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The 
dictum

 

Learn 
Calculus 

First 

applies 
to

 
all 

m
athem

atical 

sciences 

including 

statistics. 

W
hile 

no 

previous 

know
ledge 

of statistics 
is assum

ed. 

This 

paper 
is a tour 
of 

statistics 
via 

calculus 

with 
the 

aim
 

of providing 

a deeper 

look 
at statistics. 
In 
the 

preparation 
of this 

tour, 
the 

author 

relied heavily 
on 

existing 

literature 
on 
the 

subject 
of m

athem
atical 

statistics. 

An 

extended 

view
 

on 

m
ean, 

m
edian, 

and 

m
ode. 

The 

three 

averages, 

the 

mean, 

m
edian, 

and 

m
ode, 

are 

popularly 

seen 
as 

single 

num
erical 

values 

w
hich 

sum
m

arize 
the 

features 
of a data 

set, 

usually 
a sam

ple 
or a 

tinite 

population 

data. 

The 

com
putational 

concepts 
of 

these 

averages 
are straightforward. 

But 
it is obvious 
that 
the 

com
putations 

have 

lim
itations 

when 
the 

population 
data 
set 
is 

infinite. 
It is this 

lim
itation 

that 

com
pels 

us 
to 

extend 
our 

view
 

on 

these 

m
easures 

of location. 

The 

background. 

with 

w
hich 

this 

view
 

is set 

up, 
is built 

upon 

the 

concepts 
of random

 

with 

P[X 
=

 
x] 
as the 

probability 
that 
the 

random
 

If 

X
is 

a discrete 

random
 

variable 

with 

distinct variableX
 

takes 
the 

value 
x, then 
the 

function 
) defined 
by 

7.1 
DEFINITION. |PX

= 
x, 
if x =

 

x;j=1, 
2, .. n, 

if 
x

#
X

i 

0, 

f(x)= 

129 

a good 

background 
in 

calculus 
is a requisite 
for 

students 
to 

work 

their 

ow
n way 

through 

the 

courses 
in 

m
athem

atical 

statistics 
or the 

classical 

statistical 

theories. 
A

 

sound 

background 
in calculus 

that 
is 

essential 

for learning 

statistics, 

includes 
a good 

working 
knowledge 
of multiple 

integration, 

partial 

differentiation 

and 

pow
er 

series. 

variables, 

probability, 

distributions 

and 

expectations. 

To 

give 

you 
a feel of these 

concepts, 

consider 
the 

following 

definitions. 

values 
X

, 

X
, 

..., 
Xn 
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 is 

called 
the 

density 

function 
of X. It is 

also 

called 
the 

probability 

mass function 
or 

pm
fof 

X. 

For 
a 

continuous 

random
 

variable 
X

 

with 

(-o,co), 
if 

there 

exists 
a function 
) such 
that 

7.2 
DEFINITION. 

dom
ain 

P(X 
sx) 
=

fu
k

lu
. 

then 
f is 

called 
the 

probability 

density 

function 
or 

pdf 
of X. 

The 

density 

function 
) has 
the 

following 

properties 
: 

,fx
) 

=
 

1, (
)
 

fx;) 

>
0

 
for 
j=

 
1, 
2, ... 
,r fx) 

=
0

 
for 
x x; 

and 

if Xis 
discrete. 

(ii) 

fx) 
>

0 
and 

f(x)dx 
=

1 

ifX
 

is continuous. 
expected 

value, 

E
X

 
of a 7.3 

DEFINITION. 

The 

m
ean, 

u
y

, 
or 

.x
;f 

(x 
; ), 

ifX
 

is 

discrete 

with 

m
ass 

points 
at x,, 

and 

if 

Xis 

continuous 

with 

pdf 

f(x). 

[X]= 
Note 

that 

the 

definition 

assum
es 

that 

the 

series 
is absolutely 

convergent 
or 

the 

integral 

exists, 

respectively; 

otherwise, 
the 

mean 

does 

7.4 

DEFINITION. 

The 

m
edian 

xmed 
Of 
a random

 

variable 
X

 
is 
a num

ber 

satisfying 
the 

following 

inequalities: 

P[X
s 

xma 
]2 

and 

P[X2 

Xmed] 
130 

random
 

variable 

Xis 

defined 
by 

not 
exISt. 
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 IHXis 
a continuous 

random
 

variable, 

then 
the 

m
edian 

o
fX

 

satisfies 

med 

2 
fnd 
f(x)dk 
=

 

m
ode, 

denoted 
by 
xn 

of a random
 

variable 
X

 x) is a num
erical 

value 

which 

satisfies 

7.5 
DEFINITION. 
The with 

density 
function f(Xm

o)= 
m

ax{f(r)} 

The 

m
ode, 

if it exists, 
is that 

value 

ofX
 

w
hich 

m
axim

izes 

fx). 

7.6 

EXAM
PLE. 

A
 

random
 

variable 
X, which 
is norm

ally 

distributed 

, where 

g>
0, 

has 
pdf 

given 
by 

W
ith 

m
ean 

u an
d

 

variance 
o 

1 f(x) 
=

 

Let 
us show

 

that 
the 

mean 
or expected 

value 
of X

is 
. By 

D
efinition 

7.3, 

o
v

2
. 

x -00 

Evaluating 

the 

integral 
by changing 

variables, 

i.e., 
by 

letting 
z =

 

we 
|X]= 

(oz 
+

 
le 2 de. 

e dz 

2 ze 

B, 

131 

obtain 

2 dz 
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where |+
0

0
 =

-
e
 

2 2 ze 

I�0
0

 lim 

(-e
2

)-
lim 

(-e-/2)=0, 

z
’
+

0
 

and 

1 

-

e 
B

-
2

 

J2n 

norm
al 

since 
the 

C
om

bining 
the 

results 
for 
A

 

and 
B, 
the 

m
ean 

of 
a norm

ally 

distributed 

random
 

variable 
Xis 

-0
+

 
u

1
=

 
. E[x]= 

7.7 

EXAM
PLE. 

Again, 
let 
us 

consider 

finding 
the 

m
ode 

of a norm
ally 

distributed 

random
 

variable 
X. Invoking 

D
efinition 

7.5, 

we 

shall 

apply 
the m

ethods 
of differentiation 
to

 

obtain 
the 

m
axim

um
 

value 
of the 
pdf 
of X. 

Equating 
the 
first 

=
0, 

or 

f()=
 

=
0. 

- 0, hence 
x =

 
u. 

T
he 

first 

facto
r 

cannot 
be 

zero, 
so 

The 

second 

derivative 

test 

w
ould 

confirm
 

if indeed 
the 

solution 
x =

 

gives 

the 

m
axim

um
 

value 
of 

fx). 

N
ow

 

since 132 

FORUM
 

dz 

second 

integrand 
is the 
density 

function 
of that 
a 

random
 

variable 

w
ith 

m
ean 

0 and 

variance 
1. 

derivative 
of 
fx) 
of 

Exam
ple 

7.6 
to 

zero, 
we 

obtain 
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M
 

e 

f"x)= 

-1
 

im
m

ediately 
have 

W
e . 1 

since 
o >

0. 

T
h

s 
th

e 

m
axim

um
 

of 

fis 

attained 
at 
x =

 u, w
hich 

show
s 

that 

the 

im
ode 

xm
o 

. 

Behind 

that 

sim
ple 

regression 

line. 

Consider 
a set 
of 

bivariate 

data A
 

sim
ple 

linear 

regression 

model 

postulates 
a straight-line 

relationship 

betw
een 

the 

variables 
X

 

and 
Y. The 

m
odel 

x,y):i=
1, 

2, ... 
n}. 

y; =
 

A
+ 

Bx; 
+

 
E; 

IS intended 
to

 

express 
an 

approxinm
ately 

linear 

relation 

betw
een 

X
 

and 
Y. where 

any 

deviation 

from
 

a perfect 

straight 

line 

relationship 
is 

attributed 
to

 chance 
or 

randonm
 

variation. 
In

 

the 

m
odel, 

x; is 

som
e 

fixed 

value 
of X: the V

is 
are 

independent 

norm
ally 

distributed 

random
 

variables 

with 

m
ean 

zero 

and 
the 

sam
e 

unknow
n 

standard 

deviation 
o. 

A
nd 

for 

each 
xj, 
a set 
of differing 

y; values 

have 

m
ean 

A
 

+
 

Bx;. 

The 

[;'s, 

w
here E, 

=y, 
- (A

+
 

B
x;). 

Below
 

is a table 
of pairs 
of height 
x and 

weight 
y from

 
a sam

ple 
of 15 

dre 

the 

deviations 
of 
the 
Y

 

values 

from
 

the 

regression 

line 

Y
=

A
+

 

B
.. fem

ale 

juniors. 

The 

1. Figure 

in 

are 
(x,y) 

pairs 

133 

expressed 
as 

plotted 
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166 

166 

65 

163 

162 

62 160 

158 

157 

157 

156 

155 

155 

S8 

150 

106 

l18 

00 

|10 

95 

|14 

99 

108 

14 95 

105 

98 

I12 

00 

104 

Table 
1. Heights 
and 

weights 
of I5 

fem
ale 

students 

W
eight 

(1bs.) 

115 
|10 

105 
100 

95 
90 

Height 
(cm

.) 

68 

163 

158 

153 

148 

Figure 
1. Scatter 

Plot 
of W

eight 
vs. 

Height 

Figure 
2 below 

shows 
a picture 
that 
may 

help 
in 

understanding 
the 

model. Weight 
(lbs.) yi-

(A; 
+Bx) 

115 
110 

105 
100 

95 

Height 
(cm

.) 

90 168 

163 

158 

153 

148 

Figure 
2. Assumptions 
in a Regression 

Model 

134 
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The 

param
eters 

A
 

and 
B

 
are 

estim
ated 

using 

sam
ple 

data. 

Behind 
the estim

ation 
of these 

param
eters 

is the 

principle 
of least 

squares. 

The principle 

declares 

that 

when 

choosing 

am
ong 

the 

possible 

lines 
to represent 

a bivariate 
set 

of 

data, 

the 

line 

that 

best 

fits 
is that 

line 

w
hich 

makes 
as sm

all 
as possible 

the 

sum
 

S of 

the 

squared 

vertical 

distances 

from
 

the 

points 
to 

the 

line. 

The 

m
athem

atical 

procedure 
of finding 

this 

best 

line 

uses 

partial 

differentiation. 

W
hat 

follow
s 

is the 

S= 

&,=y; 

-(4+ 
Bx;). 

Em
ploying 

partial 

differentiation 

technique 
to

 

minimize 
S, we 

proceed 

with 

n =
-2

)( 
- 4

-

BX;) 
=

 
0, and 

OS 

i=1 
n 2) 

X(Y; 
- 4

- BX) 
=

 0. 

O
S OB 

Thus 

the 

estim
ates 

for 
A

 

and 
B

 

that 

m
inim

izes 
S, denoted 
by 
a and 
b respectively, 

are 
the 

solutions 
to 
the 

equations 

below: 

n (Y
-a-

bX;) 
=

 
0, and i=1 

X
x(Y

 

-a
-

bX 
) =

 
0. 

i=
l 

Sum
m

ing 
up 

each 
of the 

equations 

above, 
we 

have 

n X
Y

,-na 
-b

X
, 

i=1 

135 

ROsCOM
 

solution 

tow
ards 

the 

least 

squares 

estim
ates 

for 

the 

regression 

line 

coefficients 
A

 

and 
B. Let 
S be 
the 

sum
 

of the 

squared 

deviations, 

then 

=0 



i=l 
Lx;-ax,-b x -0, or 

n 

n 

i=l 

n 

i=l 

i=l 

an + b) X, 

n 

i=l 

THE MINDANAO FORUM 

i=l 

i=] 

a= Y-bX, 

n 

The last pair of equations above, are known as the normal equations. They 
have solutions forb and a as follows: 

i=l 

n 

ZxX;-Ex,E») 
i=l 

Ex;-x,} 

n 

i=l 

n 

136 

Ex,-XX;-n) 
i=l 

n 
and 

The Poisson distribution as a limiting distribution for the 

binomial distribution. Two of the commonly used discrete distribution 
models in the life and social sciences are the Poisson and Binomial 

distributions. The Poisson distribution provides a probabilistic model for a 
wide class of phenomena. Examples are the number of telephone calls 
during a given period of time, the number of particles emitted from a 
radioactive source, and the number of cars passing by an intersection 
point. The binomial distribution is by far the most important discrete 
distribution. An experiment or an activity follows a binomial model if it 
has n independent trials with two possible outcomes per trial: either a 
specific event occurs or does not occur. The probability p of the 
occurrence of the said event remains the same from trial to trial. Typical 
examples are flipping of a coin, getting a defective or nondefective 

product, and having a boy or a girl for a child. 

=, and 
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 7.8 
THEOREM

. 
Let 

B(x: 
n. p) 

and 

P
(; 

lim
 

B(x;n, 
p) 
=

 

P(x; 
np). 

Proof. 

B(x; 
n, p) 

denotes 
the 

probability 
that 
an 

event 
E

 
has 
x num

ber 

of 

occurrences 
in

 
n trials. 

The 

event 
E

 

has 
a probability 
p of 

occurrence 
in cach 

trial. 

The 

function 

B(x; 
n, p) 
is defined 
by 

B(x; 
n, p) =

 

*! (n-)iP-p) 

n! 

(7.8.1) 

n-x 

n 

x! 

p
=

-, 
n >

1
, 

>
 

0. Thus, 

N
ow

, 

allow
 

p to
 

vary 

w
ith 

n, so 

take 

n 

in 

(7.8.1), 

we 

have, 

n 
substituting 
p = 

n (n-1)·.. 
(n-x+

1) 

x! 

B(x; 
n, p) 

A
sn 

’ o, w
hile 

x and 

rem
ain 

constant, 
we 

obtain 
the 

follow
ing: 

=
 lim
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2) 
be 
the 

binom
ial 

and 
Poisson 

probability 

mass 

functions, 

respectively. 

For 

each 

fixed 
x, as n 

’
0

 
and p

’
0

 

such 

that 

h
=

n
p

 

rem
ains 

constant, 
(n-1) 
. (n-x+1) 

| and 



lim 
n’0 

lim 

From the definition of the number e, we also have 

n’0 n 

=1. 

Therefore, under the given limiting conditions. 

n’0 

THE MINDANAO FORUM 

lim B(x,n. p) = P(x;2) = 

Zy = 

The amazing central limit theorem. When a finite set of 
independent random variables X. X, .., X, has a common distribution, 
the probability distribution for their mean X is approimately normal for 
large n. The precise statement of this observation is one of the most 
celebrated theorems of mathematics, the so-called Central Limit Theorem 
or CLT. 

x! 

The Central Limit Theorem implies that if the sample n is large 
and yet a small fraction of the population size N so that independence of 
X. X, .. Xy is reasonable, we can approximate the probabilities of the 
sample mean X using the table of areas under the normal curve. A special 
case of this theorem is stated below. 

X,-EX) 
Vwar) 

7.9 THEOREM (CENTRAL LIMIT THEOREM). Let A) be a density 
function with mean # and variance a'. Let X, be the sample mean of 
a random sanple of size n from f.). Let the random variable Zy be 

defined by 

(7.8.2) 

X, 
on 

Then, the distribution of Zy approaches the standard nornal distribution 
as n tends to infinity. 

138 



Discussion. The amazing part of the Central Limit Theorem is the fact 
that nothing is assumed about the form of the original density funtion. 
The importance of this theorem as far as applications are concerned, is the 

fact that the mean of a random sample of size n from any distribution 
with finite variance o and mean u, is approxinately distributed as a nor 

mal random variable with mean u and variance o/n. The proof of this 
theorem will make use of the concepts of moments, and moment gene 
rating function of a standard normal random variable. 

The moment generating function or mgf of a random variable X is 
defined as 

m() = Ee-sdk. 
If the mgf of X exists, then m() is continuously differentiable at some 
neighborhood of the origin. Differentiating m(1), r times with respect to 1, 
we obtain 

d" 

BRIGIDA A. RosCOM 

Letting I’0, we have 

d' 

dt 

m(t) 

-m0) 

The number u. is called the rth moment of fx). Replacing elA by its 

series expansion in e" we obtain 

m) = 1 + Xt + 

= 1 + H) t 
1 1 

139 

+ 

=ref(x)d. 

=xf(x)dx =. 
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i! i=
0

 

H
ence. 

the 

mgf 
of a standard 

norm
al 

random
 

variable 
is m

t) 
=

 
e
' If 
the 

m
om

ent 

generating 

function 
of 

Zy, 

mz 

(
)
 

can 
be 

show
n 

to approach 

the 

standard 

norm
al 

random
 

variable, 

m
() 

as n becom
es 

large 

then 
the 

Theorem
 

7.9 
is proved. 

Proof 
of Theorem

 
7.9. 

Using 
the 

independence 
of X

, 
X, 
. Xy, 
we obtain 

n
o

 

exp 
V

n 

\n
 

o
/n

 

L
i=l 

Now 
if 
we let 
Y

 

=(X
; 

-u
)/s, 

then 

my (t), 
the 

m
om

ent 

generating 

function 
of Y

;, 
is independent 
of 
i since 
all 

Y
;s 

have 

the 

sam
e 

i=
l 

L
 

i=
1 

i=
] 

H
ence, 

140 

distribution. 
Let 
my 
(t) 

denote 

each 
my 

(
)
. 

Then 
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M
 

SO 
W

e 
m

ay 

The 

rth 

derivative 
of my 
(1 

/V
n

) 

evaluated 
at I =

 0 gives 

us 

the 
rth m

om
ent 

about 
the 

mean 
of the 

density 
f.) 

divided 
by 

(G
y

n
). 

write 
its 
Taylor 

3 

3
!3

 

+
 

Since 
u =

0
 

and 

u, 
=

 

o
,
 

this 

m
ay 

be 

written 

(7.9.1) 

4!n 
4 

+
 

+
 

=
 

e
,i

f
u

 
is 

constant. 

T
hus, 

if 
u represents 

the 

Now 

recall 
that 
lim

 
(1+ 

(7.9.1), 

then 
it follow

s 

that because 

lim
 

u
=

.
 

Therefore, 
we 

have 

expression 

w
ithin 

the 

parenthesis 
in 

lim 
(1+ 
=e 

n
’
0

 

n
’
0

 lim 
mz (1) 
=

 
lim

 

[m
y

(=
 

lim 
(1 

+Hy" 
=

 

e
.
 

n
-
’
0

 so 

that, 
at the 

lim
it, 

Z
, 

has 

the 

sam
e 

m
om

ent 

generating 

function 
as that 
of 

the 
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expansion 
standard 
norm

al 
variable. 
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