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The Span of Graphs Resulting
from Deletion of Edges

JOSELITO A. UY

Abstract

Let § be a set of edges in the complete graph K, This paper gives the span of K, - S
in some Euclidean spaces. Among others, it considers the cases when S is a singleton and
when S is independent.

1. Introduction

By a graph we mean a simple graph. One graph that is of importance in this
study is the complete graph K, of order n. The reader may refer to [H] for other
terms and concepts whose definitions are not given here.

We shall refer to R” as the Euclidean n-space with the Euclidean distance.
For convenience, the Euclidean 0-space will be understood to contain only the
zero point. The centroid of m points (xy, x, ..., Xim) € R" is the point (z,, z,, ...,
z,) € R", where

1
Zg =;(x]s +Xog + o X ).

Definition 1. A graph G is a unit graph in R” if there is a one-to-one
mapping ¢ : ¥(G) - R" such that the following conditions are satisfied:

1. If [x,y] € E(G), then |$(x) — ¢(y)| = 1 and the line segment [(x),9(»)]
joining ¢(x) and ¢(y) is an edge of G in R".

2. If [x,y] and [u,v] have no common vertex, then the line segments
[$(x),6(v)] and [¢(u),p(v)] have at most one point in common.
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Definition 2. The dimension of a graph G, denoted by dim(G), is h
smallest integer 7 such that G is a unit graph in R". > 15 The

Theorem 3. [G1] dim(K,)=n—1.

Definition 4. Let G be a unit graph in R". The span of G in R", denoteq by
span, (G), is the real number s such that for every € > 0, the following conditigng
are satisfied:

1. There exists a unit representation of G in R" which is contained in
some open ball of diameter s + €.

2. No unit representation of G in R” is contained in any open ball of

diameter s.

Theorem 3 tells us that the span of the complete graph K, is defined only in
Euclidean d-space where d > n — 1.

Theorem 5. [U] span,(K,)= for d2n-1.

2(n-1)
n

Definition 6. Let G be a graph whose vertices are points in R" and Wh‘OSe
edges are line segments connecting two vertices. Then G is flexible if its vertices
can be continuously moved in R” while preserving the length of all edges so Fh?t
at least two vertices change their mutual distance. If G is not flexible in R, it 18
said to be rigid in R" or n-rigid.

Remark 7. K, is d-rigid ford >n - 1.

. : rigid
The next theorem introduces an operation which, when applied to 2 d-ng
graph, produces a ‘bigger’ d-rigid graph.

Theorem 8. [T] Let G be a graph. Choose d 2 1 distinct vertices Vis V;o
vy of G and add a new vertex v, together with d edges vov, VoV, - ‘/’:vg is
Denote the resulting graph by A,G. Then G is d-rigid if and only if As

rigid.

2. Deletion of Edges

denotes the mw‘.(;v
f the vertex=¢
e removal ©

Let G be a graph. If e is an edge of G, then G — ¢
spanning subgraph of G not containing e. If S'1s a subset 0
then G — S denotes the subgraph of G resulting from th
elements from .S in succession.
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Theorem 9. [G2] Let ¢ be an edge of the complete graph K, of order n >
3. Then dim(K, — e)=n - 2.

Let e be an edge of the complete graph K, of order n > 3. It follows from
Theorem 9 that the span of K, — e in R™ is defined only foreachm >n - 2.

Theorem 10. Let e be an edge of the complete graph K, of order n > 3.

Then
span,_y(K, - e) = ,/M.
n-2

Proof. Let V(K,)={ 1,2, ..., n}and e = [n,n—1]. Then the vertices 1, 2,
-, =1 induce a complete subgraph X,_, of K, — e. Observe that K, — e can be
obtained from K, , by adding the vertex n together with the edges [1,n], [2,n],
-y [n=2,n]. Now K,_; is (n-2)-rigid by Remark 7. By Theorem 8, K, — e is
(n=2)-rigid.

Consider the complete subgraph K, of K, — e with {1, 2, ..., n-2} as its
vertex-set. Associate the vertex i with the point

pi=(0,..,0,42/2,0,...,0) e R,

where the coordinates are all 0 except the ith which is V2 / 2. Then |p; —p| =1

for any two distinct indices i andj. Let p,., = (a, a, ..., a) and =08, ..., B)
be points in R"2, where

a:_‘/_—zﬂ’L— vn-1) il st/i(l—‘ “"‘1)_

2n-2) 2(n-2)

Then |p,.; — pJ| = |pa—pi| = 1 fori =1, 2, ..., n — 2. Respectively, associate now
the vertices n—1 and n with the points p,_; and p,. Thus, a unit representation of
K, - e in R"?is obtained.

Let ¢ = (z, z, ..., Z»-2) be the centroid of the points py, p,, ..., p,. Then

l(ﬁ+a+ﬁ] V2

T 2n-2)

for each i. Now
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Thus a ball of diameter \/2(n —1)/(n-2) inscribes the points p,, pa, ..., ps. The
conclusion of the theorem now follows since K, — e is (n—2)-rigid. [J

Corollary 11. Let S be a nonempty set of edges in the complete graph K, of
order n > 3. Then

2(n-1)
n-2

span,_»(K, -S)<

Theorem 12. Let e be an edge of the complete graph K, of order n > 2.
Then

2(n-1)

span,, (K, —e) = -

form > n.

Proof. The case n = 2 is immediate. Suppose now that n > 3. It is sufficient
to show the case m = n. For each integer k, 1 <k <n — 1, let

p=00,..,0,v2/2,0,...,0) e R",

where the coordinates are all 0 except the kth which is V2 / 2. Then the points P
induce a unit X,_, in R". Note that
P € C={(0,..,0,a,b) e R": > + b* = 1/2}.

Let ¢ € C which is arbitrarily close to Pn-1.

‘ Now, the points p; and ¢ induce
unit K, — e in R". By Theorem 5,
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span, (K, —e) < span, (K, _,) = \/2(ﬂ-2)/(” -1).

This inequality is actually an equality since K, — e contains a complete subgraph
K, [

Corollary 13. Let S be a nonempty set of edges in the complete graph K, of
order n = 2. Then

2(n-2)
n-1

span,, (K, - S) <
for m = n.
The next theorem cites some cases where Theorem 12 can be improved.

Theorem 14. Let e be an edge of the complete graph K, of order n. If 3 < n

<5, then
S =

Proof. Let n = 3. Also, let p; = (0,0) and p, = (0,0). Take p; to be a point
in C = { (a, b) : a* + b* =1 } which is arbitrarily close to p2. Then the points p,,
P2, and p; form a unit K3 — e in R%.

Let n = 4. Also, let p, = (0,1/2,0), p, = (0,-1/2,0) and p; = (+/3/2,0,0). The
points p;, p, induce a unit K; in R’. Let C = { (a, 0, b) : @ + b = 3/4 }. Then p,
€ Cand |g — p| =1 for i =1, 2. Take a point p, € C which is arbitrarily close to
p3. Then the points py, p,, ps and ps form a unit K, — e in R’

Let n = 5. Also, let py = (112,-4/3/6,0,0), p, = (-1/2,-4/3/6,0,0), p, =

(0, \/5/2 ,0,0), and ps = (0,0, J€/3, 0). The points p,, p,, ps induce a unit K; in
R Let C={(0,0,a,b):a*+b*=2/3}. Thenp, e C and|g—p|=1fori=1,
2, 3. Take a point ps € C which is arbitrarily close to p,. Then the points p,, p,,

3, pa and ps form a unit K5 — e in R”.
The conclusion in each of the cases above follows from Theorem 5. (]

formz=n-—1.

3. Deletion of Independent Edges

Definition 15. A set S of edges in a graph G 1s independent \f the elements
of § are mutually nonadjacent. The largest number of edges in such a set 1s

called the independence number of G and is denoted bP B(G) or .
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Lemma 16. [U] B(K,) ={-’21J

Let S be an independent set of edges in K,. The next theorem tells ys j,
what Euclidean space is the span of K, — S defined.

Lemma 17. [I] Let S be an independent set of edges in the complete grapj,
K, ofordern>4.If2< |s| <\n/2), then dim(K, - S)=n-|S).

From hereon we denote by nG the sum of n copies of graph G. By O, we
mean the complete n-partite graph K(2, 2, ..., 2).

Lemma 18. [U] Forn >3,

1. O, is n-rigid,
2. span, (0,) = 2.

Theorem 19. Let S be an independent set of edges in the complete graph
K, with | S| =B = Ln/2]. Then

(a) K, — S is B-rigid for n > 6;

(b) spang(K, - S) =2 for even n > 6.

Proof. Let nbe odd. Then K, - S=K, + BK_Z =K, + Op. Since n 2 7, it
follows from Lemma 18 that O is B-rigid. Now Op has 2P vertices. We add
another vertex to Op and join it with its 2P vertices. The resulting graph is
isomoporphic to K, — S. It is B-rigid by Theorem 8.

Let n be even. Then K, — S = BK, = Oj. Since n > 6, it follows from

Lemma 18 that O is B-rigid and that spang(K, — S) =J2. O

Let S be an independent set of edges in the complete graph K with
\ S\ =|n/2). The next theorem considers the span of K, — S for odd n. It prOVides
an upper bound and a lower bound for the span of K, — S in lower dimension$
(see also Corollary 11).

Theorem 20. Let S be an independent set of the edges in the completé

graph K, If | S| =k > 2, then

2(n—k-1)

p— Sspan,,_k(K,,—S)Ss/—i.
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Proof. Let a=v2/2. For 1 <i<n—k letp=(0,...0, a0, ..0) e

R™", where the coordinates are all 0 except the jth whichisa. For n -2k + 1 <

Jsn—kletg,=(0,..0, - 0, ..., 0), where the coordinates are all 0 except
the jth which 1s —a. Then

S={[piq:)i=n-2k+1L,n-2k+2,..,n—k)
1s a set of & independent edges. It follows that the points p; and ¢g; form a unit

representation of K, — S in R"™*. Thus span, (X, — S)< V2. Butk, - S= kK_2

+ K, hence, K, — S contains a complete subgraph K, . In the unit
representation of K, — S above, the points p,, p, ..., p, actually form a unit
representation of K,_, in R™* Since K, «isrigid in R™ foreachm>n -k -1, we
have

2(n-k-1)

span, _x (Kn—k)=spann—k—l(K"—k)= n-k

by Theorem 5. Thus, span, (K,-;) < span, (K, — S) since K, is a subgraph of
K,-S O

An upper bound for the span of K, — S in Theorem 20 could be found in
terms of n. Consider the unit representation of K, — S in R"*, which is given in
the proof of Theorem 20. Let z = (zy, z,, ..., z,4) be the centroid of the points p;
and g;. Then

Z1=2y == Zpyu=0/n
and
Zn-2ur1 = Zp-2hs2 = = Zp e =0.

Now,

|p; - 2* = (@~ a/n)? +(n—2k ~1)(a/n) =(a/n)*(n* - n - 2k)
for 1 <i<n -2k and

pi - =lg; - 2" =(n=26)(0/n)? + a® = (a/n)* (n* + n - 2k)

forn-2k+1<i<n-k.Thus,
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span, (K, - S)Sz—a\/nz +n-2k :l\/Z(n2 +n-2k).
n n

Next, we have to compare this upper bound with J2 . Since k < n/2, it follows
that

1;\/Z(nz +n-2k) Zlmz +n—2(n/2)] =42.
n

Therefore, the upper bound V2 in Theorem 20 is better than l\/ 2(n® +n-2k) .

n

Corollary 21. Let S be an independent set of the edges in the complete
graph K, with | S|=B(K,) = B. Ifnis odd, then

2(n-1)
n+l

<spang(K, —S)< V2.
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