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In fact, the r-Stirling numbers of the second kind can be written as 

This will be shown in later. Furthermore, if ß =0 and r= 1, we get 

2. Generating Functions 

In this section, we will consider two types of generating function, viz. the exponential generating function and the rational generating function. But first let us mention an explicit formula for the (r,ß)-Stirling numbers. 

Theorem 1. The (r,ß)-Stirling numbers satisfy the following explicit formula 

'B.r Bk! 

Proof. Note that we can rewrite (1) as follows 

Replacingt with ßr +r, we have 

we get 

n 

k 

k=0 k 

(Br +r)" = 
k=ok) 

Using Newton's Interpolation Formula, with 

f() = (Br +r)" and 
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This is precisely equivalent to (2). U 

B-’0 j=0 

Clearly, (2) does not work when ß =0. However, we can let B approach zero 

to get a suitable limit. This is possible because, from (2), 

k 

lim 
B’0\k/ B.r 

Hence, the limit of (2) as B ’0 is an indeterminate form. After k applications of 

I'Hospital's rule, we get 

Theorem 2. For B0, we have 

kIp.r 

We are now ready to mention the exponential generating function. 

n! B*k! 

j=0 

n! Bk! n20j=0 

Proof: Making use of Theorem 1, we have 

B*k! j=0 

pk!j=0 

k 
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Thus, 

n20^B.r n! 

By Cauchy's formula for the product of two power series [4}, we get 

M 

n>0 

Ifß = 1, (4) gives 

Theorem 3. 

function 

Bk! j=0 
1 

8k!j=0 

B.r 

Using Binomial Theorem, we obtain (4). 0 

n>0 

n! p*!j=0 

which implies that (see [1, eq. (38)] ) 

pk! j-0 
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n20i-0 
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-e (e'-1). 

The following theorem states the rational generating function for (r.B) Stirling numbers. 

2! 

k 

i! 

The (r.ß)-Stirling numbers have the rational generating 
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Proof Consider the equation 
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j=0 

A, = 

k 

Taking = (Bj + r), we have 

j=0 

Using the method of partial fractions, we can rewrite (6) as follows 

j-1 

j=0 

1 

24, [|l-(Bii +r) Il0-(9i2 +r)] =1. 

j=0| 

Substitution to equation (6) gives 

B! 

II-Bi + r)] 

Replacing k+v with n, we obtain 
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n2k \p., 

Ifß =I, equation (5) gives Corollary 10 in (1]. Moreover, ifß = 1 andr= 
0, equation (5) will reduce to the rational generating function of the second kind 
of ordinary Stirling numbers (see [2].(4}). 

Note that we can rewrite equation (5) as follows 

= 

n2k 

k 

\kp.r 

j=c,20 

B.r 

Co tttCg 20-0 

k 

n2kCo tc, ttc =n-k=0 

Identifying the coefficients of the term *, we obtain another explicit formula for (r.ß)-Stirling numbers. 

Theorem 4. The following explicit formula holds 

C| tC2 t+ C7 =n-k| j=0 

which is precisely equivalent to (3). 

3. Recurrence Relations 

0,r C|tc2 t+C7 =n-k j=0 

k 

k 
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Note that this formula will work whatever the value of ß is. In fact, if ß = 0. equation (7) gives 

96 

" (7) 

Recurrence relations are useful tool in computing the first values of (rB. 
Stirling numbers. In this section, we will consider three types of recurrence 

relations; the triangular, horizontal, and vertical recurrence relations. The neve 
theorem provides the first type of these recurrence relations. 
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Theorem 5. The (r.p)-Stirling numbers satisfy the following 'triangular 
recurrence relation 

n+1n+\ 
k=0 

Proof: Using relation (1 ), we have 
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We know that 

B.r 

-

k=0 "/ B.r 
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((-Dp.k ="-r-ß + (kß + r)) = 

(-raa0-r -kp) + («p+r) 

(?-r)p.k+| + 
k=0 

Now, taking B = 1, equation (8) gives 

Comparing the coefficients of the term ( -r)a , we obtain (8). 0 

Replacing n with n -r and k with k -r, we have 

k=0 

gives the second type of recurrence relations 

\*/B.r 
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(t -r)p.k 

(8) 

This is the triangular recurrence relation given in [1, eq. 8]. The next theorem 

((-r)p.k 
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Theorem 6. The (r.ß)-Stirling numbers satisf the following horizonal 
recurrence relation 

n n-k 

\klBr j=0 
Proof. Using Theorem 5, 

--1k + Dß +r)-pJ\k +j+l/&r 

the RHS of (9) = -)' (k +1)ß +r)-p 
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Proof: From equation (5), we get 
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+ 
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(k + 1)B +r"-j. 

"=1(|-(Bk +r)) -1(B.r) 

The next theorem gives the vertical recurrence relation for (r.B)-Stirling 
numbers. 

Theorem 7. The (r.ß)-Stirling umbers satisfy the following vertical 
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n 
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(tj+l/ 

(9) 
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Replacing j tm with n, we have 
M 

k.r 

j2k m20k-1/ 

jzknzjk-Br 

n2kksjsn \k-/B 

B.r j=k lk-/Br 

B.r 

Comparing the coefficients of the term, we obtain 

(Bk +r"-'; 

Taking B =0 andr= 1, Theorem 7 will give 
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