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A Construction of Bern_tein Sets 

CALIXTO B. FABRERO, JR. 

Abstract 

In this paper, we construct an example of a Lebesgue nonmeasurable set of real 
numbers using their topological properties. Such a construction is due to F. Bernstein. 

Key Words: Bernstein set, Lebesgue-Stieltjes measure 

One well-known example of a nonmeasurable set, whose construction was 
due to Vitali, is found in many books of real variable theory and measure theory 
(e.g. see [1, Theorem 10.28]). Such a construction is based on the algebraic 
properties of the set Rof real numbers. 

In this paper, we construct a subset B of real numbers that is measurable for 
no measure Ag with continuous o. The measure Ae is the Lebesgue-Stieltjes 
measure corresponding to a nondecreasing function a on R. Note that if a(x) =x, 

the measure g is the Lebesgue measure on R. 
If A, is the g - algebra of all g - measurable subsets of R, we will show that 

Ag+P (R). 
Throughout this paper, c denotes the cardinality of the continuum and 3 is 

the family of all uncountable closed subsets of R. The Principle of Transfinite 

Induction or Recursion, the Axiom of Choice, and some basic facts about set 

theory (see (2, Chapters I and II]) will be assumed. 

Recall that the measure a iS inner-regular if for each A eA, 

AglA) = sup { A(K) :K is compact, K�A}. 

The measure , is outer-regular if for eachA eNg. 

AlA) = inf {a() :Vis open, A c V}. 

We shall need the following theorems: 
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1 Theorem. Let a be a cardinal number. Then there exists an ordinal um. 
ber a such that Pa= a. 

Proof. (See [1], p. 29.) 

The set P, is the set of all ordinals < a. If (W, S) is a well-ordered set, the 
set I(a) ={xe W:xsa, x * a} is called the initial segment of W determined 
by a. 

2 Theorem (The Principle of Transfinite Induction). Let (W, s) be a well 
ordered set and let A c W be such th¡t a e A whenever I(a) cA. Then A = W. 

Proof. See [1, p. 17). 
3 Theorem. Let U be nonempty open subset of R. Then there exists one 

and only one pairwise disjoint family I of open intervals of R such that U = UI. The family I is countable and the members of I are called the component intervals of U. For each Ie l, the end points ofI are not in U. 
Proof. See [1, p. 69]. 
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4 Theorem. Let X be a complete metric space and let A be a nonempty perfect subset ofX. Then A|c. 

Proof. See [1, p. 72]. 

A set A is said to be perfect if it is closed and has no isolated points, i.e., ifA is equal to the set of its own limit points. 

5 Theorem. (Cantor-Bendixson). Let X be a topological space with a countable base B and let A be any closed subset of X. Then X contains a perfect subset P and a countable subset C such that A = PUC 
Proof. See [1, pp. 72-73]. 

6 Theorem. Let X be a locally compact Hausdorff space and let be the Lebesgue-Stieltjes measure corresponding to a junction a. Let A be a 2 -measurable subset of X such that ACU,=Bn Jor some sequence {Ba} of subsets ofX with 2(B,) <o for all n. Then 

2(4) = sup (a(F):Fis compact, F A}. 

Proof. See [1, pp. 137-138]. 

7 Remark. Every Euclidean space R" satisfies the hypotheses of Theorems 4, 5 and 6. 
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8 Proposition. Every uncountable closed subset F of R has a cardinal 
number c. 

Proof. Let I be the family of all uncountable closed subsets of R. Then by 
Theorem 5, for each Fe 3, we have F = PUC, where P is perfect and C is 
countable. Since F 0, we have P ð and thus by Theorem 4, |P 2c. Hence, 
A=PJcl >\P 2 c. Since Fis uncountable and |Fs R=c, we must have |F] 
= c for each F e 3. 0 

9 The Construction. We now proceed with the construction of a subset B of 
R such that BrF , and (R - BrF Ø for every F e 3. Such a set is called a 

Bernstein set, named afterF. Bernstein. Denote by /(x,r) the open interval with 
center x and radius r > 0. Let B = IEu):E E Q, r, e Q}, for n > 1. The 
family B is a countable basis for R (See (2, Example 4, p. 65), so, B|= No. Let 
G be the class of all open subsets of R and let Ge G. Then there exists a family I 
cB such that G =UI. This is not a disjoint union, however, by Theorem 3, 

there exists a unique countable pairwise disjoint family l of open intervals in R 

such that G =UI. By the uniqueness of I, it suffices to use a base B'cB such 

that the elements of B' are pairwise disjoint. 
Let f: P(B') ’ G be defined by fI) = G for each Ge G. Thus, by Theo 

rem 3, there exists a unique pairwise disjoint countable family I c B' such that 

G=UI:le l). Thus fis onto. By Theorem 3 again, if G, H are in G and G= 

H, we can choose a unique pairwise disjoint countable families I and V in PB') 

such that 

Hence, 

G=UI:le I} and H=UV:e V}. 

U:Ie l}=U{V:Ve V} 

and by the uniqueness of these representations we must have I = V. Therefore, f 

is one-to-one and G= P(B)) = 2No =c. By complementation, there are at most 

c closed subsets of R. Since there are c many closed intervals, there are at least c 

uncountable closed subsets of R, i.e., I3| =c. 

D, Theorem l. for the card1nal number c, we can choose an ordinal nunber 

= {a:a< o,}. Again by Theorem I, Po is a 
such that | Po. =c, where Po. 

well-ordered set and ord Po, = 0p. Thus, o has c predecessors and it is the 

smallest ordinal number of cardinality c. By the Wel1-Ordering Theorem and 
Proposition 8, J can be indexed by ordinals < oç, i.e., I={Fa:a<o,}. 
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By the inner-regularity of A 

a(R-B)= sup {(K): K is compact, KcR-B}=0. 

Then we have A(B) = 0 = A(R - B). Since we have assumed that B is a 
measurable, we must have g identically equal to zero measure. This is absurd 
since we assumed that a 0. Therefore, the set B = Xn :n < o } 0s not ha -
measurable. 

Note that a is the Lebesgue measure on R, if a(r) = x. Also, for each open 
set Vc R with B cVwe have, by Theorem 3, 

alB) = inf{ (V:Vis open, Bc V}>0. 

10 Remark. The construction of Bernstein sets can be carried out in a 

second countable, locally compact, Hausdorff space X with a measure u which is 

diffused and regular on a o - algebra M c P(X) such that u()> 0. The cons 

truction is identical to the present construction. For a consideráble generalization 

and insight, see [3;p. 133]. 
Every example of non . - measurable set has been constructed by using the 

Axiom of Choice. It was announced by R. Solovay in the Notices of the 

American Mathematical Society 12(1965) that without the Axiom of Choice, non 

Lebesgue measurable sets cannot be obtained at all. 
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