On the Dimensions of a Graph And Its Complement

SERGIO R. CANOY, JR. ROWENA T. ISLA

Abstract

An initial investigation on the dimension of the complement of a graph was done by Gervacio and Raposa in [4], In particular, some results and a question regarding the sum dim(G) + dim(\overline{G}), where \overline{G} is the complement of a graph G, were given.

In (2], the authors proved a result which gives the exact dimension of any graph that gives upper bounds for dim(\overline{G}) as well as the sum dim(G) + dim(\overline{G}) for some special graphs G.

1. Preliminary Concepts and Known Results

The graphs considered here are simple graphs, i.e., they are finite, loopless, and without multiple edges. We denote by $V(G)$, $E(G)$ and \overline{G} the vertex-set, the edge-set, and the complement, respectively, of a graph G. For some terms, concepts, and graph operations whose definitions are assumed and are not given here, the reader may refer to (6].

The *Euclidean n-space* \mathbb{R}^n is the set of all ordered *n*-tuples $(x_1, x_2, ..., x_n)$ of real numbers x_i . The elements of \mathbb{R}^n are called *points*. If p and q are two points in \mathbb{R}^n , the *Euclidean distance* between them is denoted by $|p - q|$.

For convenience, we define the *Euclidean* 0-space \mathbb{R}^0 to be the space containing only the zero point.

Definition 1.1. A *unit representation* of a graph G in the Euclidean n space \mathbb{R}^n is a one-to-one mapping $\phi : V(G) \to \mathbb{R}^n$ such that $|\phi(x) - \phi(y)| = 1$ whenever $[x,y]$ is in $E(G)$.

Definition 1.2. A graph G is called a *unit graph* in \mathbb{R}^n if it has a unit representation in R".

à Dr. SERGIO CANOY, JR. and Prof. ROWENA T. ISLA are faculty members of the Depart ment of Mathematics of MSU-lligan Institute of Technology. Prof. Isla is MSU-IITs latest Ph.D. in mathematics. She wrote a dissertation in graph theory with Dr. SEVERINO V. GERVACIO and Dr. CANOY as co-advisers.

The tollowing remarks are easy to verify.

Remark 1.3. If G is a unit graph in \mathbb{R}^n , then so is it in \mathbb{R}^m for $m > n$.

Remark 1.4. If G is a graph of order n, then G is a unit graph in \mathbb{R}^n .

Definition 1.5. The *Euclidean dimension*, or simply *dimension*, of a graph G, denoted by $dim(G)$, is the smallest nonnegative integer n for which G is a unit graph in R".

The following remarks are proved in (7].

Remark 1.6. If H is a subgraph of G, then $dim(H) \leq dim(G)$.

Remark 1.7. If H and G are isomorphic graphs, then $dim(H) = dim(G)$.

Definition 1.8. Let G be graph of order $n \ge 3$, and Ω a family of proper subgraphs of G. We say that Ω is an *independent set* if no two distinct subgraphs in Ω have a common vertex.

Definition 1.9. The *independence number* of a graph G, denoted by $\beta(G)$, is the largest cardinality of an independent set Ω consisting of subgraphs of G isomorphic to K_2 .

Definition 1.10. The *triangle independence number* of a graph G, denoted by $t(G)$, is the largest cardinality of an independent set Ω consisting of subgraphs of G isomorphic to K_3 .

The following result is found in [1] and [3].

Lemma 1.11. For any n, $dim(K_n)=n-1$.

Definition 1.12. Let K_n be a complete graph of order $n \ge 3$, and Ω and independent family of complete proper subgraphs of K_n each of order at least 2. The graph G $_6$
the graph of $_2$ graph G **obtained from K_n by deleting the family** Ω , denoted by $K_n - \Omega$, ¹⁸
graph of order n such that $[x, y]$ is in $E(G)$ if and only if $[x, y]$ is not an edge in any subgraph in Ω . If the elements of Ω are all of order 2, then we sometimes say that $K_n - \Omega$ is a graph obtained from K_n by deleting independent edges.

2. Results

Lemma 2.1. For $n \geq 3$,

$$
\beta(P_n) = \beta(C_n) = \beta(W_n) = \beta(K_n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd (for } W_n), \\ \frac{n-1}{2} & \text{if } n \text{ is odd (otherwise).} \end{cases}
$$

Proof. Assume that $P_n = [1, 2, ..., n]$. Let $e_1 = [1, 2]$. Then $P_n - e_1 \cong K_1 \cup P_{n-1}$, where $K_1 \cup P_{n-1}$ the disjoint union of K_1 and $P_{n-1} = [2, 3, ..., n]$. Any edge in P_{n-1} except [2,3] will form an independent set with e_1 . So, take $e_2 = [3,4]$. Then $P_n - \{e_1, e_2\} \cong K_1 \cup \overline{K_2} \cup P_{n-3}$, where $P_{n-3} = [4, 5, ..., n]$. Next, take $e_3 =$ [5,6] in P_{n-3} . Then $\{e_1, e_2, e_3\}$ is independent and

$$
P_n-\{e_1,e_2,e_3\}\cong \tilde{K_1}\cup 2\overline{K_2}\cup P_{n-5}.
$$

Continuing in this manner, we see that if $S_k = \{e_1, e_2, ..., e_k\}$ is an independent set, then $P_n - S_k \cong K_1 \cup (k-1) \overline{K_2} \cup P_{n-(2k-1)}$. This process of generating a bigger independent set terminates when $n - (2k - 1)$, which occurs if n is even, or when $n - (2k - 1) = 2$, which occurs if n is odd. The corresponding k which is $\beta(P_n)$ is seen to be $\beta(K_n)$.

The proofs of the remaining parts are virtually similar. \Box

In (2], the following result is obtained.

Theorem 2.2. Let $n \geq 3$ and Ω a nonempty independent family of complete proper subgraphs of K_n each of order at least 2. If $G=K_n - \Omega$, then

$$
dim(G) = \begin{cases} n-2 & \text{if } \alpha = 1, \beta = 0, \\ n-r+1 & \text{if } \alpha = 0, \beta = 1, \\ n-r-\alpha+2\beta & \text{if } \alpha+\beta \ge 2, \end{cases}
$$

where $\alpha = |V|$, $\beta = |W|$, and $r = (W)\Sigma p$ for $V = \{K_p \in \Omega : p = 2\}$ and $W = \Omega - V$.

In [2], the authors gave two direct consequences of the above theorem. The following is the general version of those results.

Corollary 2.3. Let $n \geq 3$ and Ω a nonempty independent family of complete proper subgraphs of K_n such that each subgraph is of order m, where $m \geq 2$. If $|\Omega| = k$, then

$$
dim(K_n - \Omega) = \begin{cases} n-2 & \text{if } k = 1, m = 2, \\ n-m+1 & \text{if } k = 1, m > 2, \\ n-k & \text{if } k > 1, m = 2, \\ n-km+k & \text{if } k > 1, m > 2. \end{cases}
$$

Proof. The cases where $m = 2$ and $m = 3$ are given in [2]. So, suppose that $m > 3$. If $k = 1$, then using the notations given in the preceding theorem, it follows that $\alpha = 0$, $\beta = 1$, and $r = m$. Thus, by Theorem 2.2, $dim(K_n - \Omega) = n$ $m+1$. If $k>1$, then by Theorem 2.2 (with $\alpha = 0$, $\beta = k$, and $r = km$) we have $dim(K_n - \Omega) = n - km + k = n - (m - 1)k$. \square

Theorem 2.4. Let G be a graph of order n. If G is unit graph in the plane, then $dim(G) + dim(\overline{G}) \leq n$.

Proof. The inequality is true tor $n = 1$ and 2. So, we assume that $n \ge 3$. If $E(G) = \emptyset$, then $\overline{G} = K_n$ and $dim(G) + dim(\overline{G}) \le 1 + (n - 1) = n$. If $E(G) = \emptyset$, then \overline{G} is a subgraph of a graph obtained from K_n by deleting an edge. By Corollary 2.3 and Remark 1.6, it follows that $dim(\overline{G}) \leq n - 2$. Accordingly, $dim(G) + dim(\overline{G}) \leq n. \ \ \Box$

Theorem 2.5. Let $n \geq 3$ and $1 \leq k \leq \beta(K_n)$. If G is a graph of order n, $dim(G) \leq k$, and G has k independent edges, then $dim(G) + dim(\overline{G}) \leq n$.

Proof. Clearly, the inequality holds if $E(G) = \emptyset$. So, suppose that $E(G) \neq$ \emptyset . Because G contains k independent edges, \overline{G} is a subgraph of a graph obtained from K_n by deleting k independent edges. By Corollary 2.3 and Remark 1.6, $dim(\overline{G}) \leq n - k$. Therefore, $dim(G) + dim(\overline{G}) \leq n$. \Box

Observe that Theorem 2.5 is useful in finding an upper bound for the major of the major of the dimension of the complement of some non-unit graphs in \mathbb{R}^2 . To see this, consider the following.

Example 2.6. Let $G = F_7$, the fan of order 8. It is given in [1] that $dim(F_7)$ = 3. Since F_7 has three independent edges, Theorem 2.5 says that $dim(F_7) \leq 5$.

special graphs. Next, we give upper bounds for the dimension of the complement of some ial graphs December 1999

 $1 \int Let n \geq 1$. Then \sum $\frac{1}{2}$

$$
dim(P_n) = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{if } n > 1, \end{cases}
$$

$$
dim(F_n) = \begin{cases} 2 & \text{if } n = 2, 3, 4, 5, 6 \\ 3 & \text{if } n > 6. \end{cases}
$$

If $n \geq 3$, then

$$
dim(C_n) = 2 \text{ and}
$$

\n
$$
dim(W_n) = \begin{cases} 2 & \text{if } n = 6, \\ 3 & \text{if } n \neq 6. \end{cases}
$$

\nThen

 ≥ 1 .

$$
dim(\overline{P_n}) = \begin{cases} 0 & \text{if } n = 1, 2 \\ 1 & \text{if } n = 3, 4 \end{cases}
$$

and

$$
dim(\overline{P_n}) \le \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Corollary 2.3, we get the desired result. \Box
Theorem 2.9. For any $n \ge 1$, from K_n by deleting $\beta(K_n) = \beta(P_n)$ independent edges. Thus, by $n \ge 5$. By Lemma 2.1, it follows that $\overline{P_n}$ is a subgraph of a graph ob K_n by deleting $\beta(K_n) = \beta(P_n)$ independent edges. Thus, by Remark 1. ting $\beta(K_n) = \beta(P$
re get the desired a subgraph of a graph
ges. Thus, by Ren
 $\frac{1}{2}$ It is easy to see that the result holds for $n = 1, 2, 3$, and 4.

 $ny n \geq 1$,

$$
dim(P_n) + dim(\overline{P_n}) = \begin{cases} 0 & \text{if } n = 1, \\ 1 & \text{if } n = 2, \\ 2 & \text{if } n = 3, 4 \end{cases}
$$

and

$$
dim(P_n) + dim(\overline{P_n}) \le \begin{cases} \frac{n+2}{2} & \text{if } n \text{ is even,} \\ \frac{n+3}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. This follows from Theorem 2.7 and Lemma 2.8. \Box

Theorem 2.10. If $n \geq 2$, then

$$
dim(F_n) + dim(\overline{F_n}) \le \begin{cases} \frac{n+4}{2} & \text{if } n \le 6, n \text{ even,} \\ \frac{n+5}{2} & \text{if } n \le 6, n \text{ odd,} \\ \frac{n+6}{2} & \text{if } n > 6, n \text{ even,} \\ \frac{n+7}{2} & \text{if } n > 6, n \text{ odd.} \end{cases}
$$

Proof. For all $n \ge 2$, since $F_n = K_1 + P_n$, we have $dim(\overline{F_n}) = dim(\overline{P_n})$. Hence, the result is immediate from Theorem 2.7 and Lemma 2.8. \Box

Lemma 2.11. If $n \geq 3$, then

$$
dim(\overline{C_n}) \le \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

 $\mathfrak{g}_{\mathfrak{g}}$ $\overline{2}$ $\overline{2}$ is odd. The isotophy \sum_{i} (*i*) \sum_{i} and \sum_{i} \sum subgraph of a graph obtained from K_n by deleting $\beta(K_n)$ edges. By

Theorem 2.12. For $n \geq 3$,

$$
dim(C_n) + dim(\overline{C_n}) \le \begin{cases} \frac{n+4}{2} & \text{if } n \text{ is even,} \\ \frac{n+5}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. This follows from Theorem 2.7 and Lemma 2.11. \Box

Corollary 2.13. If G is a Hamiltonian graph of order $n\geq 3$, then

$$
dim(\overline{G}) \le \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Since G is Hamiltonian, it contains a cycle of order n . It follows that $dim(\overline{G}) \le dim(\overline{C_n})$. The result is now immediate from Lemma 2.11. \Box

Corollary 2.14. If G is a Hamiltonian graph of order $n \geq 3$, then

$$
dim(G) + dim(\overline{G}) \le \begin{cases} \frac{3n-4}{2} & \text{if } n \text{ is even,} \\ \frac{3n-3}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. If $G = K_n$, then $dim(G) + dim(\overline{G}) \leq n$ and so, the result holds. If G $\neq K_n$, then $\overline{G} \neq \emptyset$. This means that G is a subgraph of some graph obtained from K_n by deleting an edge. By Corollary 2.3 and Remark 1.6, $dim(G) \leq n - 2$. Combining this with Corollary 2.13, we see that the desired inequality holds. \Box

Observe that in Corollary 2.13 and Corollary 2.14, nothing has been said about the dimension of the Hamiltonian graph G in the hypotheses. The following result gives a better upper bound if an additional assumption is imposed on the dimension of G.

Corollary 2.15. If G is a Hamiltonian graph of order $n \geq 3$ and $dim(G) \leq$ $\beta(K_n)$, then dim(G) + dim(\overline{G}) $\leq n$.

Proof. This follows from Lemma 2.1 and Corollary 2.13. Notice that the result also follows from Theorem 2.5 because according to Lemma 2.1, G has $\beta(K_n)$ independent edges. \Box

Lemma 2.16. If $n > 3$, then

$$
dim(\overline{W_n}) \le \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Since $W_n = K_1 + C_n$ for all $n \ge 3$, it follows that $dim(\overline{W_n}) =$ $dim(\overline{C_n})$. Thus, the result follows from Lemma 2.11. \Box

 ϵ

Theorem 2.17. If $n \geq 3$, then

$$
dim(W_n) + dim(\overline{W_n}) \le \begin{cases} 5 & \text{if } n = 6, \\ \frac{n+6}{2} & \text{if } n \text{ is even,} \\ \frac{n+7}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. This follows from Theorem 2.7 and Lemma 2.16. \Box

Acknowledgment. The authors would like to thank the referees for their comments and suggestions.

References

- [1] R. T. Baylon, On the Geometric Index of Graphs, Masteral Thesis, MSUligan Institute of Technology, February 1996.
- [2] S. R. Canoy and R. T. Isla, Some consequences of the Euclidean dimension of a complete multipartite graph, (accepted) Matimyas Matematika.
- [3] S. V. Gervacio, Unit embedding of graphs in the Euclidean n-space, plenary paper, Asian Math Conference 1995, Suranee University, Thailand.
- [4] S. V. Gervacio and B. P. Raposa, On the dimension and span of graphs, NRCP Research Project, 1996-97.
- [5] S. V. Gervacio and B. P. Raposa, Unit graphs in the plane, NRCP Research Project, 1996-97.
- [6] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachussets, 1972.
- [7] R. T. Isla, On the Dimension of Graphs, Ph.D. Dissertation, MSU-IIT, 2000