APPLICATIONS OF
CALCULUS IN CHEMISTRY

Edgar W. Ignacio

Teaching undergraduate physical chemistry can be demanding on
both the teacher and the students. The demand lies in balancing the
science and mathematical tools required to explore and extend it Often
times the teacher is confronted with the burden of reviewing, if not
reteaching, the essentials of calculus. This can be frustrating sometimes.
to say the least.

On the part of the students, this requires them to replace their
concepts of x and y variables with that of real physical variables. To some.
this can come naturally; however, to most students an extra effort is

for difficulty.

It 1s our hope that a middle ground can be reached. which will
minimize the mathematical handicap of most student taking physical
sciences and engineering courses. One of the possible approaches is to use
realistic science examples in teaching calculus. There are excellent
calculus textbooks that use this approach. If the students are made aware
of the power and the utility of their tools, perhaps they will appreciate it
more and will learn to apply it more effectively. The following are some
examples of applications of calculus in chemistry. This is far from
exhaustive but, I hope this will motivate some teachers to teach calculus as
a tool for solving a wide variety of mathematical and physical problems,

Chemical thermodynamics. One of the operational problems in
thermodynamics is finding an alternative expression that will reduce the
present expression in terms of measurable quantities. To attain this goal,
Manipulations of partial derivatives is required. The proper concepts of

finite vs. infinitesimal changes, and exact vs. inexact differentials are also
Implied.
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[he following expressions represent the fundament
thermodynamics in energy —representation
thermodynamic potentials for a closed simple system.

dU=TdS - PdV

H=U+PV
A=U-TS
G=H-TS

Allons ;,

Varigyg

Differentiating equations (6.2) to (6.4) and inserting (6.1) into eqcly ¢
= 0

them yields.

dH=TdS - VdP
dA = =-SdT - PdV
dG = =SdT + VdP

(6.5)
(6.6)
(6.7)

Equations (6.5) to (6.7) are called the enthalpy H, Helmholtz Free Energy
A. and the Gibbs Free Energy G. They are exact differentials and by
employing Euler’s reciprocity relation on each of them. one gets, '

([0 oV
L—, =— , from dH;
v/ oS/ p
T oP
(5‘_) :—( ) , fromdU;
v/ as/
oS oP
( :(—) , from dA
ov/, \ol/,
oS oV
(—) :—(——) from dG
oP/ ; or’

In thermodynamics, they are commonly called Maxwell’s relations (when

applied to P. ¥, and T variables). Using these relations and the fact that
)(2)(2)
dy) _\0oz/ \0Ox ),—
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thermodynamic

the
[.and I,

exact difterenuials. one can reduce most of
1ons IO expressions involving measurable quantities of P,
sample problems:

does the internal energy of the van der

er the following s
ases from I, to I, at constant

LG
0.1 EXANMPLE. How much
Waals gas increase when the volume ; Incre
pressure’’
hod. The object here is to express the fundamental equation (6.1)
Differentiating the fundamental

Met
n terms of measurable quantities.

equation (6.1) with respect to I at constant 7. gives

:L'\_ (AT
I R R )
T ol r \ 3] 'y

~

Yol
The first differential on the right hand side of the cquation contains an
entropy component (S) and is not directly measurable. Using one of

Maxwell’s relations. the differential can be replaced as

D)

™~

|
ﬂ

"
tties /. 7. and

S)]
\’

Thus. we now have everything in terms of measurable quantitics P. T’

V.
Solution. The van der Waals equation of state is

(8]

P nRT  an
V-nb y2
and. hence, (6P/8T)y = nR/(V — nb). Insertion of these two expressions

into the internal energy equation above gives
2

) nRT  n-a

2
n-a

2| Vz.

( nR
V—nb |

V' —nb

( EU)
\oV
Finally. to find the internal energy change. we integrate the above result

between the limits Vi and F; to give
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2’ V, -V,
AU = f ’l—ng = nza(z—,l).
,r'l | il Vll/z

6.2 EXAMPLE. The density (gm./cm.3) of a certain material (mo|
= 63.54 g./mol) between 100 °C and 200 °C at constant pressure,
expressed as

Magg
an be

p=4186-162x107T-456x107°77

where T is the temperature in °C. Calculate the change in entropy of 5
mole of material per unit pressure at 150 °C.

Method.  We are interested in the relationship between the entropy
and pressure at fixed temperature. Here we can use one of Maxwe]|’s
relations to get the relationship between entropy and measurable
quantities. Then by using the chain rule and the definition of density (1 -
M/V), we can relate the measurable quantity to our existing data, i.c., p(7),
as follows

5, -5
or) oT / p

(%), -(5), (%)

P

Solution. Taking the derivative of density with respect to temperature
and evaluating it at 7= 150 °C gives,

(@) - _162x1073 -2 (456x1076)T
or/ ,

=-299x107° g./cm.3 °cC

Also at 150 °C the density is 3.84 g./cm.”, hence
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( ﬂ.\:) =129 x 10 em.*/mol °C,
a(‘\/) T

6.3 EXAMPLE. Find the three equations of state for the system with
(he fundamental equation

(%) S°
U=\"2)

then proceed to find P = P(V.T).

Method. By differentiating the fundamental equation with respect to

entropy S, volume V, and N, one can obtain the equations of state as
pressure, temperature, and the chemical potential respectively

Solution.

(20) =T:3(£)_S_2
oS/ gy R2) NV’
3,2
Vs R*) Nv?’

(a_v) (v ST
g, MR N
SV

Solving for S in the first equation and substituting it into the second
equation gives pressure as a function of  and T as

TRENV
NGy
1 V.0
9 4

Chemical kinetics. This division of physical chemistry deals with the
change in 4 specific property of matter (i.e., concentration) with respect to
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time. Here the proper concepts of simple differential equationg can b,
very useful. The bulk of the job is focused on the processing of lhc:.
concentration vs. time information (obtained from experiment) to cstahli;;
the rate law of the reaction. “

The rate law is a differential equation, which must be integrateq to
obtain the concentration of species as a function of time. In the following
discussion. we assume that the reaction is carried out at constan
temperature 7 and volume and the reaction is irreversible.

6.4.1 DEFINITION. Zero-order reactions arc those reactions having
the differential rate equation of the form
d[ 4]

—— =—k.
dt

Upon integration (using [4] = [4], at 1= 0), it gives
[A] = [A)y— k1

where [A], is the initial concentration, k is the rate constant, and /
represents the time. For this type of reaction, a plot of [A4] vs. t will givea
straight line with a slope & and intercept [4];.

6.4.2 DEFINITION. First-order reactions are those reactions represen-
ted by 4 — Products, where the rate law is expressed as

4] _ _
d K41

with [4] and ¢ as variables.
This equation can be rearranged and integrated to get

2d[4] g

i———[A] = £ kdt, or
(4 _

In [A]l = k(tz—[]).
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[ state 1 is taken to be the state of the reaction when [A] = [A],and 1 = 0,
then the last equation becomes

[4] L
In Al =—kt,

which rearranges to
[4]=[Alpe ™.

If a reaction is of first order, a plot of In [4]/[4], vs. { gives a straight line
with a slope equal to k.

6.4.3 DEFINITION. For a second-order reaction v = k [A]z, the dif-
ferential rate equation is given by

Plotting 1/[4], —1/[A], vs. t gives a straight line with a slope equal to £.

Temperature dependence of rate constants. The rate constants
depend strongly on temperature and increase rapidly with increasing 7. In
1889, Arrhenius proposed that the k(T) data for many reactions can be
fitted into the following expression

Ea
k=A —),
eXP(RT)
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where 4 and Fa are constants characteristic of the reaction. Taking
logarithms, one obtains In k = In A — Ea/RT. Differentiating In k with
respect to 7' (temperature), one gets

[ dln kj Ea
| —] = . and
\or ), R7?
din k
Ea=-R )
“= a0

This implies that the activation energy Ea can be obtained from the slope
of a plot of In & against 1/T.

The preceding examples illustrate the importance of calculus in the
chemical science. The coverage is, however, limited but the point has
been made that it is an indispensable tool for modern day chemist. It is
my hope that calculus will not be taught as an end in itself but rather as a
subject that is closely tied to the physical world, and I feel that it is
misleading to teach it any other way.

The more progress physical sciences make, the more they
tend to enter the domain of mathematics, which is a kind of
centre to which they all converge. We may even judge the
degree of perfection to which a science has arrived by the
facility with-which it may be submitted to calculation.

— Adolphe Quetelet, (1796-1874)
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Appendix: graphical representatiop of equations. For every curve

qrising 10 chemistry, there_ls an equation, and, conversely, for every
expression in x and y for which the roots are real, there is a corresponding
curve. The curve gives at once the relation between variables and it is a
oreat aid in clear thinking.
" The quantitative study of the influence of one variable on another
constitutes one of the common operation in science. The influence of
pressure on the volume of a gas, or the temperature on the solubility of a
salt. or of time on the course of the chemical reaction are all examples.
The simplest way to represent the relation between such variables is to
draw a picture. Certain conventions have to be adopted, however, which
render the graphical representation extremely simple.

Straight lines. Lines represent equations of the first degree, i.e.,
algeb-raic equations containing no exponents other than 1. The most
general form of the equations which give a straight line is

Cx+Gy+C3=0,

where ('}, C,, and C; are constants. This can be changed by transposing,
and dividing through by C,,

This can be changed into simpler forms as

Y=mx+b,

Where m and b are constants (m=-C,/Cy and b =-C5/C,).

- 6.5 EXAMPLE. The specific heat of chloroform has the following
‘dlues:

Temp (°C) | 20.0 30.0 40.0 50.0
Sp.Heat | 02311 | 0.2341 | 0.2371 | 0.2401

125



THE MINDANAO FORUM

The data is plotted and the best straight line is drawn to points. Fing the
equation of the line that gives the specific heat of chloroform as a functiop
of temperature ("C)

Method. The slope m may be calculated by taking the two end poingg.
however, to do that one must assume that the point fall on a straight line.
The only way to check this is by plotting.

024

0238

SpHeat 534

0233

20 275 35 425 50

Temp
|

Answer. The slope = 3.0x10 intercept = 0.2251. the relationship
may be expressed as:

Specific Heat = 3.0x10 * Temp ("C’) + 0.2251.

Exponential equations. Exponential or logarithmic equations are
very common in physical and chemical phenomena. One of the best ways
to know whether or not a given set of phenomena can be expressed by an
exponential or logarithmic equation is to plot the logarithm of one
property against another property. For example, the first of the three
graphs below represent how the concentration (see the table below) of a
particular substance changes with time.

Time (min) 0 5 10 F:] 20
Conc. (M) 228 | 17.6 | 13.8 | 10.5 | 825

Graphing is much easier in the third case because the graphing paper itself
takes the place of the logarithm table. The second method, however.
offers some flexibility. Functions of the type y = kx¢ give a straight linc
when plotted with logarithm along both axis. However, functions of the
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type v = @ give a straight line when plotted with logarithm along one
axis.
23 1358 < —
19 89 127 ]
1698 1182 .
L‘onc. Nlng(‘(
14 07 1 094
116 1 006
$25 0918
: 0 4 N 12 20 0 4 8 12 16 20
Time Tune
| I
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|
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Time .
1
REFERENCES

[1] Marsden, J. and Weinstein, A., Calculus, Springer, 1985

(2] Margenau, H. and Murphy, G. M., Mathematics for Physics and Che-

mistry, Van No&rand, 1943.

(3] Callen, H. B., Thermodynamics and An Introduction to Thermostatis-

tics, Wiley, 1985

[4] Atkins, P.W., Physical Chemistry, Freeman, 1990




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

