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Equivalence of Proof Techniques 
in Elementary Real Analysis 

ROLANDO N. PALUGA 

Abstract 

Several lemmas have been introduced by various authors to be used as tools in the 
proofs of theorems in real analysis. They come under various names: Cousin's Lemma, 

Thomson's Lemma, Creeping Lemma, Weak Creeping Lemma, Ford's Lemma, and 
Shanahan's Lemma. In this paper, they are shown to be equivalent. 

There are many articles that introduce tools for proving theorems in real 
analysis. To cite some, we have Cousin's Lemma (see [3] and [6), Thomson's 
Lemma (see [1] and [2]), the Creeping Lemma and the Weak Creeping Lemma 
(see [7]), Shanahan's Lemma (see [8), and Ford's Lemma (see [5). These 
lemmas have similar applications. For example, using any of these lemmas, we 
can prove the theorem: If f is continuous on [a,b], then f is Riemann integrable 
on a,b]. It is not surprising that these lemmas have similar applications since 
they are equivalent. It is the purpose of this paper to present a proof of the said 
equivalence. 

Let us consider the lemmas and the definitions used. 

A partition of an interval [a,b] is a finite collection of non-overlapping closed intervals whose union is [a,b]. A tagged partitio of [a,b] is a partition with one point, referred to as a tag, chosen from each sub-interval comprising the 
partition. A tagged partition of [a,b] will be denoted by {(c;[x, 1):1 sisn) 
Where a = Xo < x << xy- < n = b and c; E Xi-, X] is the tag of the interval [x-l for each i. Now let S be a positive function defined on [a,b]. A 

Cousin's Lemma (CL), IfÑ is a positive function defined on the inter-val \a,6], then there exists a &-fine tagged partition of la,6|. 

For a proof of this, see [3] or (6]. 
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O-fine tagged partition of [a,b] is a tagged partition {(c:[x,x, ):1sisn} of 
(a,6] that satisfies (x;-lc (,- 8(ci),c;t SC:)) for each i. 
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A collectionG of closed subintervals of [a,b] is a full cover of (a,b] if for 
cach x e (ab) there corresponds a number 8(x) >0 such that every closed 
subinterval of [a,b] that contains x and has length less than 8(:) belongs to ,. 

Thomson's Lemma (TL), If is a full cover of [a,b], then contains a 
partition of [a,b]. 

For a proof of this, see [1] or [2). 

Creeping Lemma (C,L). Let p be a transitive relation on the interval 
(a,b) ifeach x e [a,b] has a neighborhood N, such that upv whenever u e [a] 
nN, and ve (x,b]oN, u< v, then apb. 

For a proof of this see [7]. 
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Weak Creeping Lemma (WCL), Let p be a transitive relation on the 
interval [a,b]. Ifeach x e (a,b] has a neighborhood N, such that upv whenever 
u, vE (a,b] n N, < v, then apb. 

The proof of this lemma follows directly from the Creeping Lemma. 
A statement P/) concerning intervals I will be called interval-additive if whenever P(/) and P(/2) are true and int(/, h)ð then P(, U,) is also true. We say that a proposition P is true at a point xo E a,b] if P(%) is true for some subinterval , of (a,b] such that xo ¬ int lo (with respect to the relative topology on [a,b]). 

Ford's Lemma (FL). IfP is an interval-additive proposition that is true at each point of [a,b], then P([a,b]) is true. 

For a proof of this, see [5]. 

Let be a family of subsets of (a,b]. Let us say that is local if each ye 
[a.b] has a neighborhood, with respect to the relative topology on [a,b], which is 
a member of . We say that is additive if whenever Ci, Cz e such thatC.a 

C; #Ø, then C;u C e5. 

Shanahan's Lemma (SL). fG is local, additive family of closed 
subintervals of [a,b], then [a,b] e�. 

For the proof of this, see [8]. 
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We will now prove that these lemmas are equivalent. For the direction of 
the proof, we consider the following: 

CL’TL ’CL ’WCL FL» SL ’CL 

Proposition 1. Cousin 's Lemma implies Thomson 's Lemma. 

Proof. Let be a full cover of [a,b]. Then for each x e [a,b], there cor 
responds a number o*) >0 such that every closed subinterval of [a,b] that con 
tains x and has length less than ði(x) belongs to . Define 

õ,(:) -8,(«), xe [ab). 2 

Clearly, ôz(x) > 0, for all x e [a,b]. By Cousin's Lemma, there exists a 6; -fine 

tagged partition {(c:xi-):1sisn} of [a,b]. Since 

C; e [x-1xc (G-S(ci), c; + ôz(c;)) 

for each i, then each x;-1l contains c and its length X; - Xi< Si(c). Thus, 

(X-,X] for each i. Hence, contains a parlition of [a,b]. O 

Proposition 2. Thomson's Lemma implies the Creeping Lemma. 

Proof. Let p be a relation satisfying the hypothesis of the Creeping Lemma. 

Let x e [a,b]. Then, there exists a neighborhood N, ofx such that upv whenever 
follows then that there is an open 

uE N,nax] and ve , n x,b], u < v. 

interval , such that x e I,c NÊ. Define as follows: 

G{[4,v]: uel[ax] and ve lAx,b]}. 

Let m, = inf fu : u e I^la]} and M,= sup {v: vel^x,b]}. Let =U{L: 

xe [a,b]}. We note the following obvious remarks: 

1. is a collection of closed subintervals of la.bl: 

2. m, and M, exist for any xe [a,bl: 

3. ma = a < Ma and mb < Mb = b: 

5. m, < x< M, for each xe (a,b). 

If [u,v] eG, then upv. 

Claim: G is a full cover of [a,b]. 
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Let 8(x) = 
min x-m,, M, - x, if xe (a, b), 
max (x-m, , M, -x}, if x = a or x =b. 

Clearly, S(¢) > 0, for all x e (a,b]. Let [u,v] be a subinterval of [a,b] that 
contains x and has length less than &(x). Consider the following cases: 

() x= a. Then x=a= u. Clearly, v - a< &(a) = Ma - a, thus u =a <V< 
M. It follows then that [u,v] e SaE5 

(ii) x = b. Then x= b= v. Clearly, b -u< (b)=b- mb, thus m, <u<v= 
b. It follows that [u,v] e Gc5 
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(2n) x¬ (a,b). Then, x u sv-u< (x) Sx- m, and v-xsv-u<S(x) 
s M, - x. Thus, m, <usx[v< M,. In effect, u e l,n[a,x] and ve l,^r,b]. 
Hence, [u,v] e G c5. Therefore, is a full cover. 

By Thomson's Lemma, C, contains a partition {(k-1, x] :1sisn} of [a,b]). 
Since [x,-l, X] e G, then x,-px, for each i. Hence, by transitivity, apb. O 

Proposition 3. The Creeping Lemma implies the Weak Creeping Lemma. 

The proof follows directly. 

Proposition 4. The Weak Creeping Lemma implies Ford's Lemma. 
Proof. Let P be a proposition satisfying the hypothesia of Ford's Lemma. 

Define a relation p on (a,b] as follows: For u, vE la,b], upv if and only if there 
exists a subinterval I of a,b] such that u, vE intI (interior of / with respect to 
the relative topology on [a,b]) and P() is true. 

Suppose upv and vpw. Then there exist subintervals /, and I, of la.bl suuch 
that u, ye int ,, V, w¬ int 2, and P) and P(0) are true. Since Io, + 3. then 
Iv, is a subinterval of [a,b]. Also, u, wE int I; U int I2 C int(/L). More 
over, int(/1) # Ø, thus P(/|U2) is true. Hence, upw. This shows that o is 
transitive. 

Let x e [a,b]. 
true and xe int I, 

e N,O[a,b], u < v. 

Then there exists a subinterval , of [a,b] such that PUN ie 
with respect to the relative topology. Let N, = int I. Let . 
Then, u, ve int I,. Now, P(U,) is true, thus upv. 

Hence, by the Weak Creeping Lemma, apb, i.e., there exists a subinterval / 
of [a,b] such that a, b e int() with respect to the relative topology and P() is 
true. Clearly, I = [a,b]. Hence, P([a,b]) is true. 

Proposition 5. Ford 's Lemma implies Shanahan 's Lemma. 

Proof. Let G be local, additive family of closed subintervals of (a,b]. Let 
P) be the proposition "/e G". 
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Suppose P(l) and P(/; ) are true where int(/, h) 2. Then I,, , e < and 
LOb Ø. Since S is additive then I, UheG Thus, P(U, u) is true. This 
shows that P is interval-additive. 

Let xe (ab]. Since , is local thern there exists a neighborhood N, of x such 
that N,e 5 This implies that N, is a closed subinterval of [a,b] and P(N,) is true. 
Clearly, xE int N. Thus P is true at x. 

Hence, by Ford's Lemma, P([a,b|) is true, i.e., [a,b] e < D 

Proposition 6. Shanahan's Lemma implies Cousin's Lemma. 

Proof. In [8], the Heine-Borel Theorem is shown equivalent to Shanahan's 
Lemma while in (4), it is shown equivalent to Cousin's Lemma. Thus, the 
implica-tion follows (actually equivalent). O 

To this end, it is worth noting that these lemmas are equivalent to the 
following important theorems: 

1. The Least Upper Bound Property 
2. The Heine-Borel Theorem 

3. The Bolzano-Weierstrass Theorem 

4. The Monotone Sequence Property 

5. The Cauchy Convergence Criterion 

6. The Nested Sets Property 

The equivalence of these theorems together with Cousin's Lemma and 

Thomson's Lemma are shown in [4]. 
The author would like to extend his gratitude to Dr. Carpio for reading this 

paper. 
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