
APPLICATIONS OF 
CALCULUS IN CHEMISTRY 

Edgar W. Ignacio 

Teaching undergraduate physical chemistry can be demanding on 
both the teacher and the students. The demand lies in balancing the 

science and mathematical tools required to explore and extend it. Often 
times the teacher is confronted with the burden of reviewing, if not 
reteaching, the essentials of calculus. This can be frustrating sometimes, 
to say the least. 

On the part of the students, this requires them to replace their 

concepts ofr and y variables with that of real physical variables. To some. 
this can come naturally; however, to most students an extra effort is 
required to the extent of giving some subjects an unnecessary reputation 
for difficulty. 

It is our hope that a middle ground can be reached, which will 
minimize the mathematical handicap of most student taking physical 
sciences and engineering courses. One of the possible approaches is to use 
realistic science examples in teaching calculus. There are excellent 
calculus textbooks that use this approach. If the students are made aware 
of the power and the utility of their tools, perhaps they will appreciate it 
more and will learn to apply it more effectively. The following are some 
examples of applications of calculus in chemistry. This is far from 
exhaustive but, I hope this will motivate some teachers to teach calculus as 
a tool for solving a wide variety of mathematical and physical problems. 

Chemical thermodynamics. One of the operational problems in 
thermodynamics is finding an alternative expression that will reduce the 
present expression in terms of measurable quantities. To attain this goal. 
manipulations of partial derivatives is required. The proper concepts of 
Iinite vs. infinitesimal changes, and exact vs. inexact differentials are also 
implied. 
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equations 
in

 th
e
 

various 

representation 
U, and 

The 

follow
ing 

expressions 

represent 

the 
fundam

ental 

therm
odynam

ic 

potentials 
for 
a closed 

sim
ple 

system
. (6.1) 

dU
 

=
 

TdS 
� Pdl' 

(6.2) 

H
=U

+ 
PI 

(6.3) 

A
 

=
U

-
TS 

(6.4) 

G
= 

H
-TS Differentiating 

equations 

(6.2) 
to 

(6.4) 

and 

inserting 

(6.1) 

into 

each 
of them

 (6.5) 

dH
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TdS 
- VdP 

(6.6) 

d4 
=

 

-SdT 
- Pal 

(6.7) 

dG 

=-SdT 
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Equations 

(6.5) 
to 

(6.7) 
are 

called 
the 

enthalpy 
H, H

elm
holtz 

Free 

Eneroy 

A. 

and 

the 

Gibbs 

Free 

Energy 
G. They 
are 

exact 

differentials 

and 
by em

ploying 

Euler's 

reciprocity 

relation 
on 

from 
dH. 

oT 

P 

OV 

from
 

dU
; 

OP 

from
 

d4: 

OP) OT 

, from 
dG. OT 

OP/ 

In 

thermodynamics, 
they 
are 

commonly 

called 

M
axwell's 

relations 

(when applied 
to

 
P, V, and 
T

 

variables). 

Using 

these 

relations 
and 
the 
fact 
that 

=
-1
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exact 

differentials, 

one 

can 

reduce 

most 
of the 

therm
odynam

ic 

relations 

into 

expressions 

involving 

m
easurable 

quantities 
of P. T, 

and 
. Consider 
the 

follow
ing 

sam
ple 

problem
s: 

6.1 

EXAM
PLE. 

How 

much 

does 

the 

internal 

energy 
of the 

van 

der 

W
aals 

gas 

increase 

w
hen 

the 

volum
e 

increases 

from
 

V, 
to 
V, 
at constant 

pressure? Differentiating 
the 
fundam

ental 

M
ethod. 

The 

object 

here 
is to 

express 
the 

fundam
ental 

equation 

(6.1) 

in 

term
s 

of 

m
neasurable 

quantities. 

equation 

(6.1) 

with 

respect 
to

 

V
at 

constant 
T. gives S -

-T| T
 

The 

first 

differential 
on 

the 

right 

hand 

side 
of the 

equation 

contains 
an entropy 

com
ponent 

(S) 

and 
is not 

directly 

m
easurable. 

Using 

one 
of M

axw
ell's 

relations, 
the 

differential 

can 
be 

replaced 
as 

-=
 

GUY 

Thus, 
we 

now
 

have 

everything 
in 

term
s 

of m
casurable 

quantities 
P. T. and 

Solution. 

The 

van 
der 

W
aals 

equation 
of state 
is 

an' 

nRT V
-nb 

P
=

 

and. 

hence. 

(O
P

/T
)V

 
=

 

nR/(V 
- nb). 

Insertion 
of these 

tw
o 

expressions 

into 
the 
internal n'a y

2
2

 

n
a
 

2 

|V
-

nb 
nRT 

nR 

OU) V
 

-nb) T
 

Finally, 
to 

find 
the 

internal 

energy 

change, 
we 

integrate 

the 

above 

result 

betw
een 

the 

lim
its 

V, and 
V, to 

give 
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AU = 

expressed as 

6.2 EXAMPLE. The density (gm./cm.) of a certain material (mol 
= 63.54 g./mol) between 100 C and 200 °C at constant pressure, can be 

n'a 

p=4.186- 162 x 10T-456x 10072 

OP 

where T is the temperature in "C. Calculate the change in entropy of a 
mole of material per unit pressure at 150 "C. 

Method. We are interested in the relationship between the entropy 
and pressure at fixed temperature. Here we can use one of Maxwell': 
relations to get the relationship between entropy and measurable 
quantities. Then by using the chain rule and the definition of density (V= 
MIV), we can relate the measurable quantity to our existing data, i.e., p(T), 
as follows 

OT 

dV = n'd 

T 

P 
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-

M 

p 

P 

P 

0T 

OT 

Solution. Taking the derivative of density with respect to temperature 
and evaluating it at T = 150 °C gives, 

P 

=-1.62 x 10-2 (4.56 x10-0 )7 

=-2.99 x 103 glcm °C 

Also at 150 °C the density is 3.84 g./cm., hence 
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ol 
C. 

O
S 
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OP/ 
63 

EXAM
PLE. 

Find 

the 

p2 
NV 

then 

proceed 
to 

find 

P= 

P(V
). M

ethod. 

By 

differentiating 
the 

fundam
ental 

equation 
with 

Solution. R
 

NV 

=T
-3 

'o 

N.V 

OS. 

R
 

Ny2 

=-P= 

OU) N,S 
OU) 

S.V 

ON 
Solving 
for 
S in 

the 

first 

equation 

and 

substituting 
it into 

the 

second 

equation TR'NV 

V37, 

9 
P

=
 

1 

Chem
ical 

kinetics. 
This 
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three 

equations 

of state 
for 

the 

system
 

with the 
fundamental 
equation 

respect 
to entropy 

S, volum
e 

V, 

and 
N, one 

can 

obtain 

the 

eguations 
of state 
as pressure, 

tem
perature, 

and 
the 

chem
ical 

potential 
respectively 

gives 
pressure 
as a function 
of V

 
and 
Tas 

division 
of physical 

chem
istry 

deals 

with 
the Change 

in a specific 

property 
of matter 

(i.e., 

concentration) 

with 

respect 
to 



time. Here the proper concepts of simple differential equations can be 
very useful. The bulk of the job is focused on the processing of thess 
concentration vs. time information (obtained from experiment) to establish 

the rate law of the reaction. 
The rate law is a differential equation, which must be integrated to 

obtain the concentration of species as a function of time. In the following discussion, we assume that the reaction 1s carried out at constant 
temperature T and volume and the reaction is irreversible. 

6.4.1 DEFINITION. Zero-order reactions are those reactions having 
the differential rate equation of the form 

THE MINDANAO FORUM 

d 

Upon integration (using [4] = [4], at = 0), it gives 

[A] = [4]o - kt 

=-k. 

where [Al, is the initial concentration, k is the rate constant, and 
represents the time. For this type of reaction, a plot of A] vs. f will give a 
straight line with a slope k and intercept [4]0 

d[A] 

6.4.2 DEFINITION. First-order reactions are those reactions represen 
ted by A Products, where the rate law is expressed as 

dt 

In 

= - k[A] 

with [4] and t as variables. 
This equation can be rearranged and integrated to get 

[A] 
kdt, or 

=-k(h -i). 
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I is 

taken 
to 
be 

the 

state 
of 
the 

reaction 

w
hen 

[A
] 

=
 

[A
, 

and 
t =

0, then 
the 

last 

equation 

becom
es =

-k
t, 

[4] In 

which 
rearranges 
to 

-kt 
[A

]=[4l0e 

If a reaction 
is 
of first 

order, 
a plot 
of In 

[4V
[4|o 

vs. 
t gives 
a straight 

line with 
a slope 

equal 
to 
k. 

6.4.3 

DEFINITION. 

For 
a second-order 

reaction 
v =

 k 

=-k[AP. 

d 
dt 

Rearranging 
and 

integrating 
the 

preceding 

equation, 
we obtain 

kdt, 
or 

d{A] 

=
 

1 1 4
, 

4 

Plotting 

1/[A
],-1/[A

], 
vs. 
t gives 
a straight 

line 

with 
a slope 

equal 
to k. 

The 
rate 
constants 

depend 
strongly 

on 
tem

perature 
and 

increase 

rapidly 

with 

increasing 
T. In 

E
a 
k

=
 

A
 

exp( 
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1, 

the 
dif ferential 

rate 

equation 
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1889, 
A

rrhenius 

proposed 

that 

the 

k(1) 

data 

for 

many 

reactions 

can 
be 

Tem
perature 

dependence 
of 

rate 

constants. fitted 

into 
the 

follow
ing 

expression 



where A and Ea are constants characteristic of the reaction. Taking 
logarithms, one obtains In k= In A - EalRT. Differentiating In k with 
respect to T (temperature), one gets 

öln k 

OT 

Ea = -R 

Ea 
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Rr2 and 

dln k 

d(1/T) 

This implies that the activation energy Ea can be obtained from the slope 
of a plot of In k against 1/T. 

The preceding examples illustrate the importance of calculus in the 
chemical science. The coverage is, however, limited but the point has 
been made that it is an indispensable tool for modern day chemist. It is 
my hope that calculus will not be taught as an end in itself but rather as a 
subject that is closely tied to the physical world, and I feel that it is 
misleading to teach it any other way. 

The more progress physical sciences make, the more they 
tend to enter the domain of mathematics, which is a kind of 
centre to which they all converge. We may even judge the 
degree of perfection to which a science has arrived by the 

facility with which it may be submitted to calculation. 
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arising 
in 
chemistry, 

A
ppendix: 

graphical 

representation 
of equations. 

For 

every 

curve 

eurve. 

The 

curve 

gives 
at once 

the 

relation 

betw
een 

variables 

and 
it /s 
a 

great 
aid 
in 

clear 

thinking. The 
influence 
of 

The 

quantitative 

study 
of the 

influence 

of 

one 

variable 

on 

another pressure 
on 

the 

volum
e 

of 
a gas, 
or the 

tem
perature 

on 

the 

solubility 
of 
a 

salt. 
or of 

tim
e 

on 

the 

course 
of 

the 

chem
ical 

reaction 

are 

all 

exam
ples. 

T
he 

m
ost 

Straight 

lines. 

L
ines 

represent 

equations 
of the 

first 

degree, 

i.e., algeb-raic 

equations 

containing 
n0 

exponents Cix+Cyy+C; 
=0, 

where 
C

, 

Ch, 

and 
C

 

are 

constants. 

This 

can 
be 

changed 
by 

transposing, 

and 

dividing 

through 
by 
Cz. 

C
 

y C
h 

This 
can 
be 

changed 

into 

sim
pler 

form
s 

as 

y
=

 
m

x+b. W
here 

m
 

and 
b are 

constants 
(m

 

=
-C

,/C
, 

and 
b =

 

-C
z/C

). 

6.5 

EXAM
PLE. 

The 

specific 

heat 
of chloroform

 

has 

the 

follow
ing 

values: 50.0 

40.0 

30.0 

20.0 0.2401 

0.2371 

0.2341 

0.2311 

Temp 
(°C) Sp.Heat 125 

is 

equation, 
an 

and, 

conversely, 

every 

for 

there expression 
1n 

and 

for 
y w

hich 

the 

roots 

are 

real, 

there 
is x 
corresponding 
a 

The 

sim
plest 

way 
to

 

represent 

the 

relation 

betw
een 

such 

variables 
is to

 

constitutes 

one 

of 

the 

com
m

on 

operation 
in

 

science. 

draw 
a picture. 

C
ertain 

conventions 

have 
to

 
be 

adopted, 

how
ever, 

which 

render 
the 
graphical 

representation 

extrem
ely 

sim
ple. 

other 
than 
1. general 

form
 

of the 

equations 

which 

give 
a straight 

line 
is 
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 The 

data 
is 

plotted 
and 
the 

best 

straight 

line 
is draw

n 
to points. 

Find 
the equation 

of the 
line 

that 

gives 
the 

specific 

heat 
of 

chloroform
 

as a 

M
ethod. 

The 

slope 
m

 

may 
be 

calculated 
by 

taking 
the 

tw
o 

end 

points. 

how
ever, 

to 
do 

that 

one 

m
ust 

assum
e 

that 

the 

point 

fall 
on 
a straight 

line The 

only 

way 
to 

check 
this 
is by 

plotting. 0 
0 

SpHeat, 
o 236 

0233 
0231 

50 

42 
5 35 275 

20 

Temp Answer. 

4 

Specific 
Heat 
=

 

3.0× 
10 

Temp 

(
)
 

+0.22S1. 

Exponential 

equations. 

Exponential 
or logarithm

ic 

equations 
are very 

com
m

on 
in physical 

and 

chem
ical 

phenom
ena. 

One 
of the 

best 

ways to
 

know
 

whether 
or 

not 
a given 
set 
of 

phenom
ena 

can 
be 

expressed 
by 
an exponential 

or logarithm
ic 

equation 
is 
to 

plot 

the 

logarithm
 

of one property 

against 

another 

property. 
For 

exam
ple, 

the 

first 
of the 

three 

20 

15 10 

8.25 

10.5 

13.8 

17.6 

22.8 

Tim
e 

(m
in) Conc. 

(M
) 

The 

second 

method, 

however. 

Graphing 
is much 

easier 
in 
the 

third 

case 

because 
the 

graphing 

paper 

itself 

offers 

som
e 

flexibility. 

Functions 
of the 

type 
y =

 

kol 

give 
a straight 
line 

126 

function 

of tem
perature 

(°C) 

24 
238 

The 

slope= 

3.0x10, 

intercept 
=

 

0.2251, 
the 

relationship 

may 
be 

expressed 
as: 

graphs 

below
 

represent 

how
 

the 

concentration 

(see 
the 

table 

below
) 

of a particular 
substance 

changes 
with 
tim

e. 

when 

plotted 

with 

logarithm
 

along 

both 

axis. 

However. 

functions 
of the 

takes 
the 

place 
of the 

logarithm
 

table. 
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tvpe 
y =

 
a give 
a straight 

line 

when axis. 13$8 

228 

L27 

|9
 

89 

L182 

I6
 

98 NlogC: 

Cone, L094 

1407 

|.006 

|L
1

6
 0918 

8.25 20 

|6
 

12 4 

() 

20 

12 0 

Tim
e, 

Tim
e 

T
00 

Conc, 
1o 

20 

15 10 

5 

Tim
e 
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