The Mindanao Forum, Vol. XIV, No. 2, (December 1999)

Path Chromatic Number of Complementary Graphs

ESPERANZA BLANCAFLOR ARUGAY

The **path chromatic number** of a graph G, denoted by $\chi_{\infty}(G)$, is the minimum number of colors the points of G can be given so that each monochromatic color class induces a linear forest. Equivalently, it is the minimum number of subsets $V_1, V_2, ..., V_t$ into which V(G) can be partitioned so that each $\langle V_i \rangle$ is a linear forest. A **path partition** of a graph G is a partition of the vertices of G such that each subset in the partition induces a linear forest.

This paper presents analogues of some interesting theorems due to Nordhaus and Gaddum [5] and John Mitchem [4].

Lemma 1. Let $C_n = (v_1, v_2, ..., v_n, v_1)$ be a cycle, n > 5. The subgraph induced by any four points labeled consecutively in C_n is a P_4 in \overline{C}_n .

Proof. Any four consecutive vertices in a cycle C_n , $n \ge 5$, form a path P_4 and P_4 is self-complementary. Hence, the same vertices also form a path in \overline{C}_n . \Box

Lemma 2. Let $C_n = (v_1, v_2, ..., v_n, v_1)$ be a cycle, n > 6. The subgraph induced by at least five points of $V(\overline{C_n})$ contains a cycle.

Proof. Given any five points of C_n , it is easy to see that there exist three points that are mutually non-adjacent. Thus, these three points are mutually adjacent in \overline{C}_n , forming a triangle. Hence, the subgraph induced by at least five points of $V(\overline{C}_n)$ contains a cycle. \Box

Observation 1. Let P_n be a path of order $n, n \ge 4$. The subgraph induced by any four points labeled consecutively in P_n is a P_4 in $\overline{P_n}$.

any four points *Observation 2.* The subgraph induced by at least five points of $V(\overline{P_n})$ contains a cycle, where P_n is path, $n \ge 5$.

lame

ESPERANZA B. ARUGAY, Professor of Mathematics, MSU - Iligan Institute of Technology, Iligan City, obtained her Ph.D. in Mathematics from the Manila Consortium through Ateneo de Manila University. She specializes in graph theory.

Theorem 1. If C_n is a cycle of order $n, n \ge 3$, then $\chi_{\infty}(\overline{C}_n) = \lceil n/4 \rceil$.

Proof. It is easy to check the theorem in the case n = 3, and 4. Let C_n be a cycle of order $n, n \ge 5$. Label $V(C_n)$ consecutively by $v_1, v_2, ..., v_n$. Note that $V(C_n) = V(\overline{C}_n)$. From Lemma 2, the subgraph induced by at least five points in \overline{C}_n contains a cycle. Thus, $\chi_{\infty}(\overline{C}_n) > n/5$. But from Lemma 1 any four consecutive points of $V(\overline{C}_n)$ induces a path of order four. Thus, we color $V(\overline{C}_n)$ by coloring every four consecutive vertices by a distinct color. Since the path chromatic number is an integer, we have $\chi_{\infty}(\overline{C}_n) = \lceil n/4 \rceil$.

Theorem 2. For cycles C_n , $n \ge 3$,

(i)
$$\chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n) > \chi_{\infty}(K_n)$$
 if $n < 7$;

(ii) $\chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n) \leq \chi_{\infty}(K_n)$ if $n \geq 7$.

Proof. (i) Since $\chi_{\infty}(K_n) = \lceil n/2 \rceil$, $\chi_{\infty}(C_n) = 2$, and $\chi_{\infty}(\overline{C}_n) = \lceil n/4 \rceil$, we have

$$| n/2] - \lceil n/4 \rceil = \lceil n/2 \rceil - \lceil (1/2)n/2 \rceil$$

$$\leq \lceil n/2 \rceil - 1/2 \lceil n/2 \rceil$$

$$= 1/2 \lceil n/2 \rceil < 2,$$

when n < 7. Thus $\lceil n/2 \rceil < 2 + \lceil n/4 \rceil$ when n < 7. Hence, $\chi_{\infty}(C_n \, \odot \, \overline{C}_n) < \chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n)$ when n < 7.

(*ii*) if $n \ge 7$, it is easy to verify that $\lceil n/2 \rceil - \lceil n/4 \rceil \ge 2$. Thus, $\lceil n/2 \rceil \ge 2 + \lceil n/4 \rceil$. Therefore, $\chi_{\infty}(C_n \cup \overline{C}_n) \ge \chi_{\infty}(C_n) + \chi_{\infty}(\overline{C}_n)$ when $n \ge 7$.

The following observations can be easily verified.

Theorem 3. If P_n is a path of order $n, n \ge 1$, then $\chi_{\infty}(\overline{P_n}) = \lceil n/4 \rceil$. *Proof.* The proof is similar to that of Theorem 1. \Box

Theorem 4. For complete bipartite graphs $K_{m,n}$,

$$\chi_{\infty}(\overline{K}_{m,n}) = \max \left\{ \chi_{\infty}(K_m), \chi_{\infty}(K_n) \right\}.$$

Proof. Let $K_{m,n}$ be a complete bipartite graph. Then the complement of $K_{m,n}$ denoted by $\overline{K}_{m,n}$ has two components, which are complete graphs K_m and K_n .

Clearly, the path chromatic number of $\overline{K}_{m,n}$ is the maximum of the path chromatic numbers between K_m and K_n . \Box

Theorem 5. For complete bipartite graphs $K_{m,n}$, $m \ge n$,

(i)
$$\chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n}) > \chi_{\infty}(K_{m+n})$$
 if $n \ge 2$, or $n = 3$ and m is odd.
(ii) $\chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n}) = \chi_{\infty}(K_{m+n})$ if $n = 3$ and m is even, or $n = 4$, or n and m is odd.

= 5 and m is odd.

(iii)
$$\chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n}) < \chi_{\infty}(K_{m+n})$$
 if $n = 5$ and m is even, or $n \ge 6$.
Proof. $K_{m,n} \stackrel{.}{\cup} \overline{K}_{m,n} = K_{m+n}; \chi_{\infty}(K_{m+n}) = \lceil (m+n)/2 \rceil$ by [1];
 $\chi_{\infty}(K_{m,n}) = 2$ and $\chi_{\infty}(\overline{K}_{m,n}) = \lceil m/2 \rceil$

from Theorem 4 and $m \ge n$. Consider $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil$.

Case 1. $\left[\left(m+n \right) / 2 \right] - \left[m / 2 \right] < 2.$

Subcase 1.1. *m* is odd, and *n* is even. In this case we have (m + n)/2 + 1/2 - m/2 - 1/2 < 2. Hence, n/2 < 2 and thus n < 4.

Subcase 1.2. *m* is even, and *n* is even. Then (m + n)/2 - m/2 < 2. Hence, n/2 < 2 and thus n < 4.

Subcase 1.3. *m* is even, and *n* is odd. Then (m + n)/2 + 1/2 - m/2 < 2. Hence, n/2 < 3/2 and thus n < 3.

Subcase 1.4. *m* is odd, and *n* is odd. Then (m + n)/2 - m/2 - 1/2 < 2. Hence, n/2 < 5/2 and thus n < 5.

Thus, $\lceil (m+n/2) \rceil - \lceil n/2 \rceil < 2$ if $n \le 2$, or n = 3 and m is odd. Therefore,

$$\left\lceil \left(m+n\right)/2\right\rceil < 2 + \left\lceil m/2\right\rceil.$$

Hence,

$$\chi_{\infty}(K_{m,n} \stackrel{.}{\cup} K_{m,n}) < \chi_{\infty}(\overline{K}_{m,n}) + \chi_{\infty}(\overline{K}_{m,n})$$

if $n \le 2$, or n = 3 and m is odd.

Case 2. $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil = 2$. Using a similar argument as in case 1, we also have the following subcases:

Subcase 2.1. When *m* is odd, and *n* is even, then n = 4;

Subcase 2.2. When *m* is even, and *n* is even, then n = 4;

Subcase 2.3. When *m* is even, and *n* is odd, then n = 3;

Subcase 2.4. When *m* is odd, and *n* is odd, then n = 5.

Thus, $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil = 2$, if n = 4, or n = 3 and m is even, or n = 5 and m is odd. Therefore,

$$\left\lceil \left(m+n\right)/2\right\rceil = 2 + \left\lceil m/2\right\rceil.$$

Hence, $\chi_{\infty}(K_{m,n} \cup \overline{K}_{m,n}) = \chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n})$ if n = 4, or n = 3 and m is even, or n = 5 and m is odd.

Case 3. $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil > 2$. Again, using an argument similar to that in case 1, we have:

Subcase 3.1. When *m* is odd, and *n* is even, then n < 4;

Subcase 3.2. When *m* is even, and *n* is even, then n < 4;

Subcase 3.3. When *m* is even, and *n* is odd, then n < 3;

Subcase 3.4. When *m* is odd, and *n* is odd, then n < 5.

Thus, $\lceil (m+n)/2 \rceil - \lceil m/2 \rceil > 2$ if $n \ge 6$, or n = 5 and m is even. Hence,

 $\left\lceil \left(m+n\right)/2\right\rceil > 2+\left\lceil m/2\right\rceil.$

Hence, $\chi_{\infty}(K_{m,n} \stackrel{.}{\cup} \overline{K}_{m,n}) > \chi_{\infty}(K_{m,n}) + \chi_{\infty}(\overline{K}_{m,n})$ if $n \ge 6$, or n = 5 and *m* is even. \Box

Corollary 1. For $K_{m,1}$, $\chi_{\infty}(K_{m,1} \stackrel{.}{\cup} \overline{K}_{m,1}) < \chi_{\infty}(\overline{K}_{m,1})$.

Proof. This falls under case 1 of Theorem 5(*iii*).

Two of the many results dealing with the chromatic numbers of graphs, in particular, is the chromatic number of a graph and its complement due to Nordhaus and Gaddum [5]. They are given in the next two theorems.

Theorem 6. If G is a graph of order p and $\chi(G)$ and $\chi(\overline{G})$ denote respectively the chromatic numbers of a graph G and its complement \overline{G} , then

(i)
$$2\sqrt{p} \le \chi(G) + \chi(\overline{G}) \le p+1;$$

(ii) $p \le \chi(G)\chi(\overline{G}) \le [(p+1)/2]^2$

John Mitchem presented an analogous result in [4] involving point arboricity. The **point arboricity** $\rho(G)$ of a graph G is the minimum number of subsets into which the vertices of G can be partitioned so that each subset induces an acyclic subgraph. His result may now be stated:

Theorem 7. If G is a graph of order p, then

(i)
$$\sqrt{p} \le \rho(G) + \rho(\overline{G}) \le (p+3)/2$$
;
(ii) $p/4 \le \rho(G) + \rho(\overline{G}) \le [(p+3)/4]^2$.

Looking at Theorems 6 and 7, we can now formulate analogous results for the path chromatic number. First, let us observe that if G is a graph such that $\chi_{\infty}(G) = t$, then V(G) can be partitioned into t subsets such that each subset induces a linear forest. Now, since these are acyclic graphs,

$$\rho(G) \leq \chi_{\infty}(G).$$

Note that the path chromatic number of an acyclic graph does not exceed two, thus $\chi_{\infty}(G) \leq 2\rho(G)$. Hence,

$$\chi_{\infty}(G)/2 \leq \rho(G) \leq \chi_{\infty}(G).$$

It is easy to see that these bounds for $\rho(G)$ are best possible. If $G = K_{1,n}$ (n > 1), then $\chi_{\infty}(G) = 2$ and $\rho(G) = 2/2 = 1$. If $G = P_n$, then $\chi_{\infty}(G) = 1 = \rho(G)$.

Theorem 8. For $t \ge 2$, let $G_i = (V_i, E_i)$, i = 1, 2, ..., t be mutually disjoint linear forests with $2 \le |V_1| \le |V_2| \le ... \le |V_t|$ and $|E_i| \ge 1$, i = 1, 2, ..., t.

(i) Then
$$\chi_{\infty}(G) = t$$
 where $G = \sum_{i=1}^{t} G_i$;
(ii) If each G_i is a path then $\chi_{\infty}(\overline{G}) = \lceil p/4 \rceil$, where $p = max \{ |G_i| \}$.

Proof. (i) Let H be the induced subgraph of G containing two adjacent points from each G_i .

Then $H = K_{2t}$ and $\chi_{x}(K_{2t}) = t$. Note that $\chi_{x}(H) \leq \chi_{x}(G)$. Clearly, $V_1, V_2, ..., V_t$ is a path partition of V(G) so that $\chi_{x}(G) \leq t$. Thus $t \leq \chi_{x}(G) \leq t$ which implies $\chi_{x}(G) = t$. We are left to prove (*ii*). \overline{G} has at least t components which are complements of paths. The component of \overline{G} with maximum number of edges is the complement of a G_i with maximum order p, i.e., G_t . Since G_t is a path, from Theorem 2 we know that $\chi_{x}(\overline{G_t}) = \lceil p/4 \rceil$, where p is the order of G_t . But the path chromatic number of a graph is the path chromatic number of its largest component. Therefore,

$$\chi_{\infty}(\overline{G}) = \lceil p/4 \rceil.$$

Theorem 9. Let G be a graph of order p, then

(i) $\sqrt{p} \leq \chi_{\infty}(G) + \chi_{\infty}(\overline{G}) \leq p+1;$ (ii) $p/4 \leq \chi_{\infty}(G)\chi_{\infty}(\overline{G}) \leq [(p+1)/2]^{2}.$

Proof. Theorem 7 and Lemma 5.4 in [2] imply the lower bounds of (*i*) and (*ii*). Theorem 6 implies the upper bounds since $\chi_{\infty}(G) \leq \chi(G)$. \Box

The lower bound \sqrt{p} for $\chi_{\infty}(G) + \chi_{\infty}(\overline{G})$ is best possible. To see this, let G_i = P_{16} , i = 1, 2, 3, 4 and let $\sum_{i=1}^{4} G_i$. By Proposition 5.1 in [2], $\chi_{\infty}(G) = 4$ and $\chi_{\infty}(\overline{G}) = \lceil 16/4 \rceil = 4$. Thus, $\chi_{\infty}(G) + \chi_{\infty}(\overline{G}) = 4 + 4 = 8 = \sqrt{16 \times 4} = \sqrt{p}$. Note that $\chi_{\infty}(G)\chi_{\infty}(\overline{G})$ is also the best possible.

The upper bound for Theorem 9(i) may be improved.

Theorem 10. Let G be a graph of order p, then

$$\chi_{\infty}(G) + \chi_{\infty}(G) \leq p.$$

Proof. Case 1. $G = K_p$. From [1], $\chi_{\infty}(G) = \lceil p/2 \rceil$ and $\chi_{\infty}(\overline{G}) = 1$. Therefore, $\chi_{\infty}(G) + \chi_{\infty}(\overline{G}) = \lfloor p/2 \rfloor + \lceil p/2 \rceil = p$.

Case 2. $G \neq K_p$. This implies that G is a subgraph of $K_p - e$, where e is an edge of K_p . Thus $\chi_{\infty}(G) \leq \chi_{\infty}(K_p - e) = \lfloor p/2 \rfloor$. Also, since \overline{G} is of order p, then $\chi_{\infty}(G) \leq \lceil p/2 \rceil$. Therefore, $\chi_{\infty}(G) + \chi_{\infty}(\overline{G}) \leq \lfloor p/2 \rfloor + \lceil p/2 \rceil = p$. \Box

Acknowledgement. The author thanks the referees for their useful suggestions. Also, the author would like to thank the editors for encoding this paper in the accepted format.

References

- [1] J. Akiyama, H. Era and S. Gervacio, Path chromatic numbers of graphs, J. Graph Theory 13(5) (1989) 569-575
- [2] E. B. Arugay, Path chromatic numbers of graphs, Ph.D. Thesis, Ateneo de Manila University, 1990
- [3] M. Matsumoto, *Bounds for the vertex linear arboricity*, J. Graph Theory **13** (1989) 690 - 699
- [4] J. Mitchem, On the point arboricity of a graph and its complement, Canad. J. Math. 23(2) (1971) 287 - 292
- [5] A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math.
- Monthly 65 (1956), 176 176

December 1999