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A Construction of Bernstein Sets
CALIXTO B. FABRERO, JR.

Abstract

In thzs. paper, we construct an example of a Lebesgue nonmeasurable set of real
numbers using their topological properties. Such a construction is due to F. Bernstein.
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One_ wgll.-known ;xample of a nonmeasurable set, whose construction was
due to Vitali, is found in many books of real variable theory and measure theory

(e.g. see [1, Theorem 10.28]). Such a construction is based on the algebraic
properties of the set R of real numbers.

In this paper, we construct a subset B of real numbers that is measurable for
no measure A, with continuous o. The measure A, is the Lebesgue-Stieltjes
measure corresponding to a nondecreasing function o on R. Note that if a(x) = x,
the measure A, is the Lebesgue measure on R.

If Ay is the o - algebra of all A, - measurable subsets of R, we will show that
Az #P (R).

Throughout this paper, ¢ denotes the cardinality of the continuum and J is
the family of all uncountable closed subsets of R. The Principle of Transfinite
Induction or Recursion, the Axiom of Choice, and some basic facts about set
theory (see [2, Chapters I and 11]) will be assumefi.

Recall that the measure Aq is inner-regular if for each 4 €A,

Aa(A) = sup { Ao(K) : K is compact, K = 4 }.
The measure Aq 18 outer-regular if for each 4 €A,
Ao(4) = inf { Aa(V) : V18 open,Ac V' }.

We shall need the following theorems:
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1 Theorem. Let a be a cardinal number. Then there exiSts an ording] num-
ber o such that P, = a.

Proof. (See (1], p. 29.)

The set P, is the set of all ordinals < a. If (W, <) is a well-ordered set, the

setll@) = {x e W:x<a,x#a} is called the initial segment of W determined
by a.

2 Theorem (The Principle of Transfinite Induction). Let (W, <) be a well-
ordered set and let A = W be such that a € A whenever lla)c A. Then A = W,

Proof. See [1, p. 17).

3 Theorem. Ler U be g nonempty open subset of R. Then there exists one

and only one pairwise disjoint family 1 of open intervals of R such that U = U,
The family 1 is countable and the members of 1 are called the component
intervals of U. For each | e 1, the end points of I are not in U.

Proof. See [1, p. 69].

4 Theorem. Let X be a co
perfect subset of X. Then | A|> ..

Proof. See [1, p. 72].

mplete metric space and let A be g nonempty

A set A4 is said to be perfect if it is closed and has no isolated points, i.e., if A
is equal to the set of its own limit points.

5 Theorem. (Cantor-Bendixson). Let X be q topological space with a
countable base B and let A be any closed subset of X. Then X contains q perfect
subset P and a countable subset C such thatA=P U C

Proof. See [1, pp. 72-73].

6 Theorem. Let X be a locally com

pact Hausdorﬂspace and let A, be the
Lebesgue-Stielties measure corresponding to a function a. Let

A be g Agq -
measurable subset of X such that A c U(::l B, for some Sequence {B,} of subsets
of X with 24(B,) <« for all n. Then

Au(A) = sup {Au(F) : Fis compact, F < 4}
Proof. See [1, pp. 137-138].
7 Remark. Every Euclidean space R” satisfies the hy

potheses of Theorems
4,5 and 6.
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g Proposition. Every uncountable closed subset F of R has a cardinal
number €.

Proof. Let 3 be the family of all uncountable closed subsets of R. Then by
Theorem S, for each F € 3, we have F' = PUC, where P is perfect and C is
countable. Since F # &, we have P # © and thus by Theorem 4, |P| > ¢. Hence,
\F= |PUC| > |P| > ¢. Since F is uncountable and |[F] < |R| = ¢, we must have [F]
=cforeach F € 3.

9 The Construction. We now proceed with the construction of a subset B of
R such that BAF #,@ and (R — B)Y"F # @ for every F € 3. Such a set is called a
Bernstein set. named after F. Bernstein. Denote by /(x,r) the open interval with
center x and radius r > 0. Let B= { I(§,,,) : & € Q. 1, € Q' }, forn>1. The
family B is a countable basis for R (See (2, Example 4, p. 65]), so, IB| = No. Let
G be the class of all open subsets of R and let G € G. Then there exists a family |
B such that G = WL This is not a disjoint union, however, by Theorem 3,
there exists a unique countable pairwise disjoint family 1" of open intervals in R
such that G = I ™. By the uniqueness of | * it suffices to use a base B’ < B such
that the elements of B’ are pairwise disjoint.

Letf: P(B') > G be defined by A1) = G for each G € G. Thus, by Theo-
rem 3, there exists a unique pairwise disjoint countable family I < B’ such that
G=U{I:I el}. Thus f'is onto. By Theorem 3 again, if G, H are in G qnd G =
H, we can choose a unique pairwise disjoint countable families I and V in P(B’)
such that

G=U{1:Iel}andH=u{ V:VeV}.

Hence,
U{[;]el}=U{V:V€V}

i st have I = V. Therefore, f
i s of these representations we mus X
and by the uniquenes

and Gl = lP(B')l — 2‘\‘0 =c.By complementation, there are at most
1S O“e'tc‘l)'o?;ets of R. Since there are ¢ many closed intervals, there are at least ¢
¢ closed su ’ e 1=
htable closed subsets of R, 1.€., 13| ¢ : :
uncolé Theorem ! for the cardinal number ¢, we can choose an ordinal number
y ’ -l o< i cor > s
. such that | Po, | = € where P, {a o < o). Again by Theorem I, £, isa
well—OTdcred set and ord Pm( = .. Thus, o, has ¢ predecessors and 1t is the
est ordinal number of cardinality ¢. By the Well-Ordering Theorem and

;mall . . . .
> 8, 3 can be indexed by ordinals <., e, 3~ { Fora< o .

> osition
prop
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Using Theorem 2, we construct a set B as follows: let xo, vo € Fy where x, #
yo. Next, choose x, y; € F) where x; # y, and both are different from x, and . If
0<n<o.andifx,,y, have been defined for all y <m, let

Xny Wy € Fn - U'Y(n : Xy .“Y}

where x, # y,. Let
An={xy<m}U{y y<n}= Uy<n{xv’y7}‘

Note that Fy, = (F, = 4,)\UA, is a disjoint union. Also, for all n < w,, we
have |4,| < ¢ since o, is the smallest ordinal number such that |ch | = ¢. Hence,

by Corollary (4.30) in [1; p. 26), |F, — A,| + |4, = |F,| = |Fy| = ¢ implies that
Fy - 4, |= ¢ for all 1 < o.. Thus, the set Fy=Uycq i x, ) is not empty and

has cardinality c. Finally, let B = { x, : 1 < . } and note that for all n < ., we
have BNF, # @ since x, € BAF,. Similarly, we also have (R = B)nF, # O,
since y; € (R - B)NF,.

We now prove that B is not A, - measurable if o is continuous and 4, # 0.
Let K be a compact subset B; then K is closed since compact subsets of
Hausdorff space are closed. Hence, K is countable, otherwise K 3, which
implies that (R - B)nK # &. Similarly, if K" is a compact subset of R — B, then
K" is closed. Also K * is countable, otherwise BAK * # . Thus, every compact
subset of both B and R - B are countable.

Let a be any real-valued nondecreasing continuous function and let A, be
the Lebesgue-Stieltjes measure on R where A, # 0. Suppose that B is A, -

measurable, then by Theorem 6

Aa(B) = sup { ho(K) : K is compact, K< B }.

Note that for each compact subset K of B, we have K = {Xy sXy_,..} and thus,
17

Therefore, A4(B) = 0 by the inner-regularity of 2, Similarly, for each compact
subset K* of R— B, wehave K~ = {yn] ST ! 50 that

s ¢]

Olon |- Saulfon D-o.

xu(K‘)= i

k=1
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By the inner-regularity of A,
ha(R =B) = sup { Ao(K') : K" is compact, K c R-B } =0.

Then we have Ay(B) = 0 = A4(R - B). Since we have assumed that B is Aq -
measurable, we must have A, identically equal to zero measure. This is absurd
since we assumed that A, # 0. Therefore, the set B = { x, : N < @ } is nof Aq -
measurable.

Note that A, is the Lebesgue measure on R, if a(x) = x. Also, for each open
set ¥V = R with B c V we have, by Theorem 3,

Ao(B) = inf { Ao(¥) : Vis open, Bc V' } > 0.

10 Remark. The construction of Bernstein sets can be carried out in a
second countable, locally compact, Hausdorff space X with a measure p which is
diffused and regular on a © - algebra M < P(X) such that p(X) > 0. The cons-
truction is identical to the present construction. For a considerdble generalization
and insight, see [3; p. 133].

Every example of non 2. - measurable set has been constructed by using the
Axiom of Choice. It was announced by R. Solovay in the Notices of the
American Mathematical Society 12(1965) that without the Axiom of Chaice non

Lebesgue measurable sets cannot be obtained at all.
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