The Mindanao Forum, Vol. XIV, No. 2, (December 1999)

Path Chromatic Number of Complementary Graphs

ESPERANZA BLANCAFLOR ARUGAY

The *path chromatic number* of a graph G, denoted by $\chi_x(G)$, is the minimum number of colors the points of G can be given so that each monochromatic color class induces a linear forest. Equivalently, it is the minimum number of subsets V_1 , V_2 , ..., V_i into which $V(G)$ can be partitioned so that each $\langle V_i \rangle$ is a linear forest. A **path partition** of a graph G is a partition of the vertices of G such that each subset in the partition induces a linear forest.

This paper presents analogues of some interesting theorems due to Nordhaus and Gaddum (5] and John Mitchem [4].

Lemma 1. Let $C_n = (v_1, v_2, ..., v_n, v_1)$ be a cycle, $n > 5$. The subgraph induced by any four points labeled consecutively in C_n is a P_4 in \overline{C}_n .

Proof. Any four consecutive vertices in a cycle C_n , $n \ge 5$, form a path P_4 and \overline{C}_n . P_4 is self-complementary. Hence, the same vertices also form a path in \overline{C}_n .

Lemma 2. Let $C_n = (v_1, v_2, ..., v_n, v_1)$ be a cycle, $n > 6$. The subgraph induced by at least five points of $V(\overline{C}_n)$ contains a cycle.

Proof. Given any five points of C_n , it is easy to see that there exist three points that are mutually non-adjacent. Thus, these three points are mutually adjacent in \overline{C}_n , forming a triangle. Hence, the subgraph induced by at least five points of $V(\overline{C}_n)$ contains a cycle. \Box

Observation
any four points labeled consecutively in P_n is a P_4 in P_n .
any four points labeled consecutively in P_n is a P_4 in P_n . Observation 1. Let P_n be a path of order n, $n \ge 4$. The subgraph induced by

Observation 2. The subgraph induced by at least five points of $V(P_n)$ contains a cycle, where P_n is path, $n \ge 5$.

EST. External of the Ph.D. in Mathematics from the Manila Consortium through Ateneo de ESPERANZA B. ARUGAY, Professor of Mathematics, MSU - Iligan Institute of Technology, Illyan Christian Christian She specializes in graph theory.

Theorem 1. If C_n is a cycle of order n, $n \geq 3$, then $\chi_{\infty}(\overline{C}_n) = \lceil n/4 \rceil$.

Proof. It is easy to check the theorem in the case $n=3$, and 4. Let C_n be a cycle of order n, $n \ge 5$. Label $V(C_n)$ consecutively by $v_1, v_2, ..., v_n$. Note that $V(C_n)$ $V(\overline{C}_n)$. From Lemma 2, the subgraph induced by at least five points in \overline{C}_n contains a cycle. Thus, $\chi_{\infty}(\overline{C}_n) > n/5$. But from Lemma 1 any four consecutive points of $V(\overline{C}_n)$ induces a path of order four. Thus, we color $V(\overline{C}_n)$ by coloring every four consecutive vertices by a distinct color. Since the path chromatic number is an integer, we have $\chi_{\infty}(\overline{C}_n) = \lceil n/$

Theorem 2. For cycles C_n , $n \geq 3$,

$$
(i) \ \ \chi_{\infty}(C_n)+\chi_{\infty}(\overline{C}_n)>\chi_{\infty}(K_n) \ \ \text{if} \ \ n<7;
$$

(ii) $\chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n) \leq \chi_{\infty}(K_n)$ if $n \geq 7$.

Proof. (i) Since $\chi_{\infty}(K_n) = \lceil n/2 \rceil$, $\chi_{\infty}(C_n) = 2$, and $\chi_{\infty}(\overline{C}_n) = \lceil n/4 \rceil$, we have

$$
|n/2| - \lceil n/4 \rceil = \lceil n/2 \rceil - \lceil (1/2)n/2 \rceil
$$

$$
\leq \lceil n/2 \rceil - 1/2 \lceil n/2 \rceil
$$

$$
= 1/2 \lceil n/2 \rceil < 2,
$$

when $n < 7$. Thus $\lceil n/2 \rceil < 2 + \lceil n/4 \rceil$ when $n < 7$. Hence, $\chi_{\infty}(C_n \cup \overline{C}_n) < \chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n)$ when $n < 7$. $\chi_{\infty}(C_n)$ when $n < 7$.

(ii) if $n \ge 7$, it is easy to verify that $\lceil n/2 \rceil - \lceil n/4 \rceil \ge 2$. Thus, $\lceil n/2 \rceil \ge 2 + \lceil n/4 \rceil$. Therefore, $\chi_{\infty}(C_n \cup \overline{C}_n) \ge \chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n)$ when $n \ge 7$.

The following observations can be easily verified.

Theorem 3. If P_n is a path of order n, $n \ge 1$, then $\chi_{\infty}(\overline{P_n}) = \lceil n/4 \rceil$.
Proof. The proof is similar to that of Theorem 1.

Theorem 4. For complete bipartite graphs $K_{m,n}$,

$$
\chi_{\infty}(\overline{K}_{m,n}) = \max \left\{ \chi_{\infty}(K_m), \chi_{\infty}(K_n) \right\}.
$$

Proof. Let $K_{m,n}$ be a complete bipartite graph. Then the complement of $K_{m,n}$ denoted by $\overline{K}_{m,n}$ has two components, which are complete graphs K_m and K_n .

Clearly, the path chromatic number of $\overline{K}_{m,n}$ is the maximum of the path chromatic numbers between K_m and K_n . \square

Theorem 5. For complete bipartite graphs $K_{m,n}$, $m \ge n$,

- (i) $\chi_{\infty}(K_{m,n})+\chi_{\infty}(\overline{K}_{m,n})>\chi_{\infty}(K_{m+n})$ if $n\geq 2$, or $n=3$ and m is odd. (ii) $\chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n}) = \chi_{\infty}(K_{m+n})$ if $n=3$ and m is even, or $n=4$, or n
- $=$ 5 and m is odd.

December 1999

(iii) $\chi_{\infty}(K_{m,n})+\chi_{\infty}(\overline{K}_{m,n})<\chi_{\infty}(K_{m+n})$ if $n=5$ and m is even, or $n\geq 6$. *Proof.* $K_{m,n} \cup \overline{K}_{m,n} = K_{m+n}$; $\chi_{\infty}(K_{m+n}) = [(m+n)/2]$ by [1]; $\chi_{\infty}(K_{m,n})=2$ and $\chi_{\infty}(\overline{K}_{m,n})=\lceil m/2\rceil$

from Theorem 4 and $m \ge n$. Consider $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil$.

Case 1. $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil < 2$.

Subcase 1.1. m is odd, and n is even. In this case we have $(m + n)/2 + 1/2$ $m/2 - 1/2 < 2$. Hence, $n/2 < 2$ and thus $n < 4$.

Subcase 1.2. m is even, and n is even. Then $(m + n)/2 - m/2 < 2$. Hence, $n/2$ $<$ 2 and thus $n < 4$.

Subcase 1.3. m is even, and n is odd. Then $(m + n)/2 + 1/2 - m/2 < 2$. Hence, $n/2$ < 3/2 and thus $n < 3$.

Subcase 1.4. m is odd, and n is odd. Then $(m + n)/2 - m/2 - 1/2 < 2$. Hence, $n/2$ < 5/2 and thus $n < 5$.

Thus, $\lceil (m + n/2) \rceil - \lceil n/2 \rceil < 2$ if $n \le 2$, or $n = 3$ and m is odd. Therefore,

$$
\left\lceil \left(m+n\right)/2\right\rceil < 2+\left\lceil m/2\right\rceil.
$$

Hence,

$$
\chi_{\infty}(K_{m,n}\circlearrowleft K_{m,n})<\chi_{\infty}(\overline{K}_{m,n})+\chi_{\infty}(\overline{K}_{m,n})
$$

if $n \leq 2$, or $n = 3$ and m is odd.

Case 2. $\lceil (m + n)/2 \rceil - \lceil m/2 \rceil = 2$. Using a similar argument as in case 1, we also have the following subcases:

Subcase 2.1. When *m* is odd, and *n* is even, then $n = 4$;

Subcase 2.2. When *m* is even, and *n* is even, then $n = 4$;

Subcase 2.3. When *m* is even, and *n* is odd, then $n = 3$;

Subcase 2.4. When *m* is odd, and *n* is odd, then $n = 5$.

Thus, $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil = 2$, if $n = 4$, or $n = 3$ and m is even, or $n = 5$ and m is odd. Therefore,

$$
\lceil (m+n)/2 \rceil = 2 + \lceil m/2 \rceil.
$$

Hence, $\chi_{\infty}(K_{m,n} \cup \overline{K}_{m,n}) = \chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n})$ if $n = 4$, or $n = 3$ and m is even, or $n = 5$ and m is odd.

Case 3. $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil$ > 2. Again, using an argument similar to that in case 1, we have:

Subcase 3.1. When *m* is odd, and *n* is even, then $n < 4$;

Subcase 3.2. When *m* is even, and *n* is even, then $n < 4$.

Subcase 3.3. When *m* is even, and *n* is odd, then $n < 3$;

Subcase 3.4. When *m* is odd, and *n* is odd, then $n < 5$.

Thus, $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil$ > 2 if $n \ge 6$, or $n = 5$ and m is even. Hence,

 $\lceil (m+n)/2 \rceil$ > 2+ $\lceil m/2 \rceil$.

Hence, $\chi_{\infty}(K_{m,n} \cup \overline{K}_{m,n}) > \chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n})$ if $n \ge 6$, or $n = 5$ and m is even. \Box

Corollary 1. For $K_{m,1}$, $\chi_{\infty}(K_{m,1} \cup \overline{K}_{m,1}) < \chi_{\infty}(\overline{K}_{m,1}).$

Proof. This falls under case 1 of Theorem $5(iii)$.

Two of the many results dealing with the chromatic numbers of graphs, in particular, is the chromatic number of a graph and its complement due to Nordhaus and Gaddum [5]. They are given in the next two theorems.

Theorem 6. If G is a graph of order p and $\chi(G)$ and $\chi(\overline{G})$ denote respectively the chromatic numbers of a graph G and its complement \overline{G} , then

(i)
$$
2\sqrt{p} \le \chi(G) + \chi(\overline{G}) \le p + 1;
$$

\n(ii) $p \le \chi(G)\chi(\overline{G}) \le [(p+1)/2]^2$

John Mitchem presented an analogous result in [4] involving point arboricity. The **point arboricity** $p(G)$ of a graph G is the minimum number of subsets into which the vertices of G can be partitioned so that each subset induces an acyclic subgraph. His result may now be stated:

Theorem 7. If G is a graph of order p, then

(i)
$$
\sqrt{p} \le \rho(G) + \rho(\overline{G}) \le (p+3)/2
$$
;
(ii) $p/4 \le \rho(G) + \rho(\overline{G}) \le [(p+3)/4]^2$.

Looking at Theorems 6 and 7, we can now formulate analogous results for the path chromatic number. First, let us observe that if G is a graph such that $\chi_{\infty}(G) = t$, then $V(G)$ can be partitioned into t subsets such that each subset induces a linear forest. Now, since these are acyclic graphs,

$$
\rho(G)\leq \chi_{\infty}(G).
$$

Note that the path chromatic number of an acyclic graph does not exceed two, thus $\chi_{\infty}(G) \leq 2\rho(G)$. Hence,

$$
\chi_{\infty}(G)/2 \leq \rho(G) \leq \chi_{\infty}(G).
$$

It is easy to see that these bounds for $p(G)$ are best possible. If $G = K_{1,n}$ (n > 1), then $\chi_{\infty}(G) = 2$ and $\rho(G) = 2/2 = 1$. If $G = P_n$, then $\chi_{\infty}(G) = 1 = \rho(G)$.

Theorem 8. For $t \ge 2$, let $G_i = (V_i, E_i)$, $i = 1, 2, ..., t$ be mutually disjoint linear forests with $2 \leq |V_1| \leq |V_2| \leq \cdots \leq |V_t|$ and $|E_i| \geq 1$, $i=1,2,...,t$.

(i) Then
$$
\chi_{\infty}(G) = t
$$
 where $G = \sum_{i=1}^{t} G_i$;
(ii) If each G_i is a path then $\chi_{\infty}(\overline{G}) = \lceil p/4 \rceil$, where $p = max \{ |G_i| \}$.

Proof. (i) Let H be the induced subgraph of G containing two adjacent points from each G_i .

Then $H = K_{\lambda}$ and $\gamma_{\infty}(K_{\lambda}) = t$. Note that $\gamma_{\infty}(H) \leq \gamma_{\infty}(G)$. Clearly, $V_1, V_2, ...,$ V_t is a path partition of $V(G)$ so that $\chi_\infty(G) \leq t$. Thus $t \leq \chi_\infty(G) \leq t$ which implies $\chi_x(G) = t$. We are left to prove (ii). \overline{G} has at least t components which are complements of paths. The component of \overline{G} with maximum number of edges is the complement of a G_i with maximum order p, i.e., G_i . Since G_i is a path, from Theorem 2 we know that $\chi_{\infty}(\overline{G_t}) = \lceil p/4 \rceil$, where p is the order of G_t . But the path chromatic number of a graph is the path chromatic number of its largest component. Therefore,

$$
\chi_{\infty}(\overline{G}) = \lceil p/4 \rceil. \qquad \Box
$$

Theorem 9. Let G be a graph of order p , then

(i) $\sqrt{p} \leq \chi_{\infty}(G) + \chi_{\infty}(\overline{G}) \leq p + 1;$ (ii) $p/4 \leq \chi_{\infty}(G)\chi_{\infty}(\overline{G}) \leq [(p + 1)/2]^2$.

Proof. Theorem 7 and Lemma 5.4 in [2] imply the lower bounds of (i) and (ii). Theorem 6 implies the upper bounds since $\chi_{\infty}(G) \leq \chi(G)$.

The lower bound \sqrt{p} for $\chi_{\infty}(G) + \chi_{\infty}(\overline{G})$ is best possible. To see this, let G_i P_{16} , $i = 1, 2, 3, 4$ and let $\sum_{i=1}^{4} G_i$. By Proposition 5.1 in [2], $\chi_{\infty}(G) = 4$ and $\chi_{\infty}(\overline{G}) = \lceil 16/4 \rceil = 4$. Thus, $\chi_{\infty}(G) + \chi_{\infty}(\overline{G}) = 4 + 4 = 8 = \sqrt{16 \times 4} = \sqrt{p}$. Note that $\chi_{\infty}(G)\chi_{\infty}(\overline{G})$ is also the best possible.

The upper bound for Theorem $9(i)$ may be improved.

Theorem 10. Let G be a graph of order p , then

$$
\chi_{\infty}(G)+\chi_{\infty}(G)\leq p.
$$

Proof. Case 1. $G = K_p$. From [1], $\chi_{\infty}(G) = \lceil p/2 \rceil$ and $\chi_{\infty}(\overline{G}) = 1$. Therefore, $\gamma_{\alpha}(G) + \gamma_{\alpha}(\overline{G}) = |p/2| + |p/2| = p.$

Case 2. $G \neq K_p$. This implies that G is a subgraph of $K_p - e$, where e is an edge of K_p . Thus $\chi_{\infty}(G) \leq \chi_{\infty}(K_p - e) = \lfloor p/2 \rfloor$. Also, since \overline{G} is of order p, then $\chi_{\infty}(G) \leq \lceil p/2 \rceil$. Therefore, $\chi_{\infty}(G) + \chi_{\infty}(G) \leq \lfloor p/2 \rfloor + \lceil p/2 \rceil = p.$ O

Acknowledgement. The author thanks the referees for their useful sugges tions. Also, the author would like to thank the editors for encoding this paper in the accepted format.

References

- [1] J. Akiyama, H. Era and S. Gervacio, Path chromatic numbers of graphs, J. Graph Theory 13(5) (1989) 569-575
- [2] E. B. Arugay, Path chromatic numbers of graphs, Ph.D. Thesis, Ateneo de Manila University, 1990
- [3] M. Matsumoto, *Bounds for the vertex linear arboricity*, J. Graph Theory 13 (1989) 690 699
- (1989) 690 699

[4] J. Mitchem, *On the point arboricity of a graph and its complement*, Canad.
- J. Math. 23(2) (1971) 287 292

[5] A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math.

[5] A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math.
- Monthly **65** (1956), 176 176