On the Dimensions of a Graph And Its Complement

SERGIO R. CANOY, JR. ROWENA T. ISLA

Abstract

An initial investigation on the dimension of the complement of a graph was done by Gervacio and Raposa in [4]. In particular, some results and a question regarding the sum $\dim(G) + \dim(\overline{G})$, where \overline{G} is the complement of a graph G, were given.

In [2], the authors proved a result which gives the exact dimension of any graph that is obtained from the complete graph by deletion of some special edges. The present paper gives upper bounds for dim(\overline{G}) as well as the sum dim(G) + dim(\overline{G}) for some special graphs G.

1. Preliminary Concepts and Known Results

The graphs considered here are simple graphs, i.e., they are finite, loopless, and without multiple edges. We denote by V(G), E(G) and \overline{G} the vertex-set, the edge-set, and the complement, respectively, of a graph G. For some terms, concepts, and graph operations whose definitions are assumed and are not given here, the reader may refer to [6].

The *Euclidean n-space* \mathbb{R}^n is the set of all ordered *n*-tuples $(x_1, x_2, ..., x_n)$ of real numbers x_i . The elements of \mathbb{R}^n are called *points*. If *p* and *q* are two points in \mathbb{R}^n , the *Euclidean distance* between them is denoted by |p - q|.

For convenience, we define the *Euclidean* 0-space \mathbf{R}^0 to be the space containing only the zero point.

Definition 1.1. A *unit representation* of a graph G in the Euclidean *n*-space \mathbb{R}^n is a one-to-one mapping $\phi : V(G) \to \mathbb{R}^n$ such that $|\phi(x) - \phi(y)| = 1$ whenever [x,y] is in E(G).

Definition 1.2. A graph G is called a *unit graph* in \mathbb{R}^n if it has a unit representation in \mathbb{R}^n .

Dr. SERGIO CANOY, JR. and Prof. ROWENA T. ISLA are faculty members of the Department of Mathematics of MSU-Iligan Institute of Technology. Prof. Isla is MSU-IIT's latest Ph.D. in mathematics. She wrote a dissertation in graph theory with Dr. SEVERINO V. GERVACIO and Dr. CANOY as co-advisers.

The tollowing remarks are easy to verify.

Remark 1.3. If G is a unit graph in \mathbb{R}^n , then so is it in \mathbb{R}^m for m > n.

Remark 1.4. If G is a graph of order n, then G is a unit graph in \mathbb{R}^n .

Definition 1.5. The *Euclidean dimension*, or simply *dimension*, of a graph G, denoted by dim(G), is the smallest nonnegative integer n for which G is a unit graph in \mathbb{R}^n .

The following remarks are proved in [7].

Remark 1.6. If H is a subgraph of G, then $dim(H) \leq dim(G)$.

Remark 1.7. If H and G are isomorphic graphs, then dim(H) = dim(G).

Definition 1.8. Let G be graph of order $n \ge 3$, and Ω a family of proper subgraphs of G. We say that Ω is an *independent set* if no two distinct subgraphs in Ω have a common vertex.

Definition 1.9. The *independence number* of a graph G, denoted by $\beta(G)$, is the largest cardinality of an independent set Ω consisting of subgraphs of G isomorphic to K_2 .

Definition 1.10. The *triangle independence number* of a graph G, denoted by t(G), is the largest cardinality of an independent set Ω consisting of subgraphs of G isomorphic to K_3 .

The following result is found in [1] and [3].

Lemma 1.11. For any n, $dim(K_n) = n - 1$.

Definition 1.12. Let K_n be a complete graph of order $n \ge 3$, and Ω an independent family of complete proper subgraphs of K_n each of order at least 2. The graph G obtained from K_n by deleting the family Ω , denoted by $K_n - \Omega$, is the graph of order n such that [x,y] is in E(G) if and only if [x,y] is not an edge in any subgraph in Ω . If the elements of Ω are all of order 2, then we sometimes say that $K_n - \Omega$ is a graph obtained from K_n by deleting independent

2. Results

Lemma 2.1. For $n \ge 3$,

$$\beta(P_n) = \beta(C_n) = \beta(W_n) = \beta(K_n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd (for } W_n), \\ \frac{n-1}{2} & \text{if } n \text{ is odd (otherwise).} \end{cases}$$

Proof. Assume that $P_n = [1, 2, ..., n]$. Let $e_1 = [1,2]$. Then $P_n - e_1 \cong K_1 \cup P_{n-1}$, where $K_1 \cup P_{n-1}$ the disjoint union of K_1 and $P_{n-1} = [2, 3, ..., n]$. Any edge in P_{n-1} except [2,3] will form an independent set with e_1 . So, take $e_2 = [3,4]$. Then $P_n - \{e_1, e_2\} \cong K_1 \cup \overline{K_2} \cup P_{n-3}$, where $P_{n-3} = [4, 5, ..., n]$. Next, take $e_3 = [5,6]$ in P_{n-3} . Then $\{e_1, e_2, e_3\}$ is independent and

$$P_n - \{e_1, e_2, e_3\} \cong \check{K_1} \cup 2 \overline{K_2} \cup P_{n-5}.$$

Continuing in this manner, we see that if $S_k = \{e_1, e_2, ..., e_k\}$ is an independent set, then $P_n - S_k \cong K_1 \cup (k-1)\overline{K_2} \cup P_{n-(2k-1)}$. This process of generating a bigger independent set terminates when n - (2k - 1), which occurs if n is even, or when n - (2k - 1) = 2, which occurs if n is odd. The corresponding k which is $\beta(P_n)$ is seen to be $\beta(K_n)$.

The proofs of the remaining parts are virtually similar. \Box

In [2], the following result is obtained.

Theorem 2.2. Let $n \ge 3$ and Ω a nonempty independent family of complete proper subgraphs of K_n each of order at least 2. If $G = K_n - \Omega$, then

$$dim(G) = \begin{cases} n-2 & \text{if } \alpha = 1, \beta = 0, \\ n-r+1 & \text{if } \alpha = 0, \beta = 1, \\ n-r-\alpha+2\beta & \text{if } \alpha+\beta \ge 2, \end{cases}$$

where $\alpha = |V|$, $\beta = |W|$, and $r = (W)\sum p$ for $V = \{K_p \in \Omega : p = 2\}$ and $W = \Omega - V$.

In [2], the authors gave two direct consequences of the above theorem. The following is the general version of those results.

Vol. XIV, No. 2

Corollary 2.3. Let $n \ge 3$ and Ω a nonempty independent family of complete proper subgraphs of K_n such that each subgraph is of order m, where $m \ge 2$. If $|\Omega| = k$, then

$$dim(K_n - \Omega) = \begin{cases} n-2 & \text{if } k = 1, m = 2, \\ n-m+1 & \text{if } k = 1, m > 2, \\ n-k & \text{if } k > 1, m = 2, \\ n-km+k & \text{if } k > 1, m > 2. \end{cases}$$

Proof. The cases where m = 2 and m = 3 are given in [2]. So, suppose that m > 3. If k = 1, then using the notations given in the preceding theorem. it follows that $\alpha = 0$, $\beta = 1$, and r = m. Thus, by Theorem 2.2, $dim(K_n - \Omega) = n - 1$ m + 1. If k > 1, then by Theorem 2.2 (with $\alpha = 0$, $\beta = k$, and r = km) we have $dim(K_n - \Omega) = n - km + k = n - (m - 1)k. \quad \Box$

Theorem 2.4. Let G be a graph of order n. If G is unit graph in the plane, then $\dim(G) + \dim(\overline{G}) \le n$.

Proof. The inequality is true for n = 1 and 2. So, we assume that $n \ge 3$. If $E(G) = \emptyset$, then $\overline{G} = K_n$ and $dim(G) + dim(\overline{G}) \le 1 + (n-1) = n$. If $E(G) = \emptyset$, then \overline{G} is a subgraph of a graph obtained from K_n by deleting an edge. By Corollary 2.3 and Remark 1.6, it follows that $\dim(\overline{G}) \leq n - 2$. Accordingly, $dim(G) + dim(\overline{G}) \le n. \quad \Box$

Theorem 2.5. Let $n \ge 3$ and $1 \le k \le \beta(K_n)$. If G is a graph of order n, $dim(G) \le k$, and G has k independent edges, then $dim(G) + dim(\overline{G}) \le n$.

Proof. Clearly, the inequality holds if $E(G) = \emptyset$. So, suppose that $E(G) \neq \emptyset$ \emptyset . Because G contains k independent edges, \overline{G} is a subgraph of a graph obtained from K_n by deleting k independent edges. By Corollary 2.3 and Remark 1.6, $dim(\overline{G}) \le n - k$. Therefore, $dim(G) + dim(\overline{G}) \le n$. \Box

Observe that Theorem 2.5 is useful in finding an upper bound for the dimension of the complement of some non-unit graphs in \mathbb{R}^2 . To see this, consider the following.

Example 2.6. Let $G = F_7$, the fan of order 8. It is given in [1] that $dim(F_7)$. = 3. Since F_7 has three independent edges, Theorem 2.5 says that $\dim(\widetilde{F_7}) \le 5$.

Next, we give upper bounds for the dimension of the complement of some special graphs.

Theorem 2.7. [1] Let $n \ge 1$. Then

$$dim(P_n) = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{if } n > 1, \end{cases}$$
$$dim(F_n) = \begin{cases} 2 & \text{if } n = 2, 3, 4, 5, 6 \\ 3 & \text{if } n > 6. \end{cases}$$

If $n \ge 3$, then

$$dim(C_n) = 2 \text{ and}$$
$$dim(W_n) = \begin{cases} 2 & \text{if } n = 6, \\ 3 & \text{if } n \neq 6. \end{cases}$$

Lemma 2.8. Let $n \ge 1$. Then

$$dim(\overline{P_n}) = \begin{cases} 0 & \text{if } n = 1, 2\\ 1 & \text{if } n = 3, 4 \end{cases}$$

and

$$dim(\overline{P_n}) \leq \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. It is easy to see that the result holds for n = 1, 2, 3, and 4. Assume that $n \ge 5$. By Lemma 2.1, it follows that $\overline{P_n}$ is a subgraph of a graph obtained from K_n by deleting $\beta(K_n) = \beta(P_n)$ independent edges. Thus, by Remark 1.6 and Corollary 2.3, we get the desired result. \Box

Theorem 2.9. For any $n \ge 1$,

$$dim(P_n) + dim(\overline{P_n}) = \begin{cases} 0 & \text{if } n = 1, \\ 1 & \text{if } n = 2, \\ 2 & \text{if } n = 3, 4 \end{cases}$$

and

$$dim(P_n) + dim(\overline{P_n}) \le \begin{cases} \frac{n+2}{2} & \text{if } n \text{ is even,} \\ \frac{n+3}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. This follows from Theorem 2.7 and Lemma 2.8.

Theorem 2.10. If $n \ge 2$, then

$$dim(F_n) + dim(\overline{F_n}) \leq \begin{cases} \frac{n+4}{2} & \text{if } n \leq 6, n \text{ even,} \\ \frac{n+5}{2} & \text{if } n \leq 6, n \text{ odd,} \\ \frac{n+6}{2} & \text{if } n > 6, n \text{ even,} \\ \frac{n+7}{2} & \text{if } n > 6, n \text{ odd.} \end{cases}$$

Proof. For all $n \ge 2$, since $F_n = K_1 + P_n$, we have $dim(\overline{F_n}) = dim(\overline{P_n})$. Hence, the result is immediate from Theorem 2.7 and Lemma 2.8. \Box

Lemma 2.11. If $n \ge 3$, then

$$dim(\overline{C_n}) \leq \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. By Lemma 2.1, C_n has $\beta(K_n)$ independent edges. Thus, \overline{C}_n is a subgraph of a graph obtained from K_n by deleting $\beta(K_n)$ edges. By Corollary 2.3 (m = 2 and $k = \beta(K_n)$) and Remark 1.6, we have the desired result. \Box

Theorem 2.12. For $n \ge 3$,

$$dim(C_n) + dim(\overline{C_n}) \le \begin{cases} \frac{n+4}{2} & \text{if } n \text{ is even,} \\ \frac{n+5}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. This follows from Theorem 2.7 and Lemma 2.11. \Box

Corollary 2.13. If G is a Hamiltonian graph of order $n \ge 3$, then

$$dim(\overline{G}) \leq \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. Since G is Hamiltonian, it contains a cycle of order n. It follows that $dim(\overline{G}) \leq dim(\overline{C_n})$. The result is now immediate from Lemma 2.11. \Box

Corollary 2.14. If G is a Hamiltonian graph of order $n \ge 3$, then

$$dim(G) + dim(\overline{G}) \leq \begin{cases} \frac{3n-4}{2} & \text{if } n \text{ is even,} \\ \frac{3n-3}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. If $G = K_n$, then $dim(G) + dim(\overline{G}) \le n$ and so, the result holds. If $G \ne K_n$, then $\overline{G} \ne \emptyset$. This means that G is a subgraph of some graph obtained from K_n by deleting an edge. By Corollary 2.3 and Remark 1.6, $dim(G) \le n - 2$. Combining this with Corollary 2.13, we see that the desired inequality holds. \Box

Observe that in Corollary 2.13 and Corollary 2.14, nothing has been said about the dimension of the Hamiltonian graph G in the hypotheses. The following result gives a better upper bound if an additional assumption is imposed on the dimension of G.

Corollary 2.15. If G is a Hamiltonian graph of order $n \ge 3$ and $\dim(G) \le \beta(K_n)$, then $\dim(G) + \dim(\overline{G}) \le n$.

Proof. This follows from Lemma 2.1 and Corollary 2.13. Notice that the result also follows from Theorem 2.5 because according to Lemma 2.1, G has $\beta(K_n)$ independent edges. \Box

Lemma 2.16. If $n \ge 3$, then

$$dim(\overline{W_n}) \leq \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Proof. Since $W_n = K_1 + C_n$ for all $n \ge 3$, it follows that $\dim(\overline{W_n}) = \dim(\overline{C_n})$. Thus, the result follows from Lemma 2.11. \Box

Theorem 2.17. If $n \ge 3$, then

$$dim(W_n) + dim(\overline{W_n}) \le \begin{cases} 5 & \text{if } n = 6, \\ \frac{n+6}{2} & \text{if } n \text{ is even}, \\ \frac{n+7}{2} & \text{if } n \text{ is odd}. \end{cases}$$

٢

Proof. This follows from Theorem 2.7 and Lemma 2.16. \Box

Acknowledgment. The authors would like to thank the referees for their comments and suggestions.

References

- [1] R. T. Baylon, On the Geometric Index of Graphs, Masteral Thesis, MSU-Iligan Institute of Technology, February 1996.
- [2] S. R. Canoy and R. T. Isla, Some consequences of the Euclidean dimension of a complete multipartite graph, (accepted) Matimyas Matematika.
- [3] S. V. Gervacio, Unit embedding of graphs in the Euclidean n-space, plenary paper, Asian Math Conference 1995, Suranee University, Thailand.
- [4] S. V. Gervacio and B. P. Raposa, On the dimension and span of graphs, NRCP Research Project, 1996-97.
- [5] S. V. Gervacio and B. P. Raposa, Unit graphs in the plane, NRCP Research Project, 1996-97.
- [6] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachussets, 1972.
- [7] R. T. Isla, On the Dimension of Graphs, Ph.D. Dissertation, MSU-IIT, 2000