On Connected Graphs G Such That $L^3(G)$ is Eulerian But $L^2(G)$ is Not

JOSELITO A. UY

Abstract

A simple graph G is said to possess property π if $L^3(G)$ is Eulerian but $L^2(G)$ is not. If G is a connected simple graph satisfying π , then G is a path of order 4. This result is useful in constructing disconnected simple graphs satisfying property π .

Let G be a simple graph with nonempty edge-set. The *line graph* of G , denoted by $L(G)$, is the graph whose vertices are the edges of G and where two vertices of $L(G)$ are adjacent whenever the corresponding edges of G are. The following remark is immediate from definition.

Remark 1.0. If $u = x \cdot y$ is an edge of G, then

 $deg_{L(G)} u = deg_G x + deg_G y - 2.$

A graph is *eulerian* if it has a spanning closed walk that traverses each edge exactly once. We say that a graph H possesses property π if $L^3(H)$ is eulerian but $L^2(H)$ is not. Our goal in this paper is to find all connected simple graphs with property π . We will also give a way of constructing disconnected graphs satisfying the same property.

1. Preliminaries

Lemma 1.1. (1) $L(P_n) \cong P_{n-1}$ for any path P_n , $n \ge 2$.

(2) $L(C_n) \cong C_n$ for all cycle C_n .

Proof. See [G]. \Box

Lemma 1.2. A connected graph G is eulerian if and only if every vertex of G has even degree.

OSELITO A. UY, Associate Professor of Mathematics, MSU-1ligan Institute of Technology, recently obtained a Ph.D. in Mathematics from MSU-IIT. He wrote a dissertation under the nervision of Prof. SEVERINO V. GERVACIO. His research interests include graph theory and combinatorics

Proof. See [H]. \square

Corollary 1.2.1. The following statements are equivalent for a nontrivial connected graph G:

 $(1) L(G)$ is eulerian.

(2) The degrees of all the vertices of G have the same parity.

Proof. (1) \Rightarrow (2). Let x be a vertex of G. Since G is a nontrivial connected graph, there is another vertex y of G such that xy is an edge of G. Now, $L(G)$ is eulerian. By Remark 1.0 and Lemma 1.2, $\deg_G x + \deg_G y$ is even. This means that the degrees of x and the vertices adjacent to x have the same parity. Since G is connected, it follows that all the vertices of G have the same parity.

(2) \Rightarrow (1). Let *u* be a vertex of *L*(*G*). Then *u* = *xy* for some edge *xy* of *G*.
Since deg_{*G*} *x* and deg_{*G*}*y* have the same parity, it follows from Remark 1.0 that deg_{*G*}*u* is even. Thus, every vertex of

Lemma 1.3. If G is a connected graph with $|V(G)| \ge 2$, then $L(G)$ is connected.

3. Then G has at least two edges. Now, let u and v be distinct vertices of $L(G)$.
Then there exist distinct edges ab and ed of G will the intervertices of $L(G)$. *Proof.* Clearly, $L(G)$ is connected if $|V(G)| = 2$. Suppose now that $|V(G)| \ge$ Then there exist distinct edges ab and cd of G such that $u = ab$ and $v = cd$. Since is Then there exist distinct edges *ab* and *cd* of *G* such that $u = ab$ and $v = cd$. Since *G* is connected, there is a walk $x_1x_2...x_k$ in *G*, where $x_1 = b$ and $x_k = c$. This implies that $ax_1x_2...x_kd$ is a walk in *G* joining

2. Connected Graphs With Property π

 $L^3(G)$ are all connected by Lemma 1.3. Since $L^3(G)$ is eulerian, it follows from
Corollary 1.2.1 that the degrees of all the vertices of $L^2(G)$. Let G be a connected graph which satisfies property π . Then $L(G)$, $L^2(G)$ and $L^3(G)$ are all connected by Lemma 1.3. Since $L^3(G)$ is substitutional. Corollary 1.2.1 that the degrees of all the vertices of $L^2(G)$ have the same parity. But Corollary 1.2.1 that the degrees of all the vertices of $L^2(G)$ have the same parity.
But $L^2(G)$ is not eulerian; hence, by Lemma 1.2, the degrees of the vertices of $L^2(G)$ have odd parity. This means that deg_{$L(G)$} u Consequently, $L(G)$ does not have an odd cycle. Observe that no vertex of G can
have a degree greater than or equal to three; otherwise, $L(G)$ would contain a
complete subgraph K_3 which is an odd cycle. It is now clear cycle. But $L^2(G)$ is not eulerian; hence G is not a cycle. Thus $L^2(G)$ is a path, and so $L^3(G)$ is also a path by Lemma 1.1. But $L^3(G)$ is eulerian; hence $L^3(G)$ must be a complete graph K_1 . Therefore, G is isomorphic to a path P_4 . We summarize our result as

Theorem 2.4. If G is a connected graph such that $L^2(G)$ is not eulerian but $L^3(G)$ is, then G is a path of order 4.

Remarks for Disconnected Graphs With Property π

From Theorem 2.4 we see that there is only one connected graph (up to isomorphism), which satisfies property π . This, however, is not true for disconnected graphs. The graphs $P_4 \cup P_k$ for $k = 1, 2, 3$ and $C_n \cup P_3$ are disconnected, but they satisfy property π . It is recommended to the reader to find all disconnected simple graphs possessing property π .

References

- [B] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications, Macmillan Press, New York, 1976.
- [G] S. V. Gervacio, Graph Theory, NRCP Research Bulletin 39(2), 1984.
- [H] Frank Harary, Graph Theory, Addison-Wesley Publishing Co., Massachusetts, 1971.
- [R] R. Read, Graph Theory and Computing, Academic Press, New York, 1972.
- [T] Ioan Tomescu, Problems in Combinatorics and Graph Theory, Wiley and Sons, New York, 1985.
- [Y] H. P. Yap, Some Topics in Graph Theory, Cambridge University Press, Cambridge, 1986.