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The Equivalence of Real
Number Principles

HARRY M. CARPIO

In this note we shall examine eight properties of real numbers that are
known to be equivalent. Partial proofs of their equivalence are found in some
textbooks, e.g., see Mendelson [M, Ch. 5, Th. 5.9 & Th. 7.6], Buck [Bu, Sec.
1.7], and Parzynski and Zipse [PZ, p. 49]. Although these properties are standard
fare in real analysis and advanced calculus courses, many are not aware that they
are actually equivalent. In response to this deficiency, we shall give a complete
proof of the said equivalence. The proof is broken into two series of
propositions. Those that are readily available in standard textbooks are simply
stated without proofs and the corresponding references are given.

1. Preliminaries

We begin with a list of the said properties.

(1) THE LEAST UPPER BOUND PROPERTY (LUB): A nonempty

set of real numbers which is bounded above has a least up-
per bound.

(2) THE CAUCHY CONVERGENCE CRITERION (CCC): Every
Cauchy sequence of real numbers converges.

(3) THE MONOTONE SEQUENCE PROPERTY (MSP): Any bounded
monotonic sequence of real numbers is convergent.

(4) THE HEINE-BOREL PROPERTY (HB): The closed interval
[a,b] is compact.

(5) THE BOLZANO-WEIERSTRASS PROPERTY (BW): Every
bounded infinite set of real numbers has an accumulation point.

(6) THE NESTED SETS PROPERTY (NSP): Every nested sequence
[@1,01] 2 [a2,6:] 2 [a3,b5] © -

of non-empty closed intervals has a non-empty intersection.
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(7) THOMSON'S LEMMA (TL): A full cover C of the closed
interval [a.b] contains a partition of [a.b].

(%) COUSIN'S LEMMA (CL): If 8(x) is a positive function de-
fined on R, there exists a tagged partition D = {(Ix&)} of
[a.b] such that for each k we shall have

& € L (Bed(80), EtO(E).

Thomson's Lemma and Cousin's Lemma are late additions to this list. How-
ever, there is ample evidence, €.g., s€€ [B1], [B2] and [C2], that they are of com-
parable importance to the others in the list. This is not surprising because, as we
have mentioned earlier, they are actually equivalent to each other.

We begin our exposition with the Nested Sets Property, which has many
important applications. For instance in [PZ, p. 49], it is used to prove the
Bolzano-Weierstrass Theorem while in [B2, p. 328], it is used to prove
Thomson's Lemma. In this paper we shall use it to prove the Least Upper Bound

Property, which is usually called the Completeness Axiom in advanced calculus
textbooks.

Proposition 1.0. The Nested Sets Property implies the Least Upper
Bound Property.

Proof. Assume NSP and let S be a non-empty set of real numbers fhat is
bounded above. We shall show that S has a least upper bound.

Without loss, we assume that 0 € S. Let b be an upper bound for S such that
b> 0. First we bisect [0,b] into closed subintervals [0,b/2] and [b/2,b]. Then we
define [a;,b:] = [0,b/2], if b/2 is an upper bound- of S; otherwise, we take
[a,.b\] = [b/2,b].

Next we bisect [ay,b,] and similarly define [a2,b,]. Continuing in this

fashion indefinitely, we generate a nested sequence of closed subintervals of
[0.6]:

[al,bl] D [axb.] 2 [as,b3] 2 - -

By construction each interval [a,,b,] contains elements of S and each b, 1
an upper bound of S. By the Nested Sets Property, there is an x e [0,b] such that
x € M,[anb.]. Now since the length of the nth subinterval (= (b/2")) tends to 0,
we have M,[anb.) = {x}.

Clearly the sequence (a,) is increasing and the sequence (by) 1s decreasing.
Moreover, they tend to the same limit x.

Now if some a, is an upper bound for S, then it is clear that @, € S because
[a,.b,)S # D. In this case we rust have a, = sup S and we are done. Theretore:
we shall assume that no a, is an upper bound for S.

Let U be the set of all upper bounds for S. Claim: U = [x,0), and, therefore.
sup S = x
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If 1 < x, then t < a,, for some m. Hence, 7 is not an upper bound for S
because a,,, by assumption, is not an upper bound for S. Thus U ¢ [x,»).

On the other hand, if u > x, then u > b,, for some m. Hence, « is an upper
bound for S because b,, is. Consequently, no element of S is greater than x, This
implies that x is also an upper bound for S. Therefore, [x,0) < U. Thus, U =
[x,0). [J

To complete the proof of equivalence, we shall establish in the next two
sections two series of implications. These are

(1.1) LUB = CCC = MSP = NSP = LUB, and
(1.2) HB = TL = CL = BW = NSP = LUB = HB.

2. Properties of Real Sequences

The next propositions aim to establish the first three implications in (1.1).

Proposition 2.1. The Least Upper Bound Property implies the Cauchy
Convergence Criterion.

Proof. We shall present a version of the proof given in [C1]. Assume LUB
and let (x;) be a Cauchy sequence of real numbers. Let S be the collection of all
real numbers x such that the interval (—oo,x] contains at most finitely many
terms of (x;). Observe that:

(?) ifxisin S, then (—0x] = S and
(i) if x ¢ S, then S < (—oo0,x]; thus x is an upper bound for §.

Now let € > 0. Because the sequence (x;) is Cauchy, there is an integer N
such that if j, m > N, then x; — & <x,, <x; +¢. '

Hence, if j > N, then, by (i) and (i), (x; — €) € S and (x; + €) is an upper
bound for S. Hence, S is a non-empty set of real numbers, which is bounded
above. Thus, by the Least Upper Bound Property, S has a least upper bound, say
o. We shall show that lim x; = ©.

As observed above, for a given € > 0, there is an integer N such that if j2
N, then (x;—€) € S and (x; +€) is an upper bound for S. Therefore, we must
have x; — € < o < x; + ¢, whenever j > N. Hence, [xj — o] < ¢ for all j > N, which

implies that limx, =oc. 0O

Proposition 2.2. The Cauchy Convergence Criterion implies the Monotone
Sequence Property.

Proof. Let (a,) be a bounded increasing sequence of real numbers. We shall
show that it converges by showing that it is a Cauchy sequence.
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Let € > 0 and assume without loss that 0 < a, < b for all n. By the

Archimedian Principle, there is a positive integer j such that je > b, Hence,

there is a least positive integer m such that a, < me for all n. -By definition of m,

we have (m - 1)e < ay, for some N € N. Since (a,) is increasing, it follows that
foralln, k> N, (m -1)e < a;, a, < me.

Therefore, |a; — a,| < €. for all n, k > N. This proves that (a,) is a Cauchy
sequence and is therefore convergent. 0

Proposition 2.3. The Monotone Sequence Property implies the Nested Sets
Property.

Proof. Assume MSP and suppose that [a;,b,] 2 [a2,0:] 2 [a3,0:] 2 -+~ is a

nested sequence of non-empty closed intervals. Let us show that M,[a,,b,] # .

The sequence (a,) of lower endpoints is bounded and increasing. Hence, by
assumption, it converges, say, to a limit a.. Moreover since each b, is an upper
bound for all the sequence (a,), we must have a, < a < b, for each n. Hence the
set M,[a,,b,] contains a and is therefore non-empty. O

Proposition 2.4. LUB = CCC = MSP = NSP = LUB.

3. Topological Properties

Throughout this section we fix a closed interval [a,b]. Moreover we shall

assume that I, with or without subscripts, denotes a closed subinterval of [a,b]
and |I| denotes the length of 1.

DEFINITION 3.0. Let X < [a,b]. A collection C of closed subintervals of

[a,b] is a full cover of X, if to each x in X, there is a positive number 8(x) such
that the FC—condition for [a,b] holds:

Every closed subinterval 1 of [a,b] that contains x and has length
|I| < 8(x) belongs to C.

Intuitively, a full cover C of X, like a Vitali cover, includes all arbitrarily
small closed subintervals of [a,b] that meet X. The importance of full covers

stems from the observation that a full cover of the interval [a,b] includes a
partition of [a,b].

Recall that a partition of the closed interval [a,b] is a finite, increasing

collection { xo = a < x; <x; <+ <x,= b} of points of [a,b]. It divides [a.}]
into closed non-overlapping subintervals [xi-1,xi]. A tagged partition of the

interval [a,b] 1s a finite collection of interval-point pairs (I,;,) satisfying certain
conditions and such that the collection {Lk:k=1,2, . n}isa partition of [a,b]-
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Theorem 3.1 (Thomson’s Lemma). If C is a full cover of [a.b). then C
contains a partition of [a,b].

Proof. Thomson proved this lemma using the Nested Sets Property and his
proof is reproduced in [B2; p. 328]. We shall prove the lemma using the Heine-
Borel Property.

Let C be a full cover of [a,b]. Then there is a positive function 8(x) defined
on [a,b] satisfying the FC-condition. Now definé

L={(x-22 x4 %)) : x efa,b)).

Clearly L is an open cover of [a,b]. By the Heine-Borel Property, there exist
finitely many points x; <x, <x; < --- < x,, in (a,b) such that the open intervals J;
= (xx=0(xx)/2,x,+8(x;)/2), where k = 1, 2, ..., m, cover [a,b]. (Without loss, we
shall assume that no J; contains another J;..) Now we choose #, = @ and 1, = b.
Fork=1,2, .., (m — 1), we choose a f; in J;"J,.; such that x; < ; < x,.,. Then
each x; is in the subinterval [#;_,,4], and the length of this subinterval, which 1s a
subset of Ji, is less than 8(x;). Hence, each [#-1,:] 15 1n the collection C. Since

{th=a<t,<f,<---<t,=b}

1s a partition of [a,b], this proves the lemma. [
Corollary 3.1.1. The Heine-Borel Theorem implies Thomson's Lemma.

Theorem 3.2 (Cousin’s Lemma). If 8(x) is a positive function defined on
R, there exists a tagged partition D = {(I;§,)} of [a,b] such that for each k, we
have & € 1 < (§—8(&x), Extd(Ex)).

Proof. Let 6 be a positive function defined on R. Consider the collection C
of closed subintervals I of [a,b] such that for some x in [a,b], we have x € I ¢
(x—3(x), x+8(x)). Then the collection C is clearly a full cover of [a,b]. Therefore,
by Thomson's Lemma, C contains a partition of [a,5]. O

Corollary 3.2.1. Thomson's Lemma (TL) implies Cousin's Lemma (CL).

As a simple application of Cousin's Lemma we shall present the proof of
the Bolzano-Weierstrass Theorem given in [B1; p. 452].

Theorem 3.3 (Bolzano—Weierstrass). If S is a bounded, infinite set of real
numbers, then S has an accumulation point.

Proof. Suppose that S ¢ [a,b], for some a, b € R. We shall prove the
contrapositive: If the bounded set S has no accumulation point, then it is finite.
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Let x € [a,b]. Then x is not an accumulation point of S. This implies that
there is a 8(x) > 0 such that SN(x—8(x),x+8(x)) is finite. If x & [a,b], we define
8(x) = 1. By Cousin's Lemma, there is a tagged partition D = {(I,£)} such thy
£ € I c (E-(Ey), E+d(Ey) for each k. Since SNI; © SN (E—(E).E+8(E)) is
finite for each k, it follows that § = SN[a,b] = SN(\Uy) = U(SNIy) is finite,
being a finite union of finite sets. O

Corollary 3.3.1. Cousin's Lemma implies the Bolzano-Weierstrass
Property.

Proposition 3.4. The Bolzano-Weierstrass Property implies the Nested Sets
Property.

Proposition 3.5. The Least Upper Bound Property implies the Heine-Borel
Property

The proofs of Propositions 3.4 and 3.5 can be found in [A; p. 56] and [Bu;
Ch. 1, Th. 24]. Now since the Nested Sets Property implies the Least Upper
Bound Property (Proposition 1.0) we have completed the proof of (1.2).

Proposition 3.6. HB = TL = CL = BW = NSP = LUB = HB.
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