
CALCULUS 
IN 
BIOLOGY 

Ruth 
P. Serqui'a In 

the 

recent 

developm
ents 

in 

biological 

sciences, 

com
plicated 

prob 

lem
s 

arose 

which 

necessitate 
the 

application 
of calculus. 

Calculus 
is 

often Calculus 
in 

biology 
did 
not 

start 
in 

this 

decade 

only. 
It may 
be 

traced 

back 
in 

1798 

when 

Thom
as 

M
althus 

published 
An 

essay 
on 
the 

Principle 

of 

Population 
as it 

Affects 
the 

Future 

Im
provem

ent 
of Society 

where 
he w

arned 
of 

the 

im
pending 

disaster 

aw
aiting 

an 

Earth 

whose 

agricultural 

capacity 

could 
no 

longer 

Som
e 

years 

later 

the 

logistic 

egquation 

was 

used 

by 

the 

likes 

of Verhulst 

(1840) 
to 

model 

w
orld-population 

grow
th 

and 

Pearl 

(1920) 
to describe 

various 

form
s 

of biological 

grow
th. 

Likew
ise, 

Lotka 

(an A
m

erican 

biophysicist) 

and 

Volterra 

(an 

Italian 

m
athem

atician) 

cam
e 

up in 

1925 

with 
the 

fam
ous 

Lotka-V
olterra 

predator-prey 

population 

m
odel. 

These 

m
athem

atical 

models 
that 

Calculus 

has 

placed 

biology 
in 
a different 

perspective, 

far 

m
ore 

com
plicated 

yet 
interesting. 

The 

exam
ples 

below
 

are 

som
e 

of the 

practical 

applications 
of calculus 

in 
biology. 
These 

problem
s 

do 

not 

require 

any 

in-depth 

know
ledge 

of 

The 

follow
ing 

problem
s 

and 

solutions 
are 

selected 

from
 

the 

books 
of Stancl 

[1], 

Gentry 
[2], 
and 

Cullen 
[3]. 

H
ollings's 

functional 

response 

curve. 

Suppose 
we 

are 

studying 
the feeding 

habits 
of 
a predator 

(e.g., 
a fox). 

How 

does 
the 

num
ber 

y of prey (e.g., 

rabbits) 

eaten 

over 
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used 
in 
the 

quantitative 

analysis 
of 

biological 

problem
s. 

support 
its 

population. 
His 

theory 

m
ade 

a great im
pact 

in
 

the 

study 
of populations. 

Stirred 
by 

such 

theory, 

biologists 

began 
to 

seek 
the 

help 
of m

athem
aticians 

to 

transform
 

biological 

problem
s 

into 
m

athem
atical 

problem
s. 

described 

biological 

phenom
ena 

need various 
ideas 
of calculus. 

H
ence, 

calculus 

becam
e 

a tool 
in

 

solving 

not only 

physics, 

chem
istry 

and 
engineering 
problem

s 

but 
biological 

problem
s 

as 
well. 

biology 
but 

these 

will 

show
 

how
 

the 

basic 

ideas 
of calculus, 

e.g.. 
the 

lim
it concept, 

differentiation 

and 

integration, 
are 

used 
in 

biology. 

a prescribed 

period 
of tim

e 

depend 

upon 
the 



THE 

density 
x of the 

prey? 

Surely 
as x increases, 

that 
is, 
as the 

prey 

becom
e 

m
ore 

abundant, 

y
=

fx
) 

increases. 

Since 

the 

predator 

can 

consum
e 

only 
a certain 

num
ber 

of 

prey, 
it should 
be 

the 

case 

that 

x
) 

x,) 

for 

large 

values 
o

f 
x, an

d
x

. 

The 

curve 

relating 
y and 
x should 

possess 
a horizontal 

asym
ptote. for 

x >
 

0. 

a
x

 1+ 
abx 

y
=

 

Evaluating 
the 

b 

a
x

 x
’+

0
l+

 
ahr 

lim
 

is a horizontal 

asym
ptote. 

Thus, 

the 

line 
y =

 

The 

curve, 

called 

H
ollings 

functional 

response 

curve, 
is 

show
n 

below
: y (no. 
eaten) 

x (density 
of the 

prey) Figure 
1 

The 

drug 
is neutralized 
at an 

exponential 

rate 

The 

residues 

o
fa

 

drug 
in

 

the 

body. 
A

 

drug 
is 

adm
inistered 

every 
4 

Not 
all 
of 

the 

drug 
is neutralized 

before 

with 

rate 

constant 
k =

 
- 0.5. next 

dose 
is adm

inistered. 

patient's 

system
 

at tim
e 

(in 

-0.5t 
A(1) 
=

 
A

e
 170 

M
INDANAO 

FORUM
 

In 
1959 

H
ollings 

discovered 
a rational 
function 

that 
works 

well in 

describing 
the 

feeding 

habits 
of invertebrate 

predators 

and 

som
e 

fish: 

lim
it 

as x tends 

to
 

positive 

infinity, 

we 

find 

the horizon-tal 

asym
ptote 

to 
be 

the Denote 

by 

A
() 

the 

am
ount 

of drug 
in 
a 

hours 
in

 

doses 
of 
2 m

g.. 

hours). 
Then 
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To 

determ
ine 

the 

drug 

leftover 

from
 

the 

first 

dose, 
we com

pute 2 lim
 

4()= 
lim

 

2e-0.51 

(
’
4

 

(
’
4

 

Therefore, 
the 

drug 

leftover 

from
 

the 

first 

dose 
is 2/e. 

To 

com
pute 

for A
() 

over 
the 

next 

tim
e 

interval 

4.8). 

the 

drug 

leftover 
in 
the 

first 

dose Hence 

for 

the 

given 

intervals, 

we 

have 

the 

m
ust 

be 
included. 

corresponding 
A

(): 

for 

[0,4): 
A

 
=

 

2
e
.
 

the 

leftover 
is 2/e: for 

[4,8): 
A

 
=

 

(2
+

2
/e)e, 

the 

for 

[8,12): 
A

 

=(2 
+

 
2le 
+

 

2
/e

)e
, 

the 

leftover 
is 2/e 
+

 
2/e 

+
2/e. 

In 

general, 
for 
any 

tim
e 

e [4n.4(n+1)], 
A

 
is 

given 
by 
the 

form
ula A

nl) 
=

 
(2 +

 

R
n

-)e, 

where 

R
n-

is the 

leftover 
of the N

ow
, 

we 

will 

determ
ine 

the 

residual 

am
ount 

of 

drug 
in 

the 

patient's 

system
 

at The 

residue 

n=2, 
R, =

 
2/e 
+

 

2/e: 

n=3, 
R; =

 
2le 
+

 
2/e 
+

 
2/e 

n=4, 
R

 
=

 
2/e 

+2/e 

+2/e 
+

 
2/e8 

In 

general, 
the 

residue 
for 
the 
nth 

interval 
is 
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leftover 
is 2le 
+

 

2/e. 

preceding 
tim

e 

interval. 

the 
end 

of 
the 
nth 

dosage 

period. 

is 
sim

ply 

the 
leftover 

of the 

drug. 

Hence, 
for 
the 

first dosage, 
that 
is, 
n =

1, 
the 

residue 
is R

 

=2/e* 

(this 
is the 

leftover 

after 
the first 

dose) 
When 



Ry = lim A, =)2e-2i 

V= 

(’4 

The Michaclis-Menten relation. Special proteins known as enzymes 
act as catalysts for a wide variety of chemical reactions in living things. 

The term substrate refers to the substance that is being acted upon. In 
1913, Mihealis and Menten devised the formula (see below) relating the 
initial speed V with which the reaction begins to the original amount of 
sub-strate x: 

lim 

(Typical units are moles/liter for x and moles/liter/second for V.) This 
equation has been verified experimentally for a variety of enzyme 
controlled reactions. There also exist theoretical derivations of the 

equations. When x is very large, V a. We can show this by taking the 
limit ofVas x tends to infinity: 

THE MINDANAO FORUM 

i=0 

= a. 

Thus, the line V= a is a horizontal asymptote. 

0.5t +2000 

21 +3 

Bites from a poisonous snake. If a person bitten by a poisonous 
Snake receives an immediate shot of antivenum, then t seconds after the 
shot is given there will be 

ppm 

of poison in the victim's blood. 
To find the concentration of poison in the blood as time passes by, 

we take the limit of y at infinity, lim y = 1/4. Eventually, the 

concentration of poison in the blood decreases toward 0.25 ppm as time 
goes by. 

172 
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The 

instantaneous 

rate 
of 

grow
th 

of a tum
or. 

A
 

tum
or 

is 

cstim
ated 

to
 

have 
a total 

m
ass 

of 6x 
10 

gm
.. 

t days 

after 
its 

discovery. 

How 

fast 

Let 

) =
 

6
x

1
0

T
h

e
n

 
the 

instantaneous 

rate 
of 

grow
th 

on 
the 

8th day 
is 

f(8) 

=12x10(8) 
=

 

96x10gm
./day. 

Forest 

fires. 

The 

num
ber 

of forest 

fires 
in 
a particular 

region 

can 
be expressed 

as 

function 
of the 

num
ber 

(a) 

those 

caused 
by nature 

(i.e., 

lightning), 

and (b) 

those 

attributable 
to 

nan. 

Let 

N(x) 
=

 
the 

num
ber 

of fires 

due 
to 

natural 

causes, 

M
x) 

=
 the 

num
ber 

of 

fires 

caused 
by 

m
an, F(x) 

=
 N
(r) 

+
 

M
x), 

the 

total 

num
ber 

of fires, 
and 

R(x) 
=

 

M
r)F(x). 

the 

proportion 
of fires 

that 
are 

caused 
by 

The 

rate 
of change 
of the 

relative 

num
ber 

of m
an-related 

fires 
is 

R(x) 
=

 
D, [M

r)/F()). 

If we 

substitute 

M
'(x) 

+
 N
'() 

for 

F
'(), 

then 

N(x) 

M
'(x)-

M
(r)N' 

(x) (M
(r)+ 

N(r) 

R'(x) 
=

 

and 

F(r) 
=

 

0.4r 
+

 

0.lx 
- 01 m

an-related 
tires 
is 

If 

N
x) 

=
 

(0.1(x 
- 1), M(r) 
=

 

(0.4)x 

then 
the 

rate 
of change 
in 
the 

proportion 
of 
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is 

the 

tum
or 

grow
ing 

on 

the 

8th 

day? 
of 

days 
x since 

the 

last 

m
easurable 

rainfall. 

H
ow

ever, 
the 

fires 

fall 

into 

tw
o 

categories: 

man. 



THE 
M

INDANAO 
FORUM

 (0.04)(x*-2x) 

(0.4x 
+

 

0.lx 

-0.1)' 

R
(x) 

G
lucose 

m
etabolism

. 
To 

test 

for 

diabetes, 
a patient 
is 

subjected 
to

 
a 

large 

quantity 
of sugar. 

The 

am
ount 

of 

glucose 
in

 
the 

patient's 

urine 
is 

then 

m
easured 

over 
an 

interval 

[0
,]. 

If 
the 

am
ount 

of glucose 
is 

given 
by g() 

=
 

10 
� 0

.6
, 

where 

denotes 

hours, 
at what 

rate 
is the 

patient 
The 

T
he 

size 
of 

the 

hum
an 

cye 

pupil. 

The 

size 
of a hum

an 

eye 

pupil 
is 

related 
to

 

the 

am
ount 

of light 

incident 
to 

the 

retina 
of the 

eye. equation 

describing 
this 

relationship 
is 

+23.7 
-04 
+395 

401 
-04 A

I) 
=

 

where 
A

 
is 

the 

area 
of the 

The 

rate 
of 

change 
in 
the 

pupil 

area 

corresponding 
to 
a 

-53.72/-l4 

(I0d 

A
'() 

=
 

frequently 

Parasites 

can 

either 
be 

helpful 
or 

A
 

parasite 

m
odel. 

Parasites 

are 

anim
als 

or organism
s 

that 

live 
on 
or 

harm
ful 

to
 

their 

host. 

(R
um

inant 

anim
als 

such 
as 

sheeps 
are 

dependent 
on 

host. 

em
ployed 

to 

biologically 

control 

pests. 

One 

such 

parasite 

destroys 
the eggs 

of 
a spider. 
If the 

num
ber 

of spiders 
in

 
an 

area 
is H

 

and 
the 

relative HP) 
=

 
M(1 
- 2P'), 

174 

m
etabolizing 

the 

sugar 

tw
o 

hours 

after 
the 
test 

begins? 

Since 

g'(2) 
=

 

-2.4, then 
the 

patient 
is m

etabolizing 
at a deccreasing 
rate 
of -2.4 

units/hour. 

pupil 

and 
/ is the 

quantity 
of visible 
radiant 

energy 
per 

unit 
of 

tim
e 

incident 
on 
the 

retina 
of the 

eye. change 
in

 
light 

intensity 
is 

given 
by 

+3.95) 

parasites 
to 

com
plete 

their 

digestive 

process). 

Parasites 

are 

num
ber 

of parasites 
is P, then 
the 

num
ber 

H
 

is a function 
of 
P: 

in 

another 

organism
 

called 
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where 
M

 
is 
the 

m
axim

um
 

host 

population. 

H
ow

ever, 

this 

parasite 

can Only 

reproduce 

when 

the 

tem
perature 

is betw
een 

24 

and 
30 

"C
. Consequently, 
the 

relative 

num
ber 

of 

parasites 
is 
a function 
of the 

P
)
 

=
(-24)(30 

-n/9, 

Then, 

although 

the 

spider 

population 
is not 

sensitive 
to 

the tem
perature 

I, its 

population 

size 
H

 
is affected 
by 
the 

tem
perature. 

H
) 

=
 Ho 

P() 
=

 

H
(P()), 

fo
rte 

[24,30]. If the 

tem
perature 

is 28 
"C, 
is the 

spider 

population 

increasing 
or 

decreasing, 

and 
at what 

rate? 

T
o 

answ
er 

this, 

we 

need 
to

 

evaluate 

the derivative 

H
'(28) 

at t =
 

28. By 

com
position 

of functions, 

H
) 

=
 

M
(1-2[( 

- 24)(30 
- n/9j'). Then 

the 

derivative 
of H

 
() 
is 

Â
) 

=
 

M
-2/9)(3)[( 

- 24)(30 
� )' 
-21 
+

 
54J. 

From
 

the 

equation 

above, 
we 

have 

H
(28) 

=
 

(256/243)M
 

1.053M
, 

where 

M
>

0. 

This 

means 

that 

the 

spider 

population 
is 

increasing 
at the' 

rate 
of 1.053M

 
spiders 

Poiseuille's 

Law
. 

One 
of the 

contributing 

factors 
in the 

accum
ulation 

of lipid 

(fat) 

deposits 

inside 
the 

blood 

vessels 
is the 

fact 

that 
the 

flow
 

of 

blood 

near 
the 

vessel 

walls 
is 

m
uch 

slow
er 

than 
the 

flow
 

of blood 
at the center 

of the 

vessel. 

Due 
to 
the 

slow
er 

flow
 

rate 

near 
the 

walls, 

the 

lipid 

m
olecules 

have 
a greater 

chance 
of 

175 

tem
perature 

t. ASsum
e 

that 

This 

can 
be 

des cribed 
by 
the 

follow
ing 

com
position 

equation 

per 
'C

. 

becom
ing 

attached 
to 

the 

vessel 

walls. 

This 

eventually 

leads 
to

 
a heart 

attack. 



THE 
MINDANAO 
FORUM 

center 

Flow 
profile R

 

flow blood 
vessel Figure 

2 

The 

French 

physician 

Poiseuille 

discovered 
the 

relationship 
that describes 

the 
4 

where 
V= 

velocity 
of blood 

flow, R
=radius 

of the 

blood 

vessel. r =
 

distance 

from
 

the 

center. and 
the 

num
bers 

p, , and 
n are 

physical 

constants 

corresponding 
to pressure, 

length, 
and 

viscosity. 

The 

outer 

radius 
of a blood 

vessel 

can 
be 

changed 

by 
adm

inistering 

drugs, 

w
hich 

either 

constrict 
the 

vessel 
(R 

decreases) 
or dilate 
the 

vessel 

(R 

increases). 

Aspirin 

dilates 

blood 

vessels. 

Assum
e 

that 
an 

individual 

=
2

x
1

0
cm

./m
in

.. 

4 

dR 
dt 

176 

velocity 
V

of 

blood 

flow 
as a function 
of the 

distance, 
r, from

 the 

center 
of 
a blood 

vessel. 
It is now

 

know
n 

as 

Poiseuille's 

Law: 

n 

"took 
2 aspirins 
on 
a doctor's 

orders 

and 
as a result, 
the 

radius 
R

 
of her 

or 
his 

blood 

arteries 

increased 
in 

size 
at a rate 
of 



At what rate would the velocity of the blood flow be changing? The 
answer is obtained by computing the derivative of V using the Chain Rule: 

dV 

Since 

dt 

dV 

dR 

dV 

dt 

dV dR 

dR dt 

42n 

If R= 0.02 cm. and 

g) = 

-2P R(2× 10)cm./min. 
42n 

RUTH P. SERQUINA 

0, 

R, the rate of change in V is 

P = 1, then 
42n 

the rate of change of the velocity does not depend on the distance r from 
the center of the vessel. 

x(r) = 40r -

dV 

Gazelle population. The size of a gazelle herd is a function of the 
amount of the edible grasses within its grazing territory. The amount of 
grass is estimated by sampling techniques to be x tons. The size of the 
gazelle herd is assumed to be 

dt 

if x < m, 

|(x-m)-(x-m) +2, ifx > m, 

= 8x106 cm./min.. Note that 

where m is the minimum amount of grass necessary to sustain a pair of 
gazelles. 

177 

But the amount x of grass is a function of the total rainfall r over the 
grazing region. Assume that 

Then the size of the gazelle herd is a function of the rainfall 



g(r) = (gox\(r) = gx). 

The formula for the gazelle population as a function of rainfall is 

gr) = 

THE MINDANAO FORUM 

dg( r) 
dr 

0. 

If m = 10, the rate of change of the herd size due to a change in 
rainfall is 

(40r -r-m) -(40r -r- m) + 2, if 40r -r >m 

BM = 

= 2(40r -r2- 10)(40 � 2r) - 40 + 2r. 

if 40r -r'<m 

Basal metabolism. This term is used to describe the normal chemical 
activity in an organism not subject to stress - for instance, a plant growing 
under ideal conditions or an animal resting over a period of time. 

The metabolic rate of an animal will vary in response to 
environmental changes (temperature, humidity, air quality) and changes in 
physical activity. As air temperature fluctuates on a daily basis, the basal 
metabolic rate (BMR) of an animal will vary over a diurnal cycle: the 
BMR increases at night to compensate for the lower temperature and 
decreases during the day 

Metabolic rates are expressed in several equivalent ways - as a 
measure of heat produced in kilocalories per unit (kcal/hr), as a measure 
of oxygen consumption per unit of body weight (cm." 0,/g.), and as a 
measure of carbon dioxide expelled per unit of time (cm. CO,/hr.). In all 
cases, the total basal metabolism BM over a period is obtained as the 
integral of the basal metabolic rate over the time interval 

BMR(1)dt. 

Suppose the BMR is given by the following function: 

178 



RUTH 
P. SEROUINA +0.3 

kcal./hr.. 

24) 

B
M

R
()=

-(0.15) 
cos 

Consequently, 
the 

BM
 

value 
for 
a one-day 

period 

would 
be 

+0.3 
dt =

 

7.2 

kcal./day. 

24) 
T

I 
-o15) 
co BM

 
=

 

This 

w
ould 

correspond 
to

 

the 

BM
 

of a m
ouse. 

w
hereas 

the 

value 

for 
an adult 

hum
an 

w
ould 

be 

approxim
ately 

2000 

kcal./day. C
ardiac 

output. 
In 

m
easuring 

cardiac 

output, 

one 

m
ethod, 

know
n 

as 

At 
a peripheral 

artery, 

the 

blood 
is 

the 

dye-dilution 

m
ethod, 

is perform
ed 

as follow
s. 

A
 

fixed 

am
ount 

of 
a dye 

is 

injected 

into 
a vein 
or 

the 

right 

side 
of the 

heart. 

This 

dye 

then 
is circulated 

with 

the 

blood 

through 

the 

heart 
to 
the 

lungs, 

back 
to 

the 

heart. continuously 

m
onitored 

for 

the 

presence 
of 
the 

dye 

for 
30 

seconds 

from
 

the 

tim
e 

of injection. 

The 

concentration 
of 

dye 

passing 

the 

m
onitored 

artery 
is then 

plotted 
as 
a function, 

c(), 
of 

tim
e. 

(A
fter 

about 
15 

seconds. 

recirculation 
of 

the 

dye 

occurs 

and 

care 
in

 

m
onitoring 

of th
e 

blood 

circulation 

must 
be 

exercised.) 

The 

2[M
, 

of injected 
dye] (8.1) 

1 

C
ardiac 

output 
=

 

The 

dye-dilution 

m
ethod 

is 

used 
in experim

ents 
in 

basic 

physiology 

laboratories. 
The 
integral, 

179 

cardiac 

output 
is defined 
to

 
be 

the volum
e 

of blood 

pum
ped 

per 

m
inute. 

This 
is 

obtained 
as 

the 

ratio 
of the am

ount 
of dye 

injected 
to 

the 

average 

concentration 

m
onitored 

over 

the 30-second 

period, 

m
ultiplied 

by 

tw
o, 

so 

that 
it corresponds 
to 

one 

m
inute: 

and 

into 

the 

arterial 

system
. 

30 
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 through 
dye-concentration 

values 
which 

are 
plotted 

on 
standard 

as 
an

 
area. 

A
ssum

e 

that 
in 
an 

experim
ent 

in 

which 
5 mg. 
of 

dye 

was 

injected 
at 

tim
e 

=
0

, 

the 

concentration 

curve 

was 

found 
to

 
be 

or 
1

8
<

t<
3

0
, 

and 

c() 

=0, 
if 0 <

t<
3

 c() 

=
(
-

40r 
+

 

4531 
- 1026)10, 
if 3

<
1

s 
18. 

Note 

that 

c(t) 
is in 

m
g./100 

ml.. 

No 

dye 

passes 

th
e 

observation 

artery 

for three 

seconds, 

and 

then 
a large 

quantity 
of dye 

passes. 

After 
18 

seconds, 

all 

m
easurable 

am
ounts 

of 

dye 

has 

passed. 

To 

com
pute 

the 

cardiac 

output 

4
-0

d
1

 
. 

Since 
and 

rc)dt 
=

 
0, 3
0

 

the 

average 
A

 
is given 
by 

°
-
4

0
 

+4531 
- 1026Jdt. 

c8 
10-3 30 

A
= 

Substituting 
the 

value 
of A

 
in

 

equation 

(8.1), 
we 

obtain 
the 

cardiac 

output 

for 
this 

experim
ent, 

which 
is approxim

ately 

6.275 

180 

graph 
paper 

over 
a 30-second 

interval. 
The 
integral 
is then 

approxim
ated 

by 

counting 
the 
squares 

of the 

is 

estinm
ated 

by 

draw
ing 

a continuous 

curve 

graph 
paper 

under 
the 

curve. 

This 

corresponds 
to 

interpreting 
the 

integral 

determ
ined 

by 

this 

experim
ent, 

we 

evaluate 

the 

average 

liters/m
in. 



O
V

CRE 
L

iB
R

A
R

Y
| 

M
SU

-
|!T

 

RUTH 
P. SERQUIÑA 

M
easuring 

abundance 
in the 

sea. 

Show
n 

below
 

(Figure 
3) 
is 
a water 

colum
n. 

a typical 

Ix
l 

m
eter 

square 

colum
n 

extending 

from
 

the 

ocean 

surface 

cean 
surface 

T
 

thickness 
d 

floor 

200 
m. 

Figure 
3. A

 

w
ater 

colum
n It is 

im
possible 

to 

m
easure 

directly 

the 

total 

am
ount 

of, 

say, 

sardines 

in
 

the 

colum
n. 

By 

taking 

w
ater 

sam
ples, 

how
ever, 

w
e 

can 

m
easure 

the 

concentration 
or density 
at various 

depths. 

Let 

fr)=
 

density(in 

no./m
.)) 

at depth 
x. W

e 

m
ay 

im
agine 

that 

the 

water 

colum
n 

consists 
of an 

extrem
ely 

large 

num
ber 

of their 

square 

layers, 

each 
of height 

d
, 

piled 
on another. 

The 

num
ber 

of 

organism
s 

in 
a typical 

layer 
is 

O
ne 

Ax) 

(no./m
.)x1 

dx (m
.') 

=fx) 
dv. 

The 

integral 

adds 

all 

those 

ternm 

trom
 

x =
0

 
to x

=
 

200 
to 

obtain 

200 fx
)d

x
, 

the 

total 

num
ber 

of 

organism
s 

in 
the 

water 

colum
n. 

Suppose 

that 
the 

density 
of sardines 

(no. 
of fish/m

.) 
is given 
by 

S
(x) 

=
 005x(75 

- x), 

w
here 

0 s r
s
 

75. 

W
e 

can 

determ
ine 

the 

total 

nunm
ber 

of 

sardines 
in

 

the 

w
ater 

colum
n 

by com
puting 

I81 

to
 

the 

ocean 

floor. 
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 |005x(75 
-x 
)dv 
=

 

351.56. Hence, 
the 

total 

num
ber 

of 

sardines 
in

 

the 

water 

colum
n 

is about 

352. The 

density 
of the 

sardines 
is the 

largest 
at the 

depth 

37.5 
m.. 

This 

can 
be 

seen 
by 

noting 
that 
f(0) 

=f75) 
=

 
0 and 

f'(x) 
=

 
0 when 
x =37.5 
m.. Suppose 

that 
a fisherm

an 
is trawling 

sardines. 

His 
net 

has 
an 

opening 

that 
is 
1

0
 

m. wide 

and 
10 
m. deep. 
It is low

ered 

dow
n 

betw
een 

depths 

32.5 

and 

42.5 
m. in

 
an 

attem
pt 

to
 

capture 

the 

most 

fish. 

If 

the 

norm
al 

traw
ling 

speed 
is 20 

m./nmin., 

how 

many 

sardines 

could 
be 

caught 
in 
15 

min.? Between 
the 

depths 

32.5 

and 

42.5 
m. 
in 
a l m.� 

water 

colum
n, 

the num
ber 

of sardines 
is 

bo.005x(75 
- *)dx 

69,9 

42.5 25 
Hence, 
if 

the 
net 

m
oves 

through 
I m., 
it can 

capture 

10(69.9) 
=

 

699 sardines. 

Over 
a 15 

m
inute 

period, 
the 
net 
is m

oved 

through 

20(15) 
=

 

300 Hence, 
in 

theory, 
it would 

contact 

300(699) 
=

 

209,700 

sardines. 

However, 

since 
the 

escape 

rate 
is probably 

quite 

high, 

we 

w
ould 

expect 
to 

capture 

only 
a sm

all 

percentage 
of this 

number. 

M.. 

The 
exam

ples 
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im

portance 
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in 

biology. 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

