STATISTICS
A VIEW FROM CALCULUS PERSPECTIVE

Brigida A. Roscom

The dictum Learn Calculus First applies to all mathematical sciences
including statistics. While no previous knowledge of statistics is assumed.
a good background in calculus is a requisite for students to work their own
way through the courses in mathematical statistics or the classical
statistical theories. A sound background in calculus that is essential for
learning statistics, includes a good working knowledge of multiple
integration, partial differentiation and power series.

This paper is a tour of statistics via calculus with the aim of providing
a deeper look at statistics. In the preparation of this tour, the author relied
heavily on existing literature on the subject of mathematical statistics.

An extended view on mean, median, and mode. The three averages,
the mean. median, and mode., are popularly seen as single numerical
values which summarize the features of a data set, usually a sample or a
finite population data. The computational concepts of these averages are
straightforward. But it is obvious that the computations have limitations
when the population data set is infinite. It is this limitation that compels
us to extend our view on these measures of location. The background,
with which this view is set up, is built upon the concepts of random
variables, probability, distributions and expectations. To give you a feel
of these concepts, consider the following definitions.

71 DEFINITION.  If Xis a discrete random variable with distinct
values x|, X3, ..., Xpp» --- with P[X = x] as the probability that the random
variable X takes the value x, then the function A(.) defined by

JI’[‘\":x], ifx = x;, j=L2 on

f(x) - |

0, if x#Xx;
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is called the density function of X. It is also called the probability mass

Sfunction or pmf of X.

72 DEFINITION. For a continuous random variable X with

domain
(—o0.00), if there exists a function f{.) such that

P(X<x)= [ fluxdu.
— 00
then f is called the probability density function or pdf of X.

The density function f{.) has the following properties :

(i) fixj) >0 for j=1,2,...,r fix)=0 forx #xj and Z/_/‘(x/-) =1,

if Xis discrete.
(ii) fx)2 0and [ f(x)dx =1 if Xis continuous.

73 DEFINITION. The mean, py, or expected value, E[X] of a
random variable X is defined by
Z .xjf(xj), if X is discrete with mass points at x ;, and

ELX |= 0
¥] foo xf (x)dx, if X is continuous with pdf f(x).

Note that the definition assumes that the series is absolutely
convergent or the integral exists, respectively; otherwise, the mean does

not exist.

7 4 DEFINITION. The median x4 of a random variable X is a number
satisfying the following inequalities:

, I |
P[)& Sxmcd]zg and P[XZ x,nc(,];—i.
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If \'is a continuous random variable, then the median of X satisfies

[ fde =2 = [0 por

me

7.5 DEFINITION. The mode, denoted by Xmo» Of @ random variable X
with density function f{x) is a numerical value which satisfies

f(Xmo) = max{f(x)}.
X
The mode, if it exists, is that value of X which maximizes Sfx).

7.6 EXAMPLE. A random variable X which is normally distributed
with mean p and variance 6%, where o> 0, has pdf given by

1 | (x ~ p)z
()= expl — — .
f(x) G \/ﬁ p[ s
Let us show that the mean or expected value of X is p. By Definition 7.3,

1= 17 ) ol -4 (22

Evaluating the integral by changing variables, Le., by letting z
X-—p

, We obtain

2

i[X]:ﬁ f:(csz + p.)e7 dz,

2 2

c © 5~ 1 © 5T
= — 0 2 + - > 2 gz
X1 = J:Ozc dz = J:oe

(9 i
A+ — B,
T V21

N
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where
2 2 +00
e ia ——e?
A Jloo Ze dz e
—00
~ lim (—e~7 /)= lim (=% /?)=0,
zZ—>+00 Z—»—0
and
1 1 2
LN S B
—0 27

V2n

since the second integrand is

the density function of that a normal
random variable with mean 0 and variance 1.
Combining the results for 4 and B, the mean of a normally distributed

random variable X is

1
Sl X]|=—-0+p-1=p.
5[ ] P [ H

7.7 EXAMPLE. Again, let us consider finding the mode of a normally

distributed random variable X. Invoking Definition 7.5, we shall apply the
methods of differentiation to obtain the maximum value of the pdf of X.

Equating the first derivative of f{x) of Example 7.6 to zero, we obtain

f'(x) = : e_%(x;u) -—(135):0 or
' \/ﬂc c |
e_%(x;u)z .—(x—uj N
o

ad —“) =0, hence x=p.

The first factor cannot be zero, so (
o

— . . P . - = |l
I'he second derivative test would confirm if indeed the solution X +

gives the maximum value of f{x). Now since
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we immediately have

ol
f(p) = \/%0 5 >

since 6 > 0. Thus the maximum of f'is attained at x = 1, which shows that
the mode x,,,, = L.

Behind that simple regression line. Consider a set of bivariate data

{(x,,y,-) ci=1 2, .., n}. A simple linear regression model postulates a

straight-line relationship between the variables X and Y. The model
expressed as

_)"l':A+BX,'+8i

is intended to express an approximately linear relation between X and Y,
Where any deviation from a perfect straight line relationship is attributed to
chance or random variation. In the model, x; is some fixed value of X: the
Vi's are independent normally distributed random variables with mean zero
and the same unknown standard deviation 5. And for each x;, a set of
diﬂhcring Vi values have mean A + Bx;j. The g;’s, where

& =V - (A + Bxl-),

‘¢ the deviations of the ¥ values from the regression line ¥ = 4 + B\
Below is a table of pairs of height x and weight v from a sample ot 13

“male junjors, The pairs (x,y) are plotted in Figure 1.
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X 150

158 | 1SS [ 1S5 [ 156 | 157 | 157 | 158 | 160

162

162

) 104

100 | 112 98 | 105 95 | 114 | 108 99

114

95

163 {165 [ 166 [ J66
110 | 100 | 118 | 106

—d

Table 1. Heights and weights of 15 female students

Weight (Ibs.)

115

110

105

100

95

90

A

148 153 158 163

= Height (cm.)

Figure 1. Scatter Plot of Weight vs. Height

Figure 2 below shows a picture that may help in understanding the model.

Weight (Ibs.)
A

115

110

yi—(A; +Bxj)

148 153 158 163

pry > Height (cm.)

Figure 2. Assumptions in a Regression Model
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The parameters A and B are estimated using sample data. Behind the
estimation of these parameters is the principle of least squares. The
principle declares that when choosing among the possible lines to
represent a bivariate set of data, the line that best fits is that line which
makes as small as possible the sum S of the squared vertical
distances from the points to the line. The mathematical procedure of
finding this best line uses partial differentiation. What follows is the
solution towards the least squares estimates for the regression line
coefficients 4 and B. Let S be the sum of the squared deviations, then

n
S= ZS[ :y,-—(A+Bx,~).
i=1

Employing partial differentiation technique to minimize S, we proceed
with

8S n
—:—22()/I-—A—BX,-)=O, and

oA i=1

oS L

EZ_QZX,.(YI-—A—BX,):O.
=1

Thus the estimates for 4 and B that minimizes S, denoted by «and b
respectively, are the solutions to the equations below:

n

> (Y, —a-bX;)=0, and

i=1

n
D X (Y;i—a-bX) =0

=1

Summing up each of the equations above. we have

n n
Y Yi—na-bY X;=0
1=1 i=1
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n n n
DX Yi—a) X;=hY X2 =0.0r
i=1 i=1 i=1
n n
an+ bz X;= Z Y;, and
=1 i=

n n n
aY X;+bY XP =Y XY,
=1 i=1 =

The last pair of equations above, are known as the normal equations. They
have solutions for  and a as follows:

=1

YXY-L I x) i X - X -T)
=1 =l

i=1

h = = ] = and
n > ] n 2 n _2
D3P EELOIP 0 Y (X;i-X)
=1 =1 i=1

a=Y-bhX.

The Poisson distribution as a limiting distribution for the
binomial distribution. Two of the commonly used discrete distribution
models in the life and social sciences are the Poisson and Binomial
distributions. The Poisson distribution provides a probabilistic model for a
wide class of phenomena. Examples are the number of telephone calls
during a given period of time, the number of particles emitted from a
radioactive source, and the number of cars passing by an intersection
point. The binomial distribution is by far the most important discretc
distribution. An experiment or an activity follows a binomial model if it
has »n independent trials with two possible outcomes per trial: cither a
specific event occurs or does not occur. The probability p of the
occurrence of the said event remains the same from trial to trial. Typical
examples are flipping of a coin, getting a defective or nondefective
product, and having a boy or a girl for a child.
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7.8 THEOREM. Let B(x: n. p) and P(x; 1) be the hinomial and Poisson
probability mass functions, respectively. For each fixed x, as n — © and
P —> 0 such that . = np remains constant,

lim B(x;n, p) = P(x;np).
Hn—»00
Proof. B(x; n, p) denotes the probability that an event £ has x number

of occurrences in # trials. The event E has a probability p of occurrence in
cach trial. The function B(x; n, p) is defined by

B(x;n.p) = [’/’)]px q"*

n! _
T

n(n—l)-~(n—x+l X n—x ,
oy )p (l—p) (7.8.1)

, A
Now, allow p to vary with n, so take p=—, n > 1, A > 0. Thus,
n

o A
substituting p=— in (7.8.1), we have,
n

B(x:n,p) = n(n=1) - (n-x+1) [&] [1—&}%}(

x! n n

A B A BT

As n —» . while x and A remain constant, we obtain the following:

I - x-1
fim lll ] il . ] | and
"> h h
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R
lim {1 - } =]
H—>oL n

FFrom the definition of the number ¢. we also have

}\, n A
lim {1——} = ¢ ", (7.8.2)

n—w n

Therefore, under the given limiting conditions,

c—}\.).\'
lim B(x:n.p) = P(x;h) = -

n—x x!

The amazing central limit theorem. When a finite set of
independent random variables X}, X5. ..., X, has a common distribution,

the probability distribution for their mean .Y is approximately normal for
large n. The precise statement of this observation is one of the most
celebrated theorems of mathematics, the so-called Central Limit Theorem
or CLT.

The Central Limit Theorem implies that if the sample # is large
and yet a small fraction of the population size N so that independence of
Xj. X5, ..., X, is reasonable, we can approximate the probabilities of the

sample mean X using the table of areas under the normal curve. A special
case of this theorem is stated below.
7.9 THEOREM (CENTRAL LIMIT THEOREM). Let A.) be a density

. . . . 2 s .
function with mean . and variance 6~. Let X, be the sample mean of
a random sample of size n from f(.). Let the random variable Zn be
defined by

Jore

X, -dX,) X, -

Z

" Jvar( X, o/dn

Then, the distribution of Zy approaches the standard normal distribution
as n tends to infinity.

—_
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Discussion. The amazing part of the Central Limit Theorem is the fact
that nothing is assumed about the form of the original density function.
The importance of this theorem as far as applications are concerned. 1is the
fact that the mean of a random sample of size # from any distribution
with finite variance 6” and mean i, is approximately distributed as a nor-

. . i 5] - N .
mal random variable with mean p and variance 6~ /n . The proof of this

theorem will make use of the concepts of moments, and moment genc-
rating function of a standard normal random variable.

The moment generating function or mgf of a random variable X" is
defined as

m(t) = é[c“] = [:;c’)"_/'(x)dx,

If the mgf of X exists. then m(f) is continuously differentiable at some
neighborhood of the origin. Differentiating m(), r times with respect to /,
we obtain

-
—m(t) = rxx"e’x./'(x)dx.
dt’ -

Letting 1 — 0, we have

”

d L
7,_—m(0)= r x" f(x)dx =n,.
dt e

The number p, is called the rth moment of fix). Replacing !X by its

series expansion in @[e"\/], we obtain
1 ol
m(t):&_,[l + Xt + ;(Xt)2 + —(X1)” + }

1 -5 3
:1+“l+—ilu2+—t 3T ..
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1,2
] ; >t
Hence. the mgf of a standard normal random variable is m(t) = ¢?
It the moment generating function of Zj, mz () can be shown to

approach the standard normal random variable, m(¢) as » becomes large
then the Theorem 7.9 is proved.

Proof of Theorem 7.9. Using the independence of X, .X,, ...
obtain

— el Zn|_ ¢ }—“j — £| e L” Xi_i)
mz (1) é[e ] {exp[[o/&} @exp[nlglc/\/;

h"(’ c/fﬂ ool 3]

Now if we let Y, :(X-—u)/c then my( ). the moment generating

function of Y; . is independent of i since all V: i's have the same
distribution. Let my (1) denote each my (¢). Then

e ;2 - fid ol )
Tl F) (5]

. Xy, we

Hence,

k)]
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[he rth derivative of - my (1 /y/n) evaluated at 1 = 0 gives us the rth

moment about the mean of the density £{.) divided by (6\/:7)", SO we may
write its Taylor expansion

1‘) Ky luz(/)z lua(tf
mv| —F— :1+——— —_— — o) + ..
)(\/; o Jn 2062\n) T3153\ I

: 2 .. :
Since n) =0 and p, = o~ this may be written

1 j 1 (1 p) | TR 3 I nyg 4 )
my|l —=|=1+— =" — " . 7.9.1
y(& Wn o3 Angd (7.9.1)
. u n u . . .-~
Now recall that lim (l + ;) =", if u is constant. Thus, if v represents the
n—>» 00

expression within the parenthesis in (7.9.1), then it follows that

) n 1,2 ) 5
lim (1 + ﬂ) =e¢2 , because lim u= 1.2 Therefore, we have
J1—>» 0 h n—» 0

3]

1
lim m, ()= lim [m)/(J—)] hm(l+-:-)” = ¢?2

n—» 0 n—

so that, at the limit, Z; has the same moment generating function as that of
the standard normal variable.
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