law
, 

a spring 
or rubber 

band 

w
hen 

stretched 
by 
an 

am
ount 

x w
ill 

exert 
a force 

given 
b

y
 

F
=

-k
x

. 

A
pplying 

N
ew

ton's 

second 

law
 

to 

this 

force, 
we 

obtain =
m

a, dv 
dt 

- kx 
=

 m
 

(by 
the 

chain 

rule),. 

dx dv 

dt dx 

- kx 
=

 m
 

dv 
dx 

- kx 
=

 m
 

-kxdx 
=

 mvdv, 

mvdv 
(notice 
the 

-

mv, 
2 2 my +

k 

-k
 2 2 2 2 

my2 mv kox 

+
 

kx 

2 2 2 2 
The 
last 

equation 

above 
is an 

exam
ple 

of 
a conservation 

law
. 

It states has 

the 

sam
e 

value 

for 

all 

tim
e. 

This value 
is called 

the 

energy 
of the 

2 

energy 

2 

The 

concepts 
of work, 

potential 

(Gm). 

and 

the 

kinetic 

energy 

forces 
(called 

F obey 
the 

energy 

and 

force 
are 

intim
ately 

interrelated. 

For 

certain 

103 

sloppy 

notation 
on 
the 

upper 
lim

its), 

kxdx 
=

 

body 
consisting 

of 
the 
potential 

that 
the 
quantity 

conservative 
forces) 
the 

potential 
energy 
V

 

and 
force 

relationship 
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F

=
-V

V
 

(tw
o 

or 

m
ore 

dim
ensions), 

(one 
dim

ension), 

dV
 

d
x

 The 

potential 

energy 

V
at 

a point 
x is 

defined 
as 
the 

work 

done 
by 
the force 

F 
in 

going 

from
 

point 
x to 
an 

arbitrarily 

fixed 

reference 

point 
x M

athem
atically, 

the 

work 

done 
is defined 
as 

Fdx 
(one 
dim

ension), 

V
= 

F
.dl 

(tw
o 

or more 

dim
ensions). 

In 
the 

case 
of H

ooke's 

law
, 

F
=

-
kx. 

Therefore. 

V= 

"Fdr 
=

 

-kxa 

=
 

-k
 

+
k

? 
2 =
 

To 

define 

potential 

energy 

for 

this 

case, 

we 

arbitrarily 

choose 
the 

reference 

point 
X) 

=
0

 
so 

that 

V
=

k
r. 

The 

introduction 
of 
the 

concept of energy 

sim
plifies 

the 

determ
ination 

of the 

m
otion 

of the 

body. 

Thus, E=my2 2E 

k 

2E 2E 

m
 

2E
 

dx 2E 
-dt 

|2E
 

dx 
2E

 

104 
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So 
that 

V2E 

To 

integrate, 
we 

set 

s
in

=
 

Sin 

2E 

cos 
d

, 

2E dx 
and 
the 

integral 

becom
es 2E |2E

 

COS d 

m
 

V
I-

sin'e 
I, 

1
+

 
. 

k =
 V

m
 

Sin 

2
E

 

Sin 
0 

m
 

k 
2E

 .. 
X

=
 

The 

m
otion 

of the 

body 
is 

therefore 

oscillatory. 

5.2 

EXAM
PLE. 

Let 
us now

 

study 

the 

m
otion 

of an 

object 

m
oving 

at a constant 

rate 
in 
a circular 

path. 

(See 
the 

figure 

below.) s=
r0

, 
0 in 

ds constant, 

di dt 
V

=
 

105 

=
 

t 
radians. 
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=
 

C
onstant. 

V
 | 

di 

Figure 
I 

The 

location 
of 

th
e 

m
ass 

m
 

is 

given 
by 

the 

vector ir 

cos 

+
 jr 

sin 

r 

D
ifferentiating 

tw
ice, 

we 

have 

and 

+
 

jr(cos 
0) d1 
=

 
ir(-sin

 
) 

dr V
=

 

d
i 

dt 

+
 

jr(-sin 
0) d
y

 di 

=
 

ir(-co
s 

) d
t 

a 

2 ir 
cos 
9 +

jr 
sin 
0| dt 

dt. 

This 

says 

that 
the 

direction 
of the 

acceleration 

(and, 

hence, 
the 

force) is 

opposite 
that 
of 
r, that 
is, 

tow
ard 

the 

center 
of the 

circle. 
It 

show
s 

that. 
I1 

a body 

m
oves 

in
 

a circular 

orbit 
at a uniform

 

rate. 

the 

force 

acting 
on 
it 

m
ust 

be 

directed 

tow
ard 

the 

center 
of the 

circular 

path. 
In 

this 

way. Newton 

discovered 
that 
the 

moon 
is 

being 

attracted 
by 

the 

earth 

and the 

planets 

by 

the 

sun. 

106 

=
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areas 
m

any 

Correctly 

concluding 

that 
it is the 

sam
e 

force 

that 

causes 

objects 
to fall 

to 

the 

ground, 

N
ew

ton 

was 

able 
to

 

show
 

that 

the 

force 

varies 
as inverse 

square 

of the 

distance 

from
 

the 

attracting 

body. 
He 

called 
the force 

gravity. 

AIl 

these 

N
ew

ton 

did 

m
ore 

then 

300 

years 

ago. 

Since 

then (electrom
agnetism

, 

relativity, 

quantum
 

m
echanics, 

etc.), 

where 

calculus 
is 

physics 

has 

rapidly 

expanded 

and 

developed 

into indispensable. 
In 

electrostatic, 
for 

instance, 
to find 
the 

electric 

field 

E(r) and 
the 

electrostatic 

potential 

o(r) 
at point 
r due 
to 
a continuous 

charge 

These 

integrals 
are 

related 
by 
the 

equation 

E(r) 
=

 
-V

olr). 

com
plicated 

vector 
integration 

involving E
xtrem

um
 

principles 

and 

variational 

calculus. 

M
inim

a 

and m
axim

a 

problem
s 

often 

occur 
in 

physics. 

The 

law
s 

of 
the 

light 

reflection 

and 

refraction, 

for 

instance, 

can 
be 

unified 

into 

one 

law
. 

FERM
AT's 

PRINCIPLE 
OF LEAST 

TIME. 

The 

path 

taken 
by 

light 

from
 one 

point 
to

 

another 
is the 

one 

that 

takes 
the 

least 

am
ount 

of travel 

tim
e. Indeed. 

most 

(if 
not 

all) 

of 

the 

law
s 

of physics 

can 
be 

stated 
as 
ex Irem

um
 

(m
inim

um
 

or 

107 

density 

o(r') 

one 

m
ust 

perform
 

the 

follow
ing 

volum
e 

integrations: 

vector 
cross 

To 
obtain 
the 

m
agnetic 

field 
B

 

due 
to

 
a static 

current 

distribution 

requires 
a more 

product. 

m
axim

um
) 

principles. 

The 

level 
of 

m
athem

atical 

sophistication 

required 
is generally 

higher 

than 

those 

encountered 
in introductory 

or ordinary 

calculus. 

W
hereas 

extrem
um

 

problem
s 

ordinarily 

C
ncountered 

in 

calculus 

require 

num
bers 

or values 
for 

answ
ers, 

m
ost 

extre 
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 for 

in
 

mum 

problem
s 

physics 

require 

functions 

an
sw

ers. 

S
uch 

problem
s 

require problem
. frictionless 

slide, 

connecting 

the 

tw
o 

points, 

which 

allow
s 

the 

least 

trovel 

lim
e? 

problem
 

(xzJ) Figure 
2 

The 

solution 
is the 

cycloid. 

An 

ancient 

m
athem

atical 

problem
 

called 

D
ido's 

problem
 

is 
of sim

ilar 

nature. 
A

 

typical 

problem
 

in
 

calculus 
is to find 

the 

dim
ensions 

of 

the 

rectangle 

enclosing 
the 

biggest 

area 

for 
a given perim

eter 
L. The 

answ
er 

is the 

The 

m
ost 

com
m

on 

one-dim
ensional 

problem
 

in 

the 

calculus 
of 

variation 
is 
to

 

find 

the 

curve 

x) 

passing 

through 

the 

points 

dy 
dx 

1= |(y
.j:x

)d
, 

where 
ó 

is 
an 

extrem
um

. 

The 

desired 

curve 

y(x) 
is given 
by 

the 

Euler-Lagrange 

equation =
0. 

of 
ßy 

d 
d

x
 

The 

108 

calculus 
of the 

variations. 

The 

initial 

developm
ent 

of th
is 

field 

s of a as 
about 

cam
e 

result 

B
ernoulli' 

solution 

of 

brachistochrom
e 

the 

The 

this: 

is C
onsider 

wo 

points 

(x
V

) 

and 

(x
,V

) 
in

 
a w

ould 

W
hat 

surface. 

be 

's the 

plane 

vertical 

on 

earth 

the 

shape 
of 

square 

w
ith 

side 

L/4. 

D
ido's 

problem
 

asks what 

geom
etrical 

figure 

will 

give 

the 

greatest 

area 
for 
a given 

perim
eter 

L. The 

answ
er 

is
 

th
e 

circle. (x
,V

) 
and (X

.V
) 

such 

that 
the 

integral 

m
ultidim

ensional 

version 
of 

the 

E
uler-L

agrange 

equation 
1s 
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k
=

1
, 

2., 3, 

... 
n. 

=0, 

0f y tloyp 

d 
dx 

5.3 

ExAM
PLE. 

Let 

us find 

dt =
 

(y1+j' 
dt , and 

2 

The 

Euler-Lagrange 

equation 

gives 

=
0

. 

d ay d
x

\ô
y

, -0
 

=
0

. 
or 

d 
dx 

=
 

C
onstant 

=
 

So 
that =l+j', 

a'-1 ý 

-b
. 

dy 
dx 

y
=

 
bx 
+

c. 

109 

( of 

the 

curve 

with 

the 

shortest 

length 

connecting 
tw

o 

points 
p, and 
p, in 
a plane. 

Thus, 

=b, 
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Thus 

the 
tw

o 
points. 

a reform
ulation 

of In 

1834 

Hamilton 

discovered 
other 

areas 
of 

phy 
sics 

outside 

principle 
can 

N
ew

ton' 
s second 

law
 

betw
een 

tw
o 

points 
on 

th
e
 

path 
of the 

potential 

energy 
V. The 

action 
S 

particle 
is defined 
by 

s=[La=r.*s1) 
dt , 

where 
t, and 
I, determ

ine 
the 
first 
and 

second 

points, 

respectively 

HAM
ILTON'S 

PRINCIPLE. 

Oul 
of the 

infinitely-m
any 

possible 

curves connecting 

point 
1 and 

point 
2, the 

actual 

path 
x() 

taken 
by 
the 

particl 
i 

the 

This 
was 

originally 

called 

H
am

ilton's 

principle 
of least 

action 
since in 

most 

cases 
S is 

m
inim

um
. 

In 

this 

form
 

the 

Euler-Lagrange 

equation 

becom
es 

=0. ôx 

It must 
be 

em
phasized 

that 

the 

coordinate 
x may 
not 

necessar1ly 
D

 Cartesian. 
In 

m
ulti-dim

ensional 

form
 

with 

generalized 

coordinates 
4i- 4 

43s 
, qn 
the 

Euler-Lagrange 

equation 

becom
es =

0. 

OL 

one-dim
ensional 

The 

d 

Lagrangian 

110 

the 

shortest 

path 

connecting 
two 

points 
in

 
a plane 

i
S

 
a stra

ig
h

 

c b line. 

The 

constants 

and 

are 

determined 
by 

making 
the 
i
n

e
 

p
a
ss 

through 

be 

extended 

to
 N

ew
torian 

mechanics. 
In 

Hamilton's 

formulation, 
on, 
a Lagrangian 

function 

L
=

1
-V

 

as 

a a 

variational 

principle. 
This 
is 

more 

general 

reform
ulation 

Since 
th

e 

difference 
between 
K

inetic 

the 

energy 
T

 and 
the 

is defined 
to 
be 
the 

curve 
that 

gives 

an 
extrem

um
 

value 
for 
the 

action 
S 

N
ew

ton's 
second 

law
 

can 
be 

derived 
from 

o 
dt\@

 
�k. 



L=-mv-V(r) = -mi-V(). 

Thus. 

d 

dt 
(mi) + 

Ôx 

d 

dt 

2 

Ox 

L=-my2 

Ox 

-= 0, 

=0, or 

But i is the acceleration and 

(mi) = më. 

REMIGIo TEE 

Hamilton's principle serves as the unifying principle of the entire 
physical universe. In electomagnetism, the path of the particle is obtained 
from the Lagrangian 

- qo+qvA, 

Ôx 
= F, the force, so that F= ma. 

where is the scalar potential and A is the magnetic vector potential. 
Quantum field theory is formulated entirely in the Lagrangian 
Hamiltonian formalisms and the general theory of relativity can also be 
incorporated in this approach. 

Einstein and relativity. In the hands of Einstein, Newton's theory of 
gravitation became a geometrical theory called the theory of general 
relativity. The formulation of this theory requires Riemannian geometry 
and the special theory of relativity. 

Riemannian geometry requires that the geometry of space near any 
given point is Euclidean, meaning the Pythagorean theorem holds in the 
neighborhood of that point. In two-dimensional Riemannian geometry, 
this implies that one can construct in the neighborhood of any point a local 
Cartesian coordinate system x, y such that 



In polar coordinates (r, 0), this metric is given by 

THE MINDANAO FORUM 

By the cosine law, 

ds 

is 

Figure 3 

Both Cartesian and polar coordinate systems are said to be orthogonal Systems where cross-terms such as dxdy or drdb do not occur in the metric or distance formula (ds). To illustrate a non-orthogonal system, consider the oblique coordinates u, v as shown below. 

d 

ds 

Figure 4 

(ds) =(du) +(dv) -2 cos 9 dudv . 

dy 

In this metric a cross-term occurs which disappears when = 90, ie., 
when u and v are orthogonal. 

dy 

112 

In n-dimensional Riemannian geometry the general form of the metric 



REM
IG

Io 
TEE 

For 
orthogonal 
coordinate 

(ds)gdu,du 
. 

i 

The 
geom

etry 
of nature 
is, 

how
ever. 

not 
R

iem
annian. 

E
instein 

discovered 
that 

the 
universe 

is governed 

by 
a four-dim

ensional 

A
ccording 

to 

where 
c is the 

speed 
of 

light 

and 
t is 

tim
e. 

This 
is 

called 
a local 

inertial 

coordinate 

system
. 

U
nlike 

the 

R
iem

annian 

m
etric, 

the 

Einstein 

m
etric 

(ds) 

may 
be 

positive, 

negative 
or zero. 

These 

correspond 
to

 

particles 

with speed 

less 

than 
c, 

greater 

than 
c, or 

equal 
to 
c, 

The 

E
insteinian 

m
etric 

has 

th
e 

general 

form
 (ds)? 
-
8

,d
u

, 
du, i 

For 

(d
s)>

0
, 

the 

distance 

betw
een 

tw
o 

points 

along 
a given 

curve 

uK
s) 

is given 
by 

i 

ds. 

d
u

j 

du, ds ds 
113 

system
s 

the 

m
etric 

reduces 
to

 

pseudo 

R
iem

annian 

geom
etry 

w
hose 

m
etric 

is determ
ined 

by 

the 

distribution 
of In

 

this 

four-dim
ensional 

space 

there 

is no 

such 
thing 

as oravitational 

force. 

Instead, 

m
aterial 

bodies 

sim
ply 

behave 

according 
to the 

generalized 

law
 

of 

inertia 

w
here 

the 

concept 
of constant 

speed 

along 
a straight 

line 
is 

replaced 

by a four-dim
ensional 

speed 
along 

a geodesic 

curve 

(constant 

tangent 

vector). 
In 

this 
space 

nothing 

is 
at 
rest 

since 
th

e tim
e 

coordinate 

alw
ays 

m
oves. 

matter. 

E
instein's 

principle 
of 

equivalence, 
at any 

given 

point 
in the 

four-dim
ensional 

spacetim
e 

one 

can 

construct 
a coordinate 

system
 

x, y, z, 1 

such 

that 

respectively. 
The 
second 

possibility 
is disallow

ed 
by 

special 

relativity. 

j 
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e
 

the 
find 

To 
Lagrange 

cquation 

then 

gives 
the 

geodesic 

equation =
0. 

u, du, ds 
ds 

d'u 

For 
flat 

spaces 

there 

=
0. 

dy? 
This 
is 

just 
the 

equation 
of a straight 

line. 

Thus 
for 

flat 

spaces 
the 

geodesic 

law
 

reduces 
to 

G
alileo's 

law
 

of inertia. 

The 

geom
etric 

theory 
of gravity 

proposed 
by 

Einstein 
is known 
as the general 

theory 
of relativity. 

Once 

the 

m
etric 

of 

the 

space 
is found 
the geodesics 

are 

easily 

determ
ined. 

In 

this 

space, 

m
aterial 

bodies 

imply 

How 
is the 

m
etric 

determ
ined 

in 
a given 

distribution 
of matter 
or 

energy? 

The 

metric 
is 

governed 
by 
the 

Einstein 

field 

equation 8rG
 

Tij: 

8ij 
R= 
+

 Rij 
w

here 
R;; 
=

 

Ricci 

Use 
of Their 

corresponding 

The 

Lagrangian-Hamiltonian 

form
ulation 

allows 

the 

4n 

43 generalized 

momenta 
are 

defined 
by 

OL PA 
=

 

Lagrangian 
where 

114 

geodesic 
(or 

shortest 

curve) 

between 

tw
o

 

points,, 
o

n
e 

applies 

calculus 

to 
s of variations 
to 

obtain 
the 

extrem
um

. 

The 

Euler-

exist 

global 

inertial 

coordinate 

system
s. 

In
 

such coordinate 

system
 

IT =0 
so 
that 
the 

geodesic 

equation 

becomes 

follow
 

the 

geodesic 

curves. 
The 

planet, 
for 

instance, 

follow
 

geodesic 

paths in 

four-dim
ensional 

space 

tim
e 

as 

they 

orbit 

around 
the 
sun. 

tensor, 
R

 
=

 

scalar 

curvature, 
I;; = 

energy-m
om

entum
 

ten
so

r. generalized 
coordinates 

of the 

system
. 

For 

classical 

physics 

is L 

the 
(mechanics, 

electrom
agnetism

), 
gk 

and 
pk 
are 

num
bers 

so 
that 



REM
IG

Io 
TEE 

In 
quantum

 
the 

4kPhP4K
 

=
 

ih, 
ore 
i
-

and 
h =

 

Planck's 

constant 

divided 
by 
2 

These 

quantities 

are 

supposed 
to 

The 

energy 
E

 
is 

represented 
by 
ih 

. Thus, 

for 
the 

harm
onic 

oscillator 

operate 
or 

act 
on 

the 

w
ave 

function 

whose 

energy 
is given 
by 

+
 

my2. 2 

+-ky2 
(m

v)?1 
2 

2
m

 

p
=

 

mV 
=

 

m
oO

m
entum

, 

2 

2m
 the 

quantum
-m

echanical 

version 
in 

the 

Schroedinger 

representation 
is 

+
-k

y
. 

in
 2 

2m
 

dy2 This 
is 

called 
the 

Schroedinger 

equation 
for 

the 

quantum
 

harnonic 

oscillator. 
M

any 

115 

generalized 
coordinates 

and 
the 

generalized 
m

echanics, 

momentlum 
are 

not 

and 

num
bers 

necessarily n
. 

H
eisenberg 

found 

m
atrix 

representations 
of 
qk 

and 
p , while 

Schroedinger 

obtained 

a calculus 

representation 
of these 

quantities. 

In 

the 

Schroedinger 

tepresentation 
gz 
is 
a num

ber 
and 

problem
s 

m
olecular 

and 
solid 

in 
state 
physics 

atom
ic, 

are 

solved 
using 

the 
sam

e 
prescription. 



THE MINDANAO FORUM 

One cannot possibly hope to get a deep understanding of physics 
without mastering calculus. The preceding survey gives only a glimpse of 
a very limited area, yet, it already reveals the great power of calculus. 

Il6 
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