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An Integration by Parts Formula For an Integral in Local System 
SERGIO R. CANOY, JR. 

In this paper, we give an integration bv parts formula for the S-integral introduced by Wang and Ding [1]. Also, we will show that a real-valued function of bounded variation can be a multiplier for the S-integrable functions. 

Some integration by parts formulas for the Henstock integral as well as for the ASP-integral had been proved (See [1] and [3]). Such formulas had been successfully obtained by first introducing Stieltjes-type integrals. Lee in [1] defined the Henstock-Stieltjes integral (which turned out to be equivalent to the Perron-Stieltjes integral) and Xu Dongfu, et. al. (3] introduced the ASP-Stieltjes integral. 

1. Preliminaries 

Abstract 

In this paper, we define a Stieltjes-type integral using Thomson's local 
system. We shall then use this new concept to obtain an integration by parts 
formula for the S-integral introduced by Wang and Ding (2]. Moreover, we will show that a function of bounded variation can be a multiplier for the S-integrable 
functions. 

() (x} e S(); 

Definition 1.1. Let R be the set of real numbers. Suppose for every x e R 
there corresponds a non-empty family S(*) of subsets of R satisfying the 
following conditions: 

(ii) if g e S), then x e o; 
(ii) if a, e S(r) and o, c o;, then o, ¬ Sr): 
(iv) if oe S(¢) and 8>0, then gn(*-8, x + 8) e S(). 

Then S = (S(r):x e R is called a local system. 
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Definition 1.2. A local system S is said to be bilateralif every set o e S(*) 

contains points on either side of x. It is said to be filtering if for every x, we 
It satisfies the 

have o00, ¬ S(r) whenever o and o, belong to S(x). 

intersection condition if for every collection of sets o,:x¬ R} With o, e 

S(r) there exists a positive function such that if 0 <y - x< min{),(x)}. 

Definition 1.3. A family Cof intervals is called an S-cover of R if for each 

point x E R the set 

or) = :y =x, ory >x and [x.y] ¬ C, or y <x and [y.x] C} 

belongs to the family S(r). The family f¡(r) :xe R} is a choice from S. 
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Lemma 1.4 (Intersection Lemma). Suppose that the local system is 

filtering. IfC; and C are S-covers of R, then so is COC. 

Lemma 1.5 (Thomson's Lemma). Let S be a local system, which is bilate 
ral and has the intersection condition. If C is an S-cover of R, then there exists 
a C-partition D = {[u,v]} of any interval [a,b]. 

Throughout, we have the following definition for an associated point (tag)E 
of [u.v] in a division D= {[u,v]} of [a,b]. 

Definition 1.6. Let D = {u,vl} be a division of an S-cover C of R 
corresponding to the choice (o(x): xe R} from S. Then the associated point 

of [u,v] is defined to be u, if ve o(u), and v, if ue o(v). 

Definition 1.7. A function f : [a,b] ’ R is said to be S-integrable to the 
number A if for every [ >0 there exists an S-cover Cof R such that for any 
C-partition D= ((4,v];5)} of [a,b], we have 

(D)EfEX-u) -A<e. 
In this case we write (5)[f(ydr = A. 

Theorem 1.8 (Henstock's Lemma). Let f: [a,b] R be S-integrable and 

let F(x) = (S) fvdt be its primitive. Then for every & > 0, there exrists an S 
cover Cof R such that for any C-partition D= (((u,v]:)} of [a,b], we have 

(D)rEX(v-u)- F(v) + F(u) < &. 
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then o,ng,nx.l0. The set {o,:xe R} is called a choice from S. 
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Definition 1.9. A function F: (a,b] ’ R is said to be S-continuous at the 
point x if for every [>0 there exists a o(x) e Sr) such that for every ye 
or)la.b), we have F(x) � Fy)| <[. 

Definition 1.10. A functionf: [a.b] ’ R is said to be S-Stieltjes integrable 
with respect to a real-valued function g on [a,b] to a number J if for every [ > 0, 
there exists an S-cover Cof R such that for every C-partitionD = (u.v];:E)} of 
[a,b], we have (D) E)g(v)- g(u)} -J<e. In this case we write, 

2. Results 

J= (SS) [f dg or J= [f dg. if there is no ambiguity. 

Theorem 2.l. ff: (ab] Ris S-integrable on [a.b] with S-primitive F 
given by 

F:) =(S)[odt, 
then F is S-continuous on [a,b]. 

Proof. Let z e [a,b] and let [ >0. Then, by Henstock's Lemma for the S 
integral, there exists an S-cover C of R such that for any C-partition D = 
{((u,v]:E)} of [a,b], we have 

(D)2NEXv -u)- F(v) + F(u) |< 

Let {or)} be the choice in S belonging to the S-cover C. Let 

t(z) = oz) n(z 4(1+|f(2)) 

<+ (1+f)). 
2 

,Z+ 

Ihen t(2) e S(2). Now, let y e t(z). Then either [y.z] or [2,y] e C. Thus 

Therefore, F is S-continuous on (a,b]. 

2 

F(2) - F()| s F(2) + Fy) -A:X2 -y)|l +|2Nz -y)) 

4(1+|/(e) 

65 

2(1 +|f(:) 
= ¬. 

The proof of the next theorem follows from a standard argument. 
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<(D)}|g(a) - g()|F(v) - F(E) + (D)X]g(5)-gu)|F(u) - FG)) 
+ (D)EFE)Ng(v) -g(u)} - Fdg 

3(1+V(p)(g)) + 
3(1+V(g)) (1+V(g) + -=[. 

Therefore, g is S-Stieltjes integrable with respect to F on [a,b] and 

=F dg + Lg dF = F(b)g(b) � F(a)gla). O 

We will use the preceding theorem to prove the following theorem. 

Theorem 2.4. Iff: [a.b] ’R is S-integrable with S-primitive F, and the 
function g:[a.b] R is ofbounded variation, and if Fdg exists, then fg is S 
integrable and 

(s)ff()g) dr = F(b)e(b) � F(a)gla) - [F dg. 
Proof. Without loss of generality, we may assume that F(a) =0. Let [>0. 

Then, by Henstock's Lemma for S-integrals, there exists an S-cover C, of R such 
that if D, = {((u,v]:)} is a C1-partition of [a,b]., then 

(D)rGXv-u)- F() + F(u)l <e. 

By Theorem 2.3,gdF exists, and hence there exists an S-cover C, of R 
such that if D, = {([u,v];E)} is a C-partition of [a,b], then 

l(D)}g(){F(V) � Fu)} -Lg dF|<e. 

Let C= CiOC. Then, by the Intersection Lemma, C is an S-cover of R. 
Let {o(x):xe R} be the choice from S determined by C. For each xe R, define 
T(x) to be o(x)n(b,o) if x >b, o(r) if x = b, and o(x)n-o,b) if x < b. Then the 

Set {t(r):xe R! is a choice from S. Let C* be an S-cover of R corresponding to 
the choice (t(x) :xe R and let D be a C*-partition of [a.b] given by 
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