The Span of Graphs Resulting from Deletion of Edges

JOSELITO A. UY

Abstract

Let S be a set of edges in the complete graph K_n . This paper gives the span of $K_n - S$ in some Euclidean spaces. Among others, it considers the cases when S is a singleton and when S is independent.

1. Introduction

By a graph we mean a simple graph. One graph that is of importance in this study is the complete graph K_n of order n. The reader may refer to [H] for other terms and concepts whose definitions are not given here.

We shall refer to \mathbb{R}^n as the Euclidean *n*-space with the Euclidean distance. For convenience, the Euclidean 0-space will be understood to contain only the zero point. The *centroid* of *m* points $(x_{k1}, x_{k2}, ..., x_{kn}) \in \mathbb{R}^n$ is the point $(z_1, z_2, ..., z_n) \in \mathbb{R}^n$, where

$$z_s = \frac{1}{m}(x_{1s} + x_{2s} + \dots + x_{ms}).$$

Definition 1. A graph G is a *unit graph* in \mathbb{R}^n if there is a one-to-one mapping $\phi : V(G) \to \mathbb{R}^n$ such that the following conditions are satisfied:

- 1. If $[x,y] \in E(G)$, then $|\phi(x) \phi(y)| = 1$ and the line segment $[\phi(x),\phi(y)]$ joining $\phi(x)$ and $\phi(y)$ is an edge of G in \mathbb{R}^n .
- 2. If [x,y] and [u,v] have no common vertex, then the line segments $[\phi(x),\phi(y)]$ and $[\phi(u),\phi(v)]$ have at most one point in common.

JOSELITO A. UY, Department of Mathematics, MSU-IIT, has B.S. degrees in mathematics and physics (both magna cum laude) from the Mindanao State University and an M.S. degree in mathematics from MSU-IIT. Dr. Uy is MSU-IIT's first Ph.D. graduate. His dissertation in graph theory was written under the supervision of Prof. SEVERINO GERVACIO.

Definition 2. The *dimension* of a graph G, denoted by dim(G), is the smallest integer n such that G is a unit graph in \mathbb{R}^n .

Theorem 3. [G1] $dim(K_n) = n - 1$.

Definition 4. Let G be a unit graph in \mathbb{R}^n . The span of G in \mathbb{R}^n , denoted by span_n (G), is the real number s such that for every $\varepsilon > 0$, the following conditions are satisfied:

- 1. There exists a unit representation of G in \mathbb{R}^n which is contained in some open ball of diameter $s + \varepsilon$.
- 2. No unit representation of G in \mathbf{R}^n is contained in any open ball of diameter s.

Theorem 3 tells us that the span of the complete graph K_n is defined only in Euclidean *d*-space where $d \ge n - 1$.

Theorem 5. [U]
$$span_d(K_n) = \sqrt{\frac{2(n-1)}{n}}$$
 for $d \ge n-1$.

Definition 6. Let G be a graph whose vertices are points in \mathbb{R}^n and whose edges are line segments connecting two vertices. Then G is *flexible* if its vertices can be continuously moved in \mathbf{R}^n while preserving the length of all edges so that at least two vertices change their mutual distance. If G is not flexible in \mathbf{R}^n , it is said to be *rigid* in \mathbf{R}^n or *n*-*rigid*.

Remark 7. K_n is *d*-rigid for $d \ge n - 1$.

The next theorem introduces an operation which, when applied to a *d*-rigid graph, produces a 'bigger' d-rigid graph.

Theorem 8. [T] Let G be a graph. Choose $d \ge 1$ distinct vertices $v_1, v_2, ..., C$ v_d of G and add a new vertex v_0 together with d edges $v_0v_1, v_0v_2, ..., v_{0v_d}$ to G. Denote the resulting graph by A_dG . Then G is d-rigid if and only if A_dG is drigid.

2. Deletion of Edges

Let G be a graph. If e is an edge of G, then G - e denotes the maximal ning subgraph of G and G. spanning subgraph of G not containing e. If S is a subset of the vertex-set of G, then G = S denotes the then G - S denotes the subgraph of G resulting from the removal of single elements from S in subset of the subgraph of G resulting from the removal of single subgraph of G resulting from the removal of G rem elements from S in succession.

Theorem 9. [G2] Let e be an edge of the complete graph K_n of order $n \ge 3$. Then $dim(K_n - e) = n - 2$.

Let *e* be an edge of the complete graph K_n of order $n \ge 3$. It follows from Theorem 9 that the span of $K_n - e$ in \mathbb{R}^m is defined only for each $m \ge n - 2$.

Theorem 10. Let e be an edge of the complete graph K_n of order $n \ge 3$. Then

$$span_{n-2}(K_n - e) = \sqrt{\frac{2(n-1)}{n-2}}.$$

Proof. Let $V(K_n) = \{1, 2, ..., n\}$ and e = [n, n-1]. Then the vertices 1, 2, ..., n-1 induce a complete subgraph K_{n-1} of $K_n - e$. Observe that $K_n - e$ can be obtained from K_{n-1} by adding the vertex n together with the edges [1,n], [2,n], ..., [n-2,n]. Now K_{n-1} is (n-2)-rigid by Remark 7. By Theorem 8, $K_n - e$ is (n-2)-rigid.

Consider the complete subgraph K_{n-2} of $K_n - e$ with $\{1, 2, ..., n-2\}$ as its vertex-set. Associate the vertex *i* with the point

$$p_i = (0, ..., 0, \sqrt{2/2}, 0, ..., 0) \in \mathbf{R}^{n-2},$$

where the coordinates are all 0 except the *i*th which is $\sqrt{2}/2$. Then $|p_i - p_j| = 1$ for any two distinct indices *i* and *j*. Let $p_{n-1} = (\alpha, \alpha, ..., \alpha)$ and $p_n = (\beta, \beta, ..., \beta)$ be points in \mathbb{R}^{n-2} , where

$$\alpha = \frac{\sqrt{2}(1+\sqrt{n-1})}{2(n-2)}$$
 and $\beta = \frac{\sqrt{2}(1-\sqrt{n-1})}{2(n-2)}$.

Then $|p_{n-1} - p_i| = |p_n - p_i| = 1$ for i = 1, 2, ..., n - 2. Respectively, associate now the vertices n-1 and n with the points p_{n-1} and p_n . Thus, a unit representation of $K_n - e$ in \mathbb{R}^{n-2} is obtained.

Let $c = (z_1, z_2, ..., z_{n-2})$ be the centroid of the points $p_1, p_2, ..., p_n$. Then

$$z_i = \frac{1}{n} \left(\frac{\sqrt{2}}{2} + \alpha + \beta \right) = \frac{\sqrt{2}}{2(n-2)}$$

for each *i*. Now

$$|p_i - c|^2 = \left[\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2(n-2)}\right]^2 + (n-3)\left[0 - \frac{\sqrt{2}}{2(n-2)}\right]^2 = \frac{n-3}{2(n-2)}$$

for i = 1, 2, ..., n - 2 and

$$|p_{n-1}-c|^2 = (n-2) \left[\frac{\sqrt{2}(1+\sqrt{n-1})}{2(n-2)} - \frac{\sqrt{2}}{2(n-2)} \right]^2 = \frac{n-1}{2(n-2)},$$
$$|p_n-c|^2 = (n-2) \left[\frac{\sqrt{2}(1-\sqrt{n-1})}{2(n-2)} - \frac{\sqrt{2}}{2(n-2)} \right]^2 = \frac{n-1}{2(n-2)}.$$

Thus a ball of diameter $\sqrt{2(n-1)/(n-2)}$ inscribes the points $p_1, p_2, ..., p_n$. The conclusion of the theorem now follows since $K_n - e$ is (n-2)-rigid. \Box

Corollary 11. Let S be a nonempty set of edges in the complete graph K_n of order $n \ge 3$. Then

$$span_{n-2}(K_n-S) \le \sqrt{\frac{2(n-1)}{n-2}}$$

Theorem 12. Let e be an edge of the complete graph K_n of order $n \ge 2$. Then

$$span_m(K_n - e) = \sqrt{\frac{2(n-1)}{n-2}}$$

for $m \ge n$.

Proof. The case n = 2 is immediate. Suppose now that $n \ge 3$. It is sufficient to show the case m = n. For each integer $k, 1 \le k \le n - 1$, let

$$p_k = (0, ..., 0, \sqrt{2}/2, 0, ..., 0) \in \mathbf{R}^n$$

where the coordinates are all 0 except the kth which is $\sqrt{2}/2$. Then the points p_k induce a unit K_{n-1} in \mathbb{R}^n . Note that

$$p_{n-1} \in C = \{ (0, ..., 0, a, b) \in \mathbb{R}^n : a^2 + b^2 = 1/2 \}$$

Let $q \in C$ which is arbitrarily close to p_{n-1} . Now, the points p_k and q induce a unit $K_n - e$ in \mathbb{R}^n . By Theorem 5,

December 1999

$$span_n(K_n - e) \le span_n(K_{n-1}) = \sqrt{2(n-2)/(n-1)}.$$

This inequality is actually an equality since $K_n - e$ contains a complete subgraph K_{n-1} . \Box

Corollary 13. Let S be a nonempty set of edges in the complete graph K_n of order $n \ge 2$. Then

$$span_m(K_n-S) \leq \sqrt{\frac{2(n-2)}{n-1}}.$$

for $m \ge n$.

The next theorem cites some cases where Theorem 12 can be improved.

Theorem 14. Let e be an edge of the complete graph K_n of order n. If $3 \le n \le 5$, then

$$span_m(K_n - e) = \sqrt{\frac{2(n-2)}{n-1}}$$

for $m \ge n - 1$.

Proof. Let n = 3. Also, let $p_1 = (0,0)$ and $p_2 = (0,0)$. Take p_3 to be a point in $C = \{ (a, b) : a^2 + b^2 = 1 \}$ which is arbitrarily close to p_2 . Then the points p_1 , p_2 , and p_3 form a unit $K_3 - e$ in \mathbb{R}^2 .

Let n = 4. Also, let $p_1 = (0, 1/2, 0)$, $p_2 = (0, -1/2, 0)$ and $p_3 = (\sqrt{3}/2, 0, 0)$. The points p_1, p_2 induce a unit K_2 in \mathbb{R}^3 . Let $C = \{ (a, 0, b) : a^2 + b^2 = 3/4 \}$. Then $p_3 \in C$ and $|q - p_i| = 1$ for i = 1, 2. Take a point $p_4 \in C$ which is arbitrarily close to p_3 . Then the points p_1, p_2, p_3 and p_4 form a unit $K_4 - e$ in \mathbb{R}^3 .

Let n = 5. Also, let $p_1 = (1/2, -\sqrt{3}/6, 0, 0)$, $p_2 = (-1/2, -\sqrt{3}/6, 0, 0)$, $p_3 = (0, \sqrt{3}/2, 0, 0)$, and $p_4 = (0, 0, \sqrt{6}/3, 0)$. The points p_1, p_2, p_3 induce a unit K_3 in \mathbb{R}^4 . Let $C = \{ (0, 0, a, b) : a^2 + b^2 = 2/3 \}$. Then $p_4 \in C$ and $|q - p_i| = 1$ for i = 1, 2, 3. Take a point $p_5 \in C$ which is arbitrarily close to p_4 . Then the points p_1, p_2, p_3, p_4 and p_5 form a unit $K_5 - e$ in \mathbb{R}^4 .

The conclusion in each of the cases above follows from Theorem 5. \Box

3. Deletion of Independent Edges

Definition 15. A set S of edges in a graph G is *independent* if the elements of S are mutually nonadjacent. The largest number of edges in such a set is called the *independence number* of G and is denoted b $\mathcal{P}\beta(G)$ or β .

Lemma 16. [U] $\beta(K_n) = \left\lfloor \frac{n}{2} \right\rfloor$.

Let S be an independent set of edges in K_n . The next theorem tells us in what Euclidean space is the span of $K_n - S$ defined.

Lemma 17. [I] Let S be an independent set of edges in the complete graph K_n of order $n \ge 4$. If $2 \le |S| \le \lfloor n/2 \rfloor$, then $\dim(K_n - S) = n - |S|$.

From hereon we denote by nG the sum of n copies of graph G. By O_n we mean the complete *n*-partite graph K(2, 2, ..., 2).

Lemma 18. [U] *For* $n \ge 3$,

1. O_n is n-rigid; 2. $span_n(O_n) = \sqrt{2}$.

Theorem 19. Let S be an independent set of edges in the complete graph K_n with $|S| = \beta = \lfloor n/2 \rfloor$. Then

- (a) $K_n S$ is β -rigid for $n \ge 6$;
- (b) $span_{B}(K_{n}-S) = \sqrt{2}$ for even $n \ge 6$.

Proof. Let *n* be odd. Then $K_n - S = K_1 + \beta \overline{K_2} = K_1 + O_\beta$. Since $n \ge 7$, it follows from Lemma 18 that O_β is β -rigid. Now O_β has 2β vertices. We add another vertex to O_β and join it with its 2β vertices. The resulting graph is isomoporphic to $K_n - S$. It is β -rigid by Theorem 8.

Let *n* be even. Then $K_n - S = \beta \overline{K_2} = O_\beta$. Since $n \ge 6$, it follows from Lemma 18 that O_β is β -rigid and that $span_\beta(K_n - S) = \sqrt{2}$. \Box

Let S be an independent set of edges in the complete graph K_n with $|S| = \lfloor n/2 \rfloor$. The next theorem considers the span of $K_n - S$ for odd n. It provides an upper bound and a lower bound for the span of $K_n - S$ in lower dimensions (see also Corollary 11).

Theorem 20. Let S be an independent set of the edges in the complete graph K_n . If $|S| = k \ge 2$, then

$$\sqrt{\frac{2(n-k-1)}{n-k}} \le \operatorname{span}_{n-k}(K_n-S) \le \sqrt{2}.$$

Proof. Let $\alpha = \sqrt{2}/2$. For $1 \le i \le n - k$, let $p_i = (0, ..., 0, \alpha, 0, ..., 0) \in \mathbb{R}^{n-k}$, where the coordinates are all 0 except the *i*th which is α . For $n - 2k + 1 \le j \le n - k$, let $q_i = (0, ..., 0, -\alpha, 0, ..., 0)$, where the coordinates are all 0 except the *j*th which is $-\alpha$. Then

$$S = \{ [p_i, q_i] : i = n - 2k + 1, n - 2k + 2, ..., n - k \}$$

is a set of k independent edges. It follows that the points p_i and q_i form a unit representation of $K_n - S$ in \mathbb{R}^{n-k} . Thus $span_{n-k}(K_n - S) \le \sqrt{2}$. But $K_n - S = k\overline{K_2}$ + K_{n-2k} ; hence, $K_n - S$ contains a complete subgraph K_{n-k} . In the unit representation of $K_n - S$ above, the points $p_1, p_2, \ldots, p_{n-k}$ actually form a unit representation of K_{n-k} in \mathbb{R}^{n-k} Since K_{n-k} is rigid in \mathbb{R}^m for each $m \ge n - k - 1$, we have

$$span_{n-k}(K_{n-k}) = span_{n-k-1}(K_{n-k}) = \sqrt{\frac{2(n-k-1)}{n-k}}$$

by Theorem 5. Thus, $span_{n-k}(K_{n-k}) \leq span_{n-k}(K_n - S)$ since K_{n-k} is a subgraph of $K_n - S$. \Box

An upper bound for the span of $K_n - S$ in Theorem 20 could be found in terms of *n*. Consider the unit representation of $K_n - S$ in \mathbb{R}^{n-k} , which is given in the proof of Theorem 20. Let $z = (z_1, z_2, ..., z_{n-k})$ be the centroid of the points p_i and q_j . Then

$$z_1 = z_2 = \cdots = z_{n-2k} = \alpha/n$$

and

$$z_{n-2k+1} = z_{n-2k+2} = \cdots = z_{n-k} = 0.$$

Now,

$$|p_i - z|^2 = (\alpha - \alpha/n)^2 + (n - 2k - 1)(\alpha/n)^2 = (\alpha/n)^2(n^2 - n - 2k)$$

for $1 \le i \le n - 2k$, and

$$|p_i - z|^2 = |q_i - z|^2 = (n - 2k)(\alpha/n)^2 + \alpha^2 = (\alpha/n)^2(n^2 + n - 2k)$$

for $n - 2k + 1 \le i \le n - k$. Thus,

$$span_{n-k}(K_n-S) \le \frac{2\alpha}{n}\sqrt{n^2+n-2k} = \frac{1}{n}\sqrt{2(n^2+n-2k)}.$$

Next, we have to compare this upper bound with $\sqrt{2}$. Since $k \le n/2$, it follows that

$$\frac{1}{n}\sqrt{2(n^2+n-2k)} \ge \frac{1}{n}\sqrt{2[n^2+n-2(n/2)]} = \sqrt{2}.$$

Therefore, the upper bound $\sqrt{2}$ in Theorem 20 is better than $\frac{1}{n}\sqrt{2(n^2+n-2k)}$.

Corollary 21. Let S be an independent set of the edges in the complete graph K_n with $|S| = \beta(K_n) = \beta$. If n is odd, then

$$\sqrt{\frac{2(n-1)}{n+1}} \le span_{\beta}(K_n - S) \le \sqrt{2}.$$

References

- [G1] Severino V. Gervacio, Unit embedding of graphs in the Euclidean nspace, Plenary Paper, AMC' 95, Suranaree University, Thailand
- [G2] Severino V. Gervacio and Blessilda P. Raposa, On the dimension and span of graphs, NRCP Research Project, 1996-97
- [H] Frank Harary, Graph Theory, Addison-Wesley, Massachusetts, 1972
- [I] Rowena T. Isla, On the dimension of graphs, by personal communication
- [M] Hiroshi Maehara, Distance graphs in Euclidean space, Ryukyu Math Journal 5 (1992), 33-51
- [T] Tiong-Seng Tay and W. Whiteley, *Generating isostatic frameworks*, Structural Topology, **11** (1985), 21-69
- [U] Joselito A. Uy, On the span of graphs in the Euclidean n-space, Matimyas Matematika, 24 (1) (1999), 25-32