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Path Chromatic Number of
Complementary Graphs

ESPERANZA BLANCAFLOR ARUGAY

The path chromatic number of a graph G, denoted by x.(G), is the mini-
mum number of colors the points of G can be given so that each monochromatic
color class induces a linear forest. Equivalently, it is the minimum number of
subsets Vi, Va, ..., V, into which ¥(G) can be partitioned so that each <V~ is a
linear forest. A path partition of a graph G is a partition of the vertices of G such
that each subset in the partition induces a linear forest.

This paper presents analogues of some interesting theorems due to Nordhaus
and Gaddum [5] and John Mitchem (4].

Lemma 1. Let C, = (Vi, V2, -5 Vs v,) be a cycle, n > 5. The subgraph
induced by any four points labeled consecutively in C,is a Pyin Chn.

Proof. Any four consecutive vertices in a cycle C,, n > 5, form a path P, and

P, is self-complementary. Hence, the same vertices also form a path in Cp.

Lemma 2. Let Co = (Vi, V2y - Vs v)) be a cycle, n > 6. The subgraph

induced by at least five poinis of V(Cn) contains a cycle.

Proof. Given any five points of C,, it is easy to see that there exist three
points that are mutually non-adjacent. Thus, these three points are mutually adja-
cent In —C_‘, forming a triangle. Hence, the subgraph induced by at least five

no

points of ¥( Cp) contains a cycle.

opvation 1. Let P, be a path of order n, n > 4._The subgraph induced by

Obs : . ' .
beled consecutively in P,isa Pyin F,.

any four points la : . _
Observation 5. The subgraph induced by at least five points of V( F,) con-

(ains a cycle where P, is path, n.2 3.
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Theorem 1. If C, is a cycle of order n, n > 3, then o( Cn ) = n/a ],

Proof. 1t is easy to check the theorem in the case n = 3, and 4. Let C, be 3
cycle of order n, n > 5. Label V(C,) consecutively by v, vy, ..., v,. Note that V(g")
= V(Cp). From Lemma 2, the subgraph induced by at least five points in C,
contains a cycle. Thus, x.(Cy) > n/5. But from Lemma | any four consecutive

points of ¥(Cy) induces a path of order four. Thus, we color ¥(C») by coloring
every four consecutive vertices by a distinct color. Since the path chromatic
number is an integer, we have Yool E,, )= [n/4]

Theorem 2. For cycles C,,n >3,
(1) %(Cp) + Xl Cr ) > X«(K,) if n<7;
(D) Xa(Co) + Xl Cn) < Yol Ky) if 0> 7.

Proof. (i) Since y.(K,) = [n/2], %(Co) =2, and 3, Cp ) = [n/47, we have

(21 =Tnia) =Tn2] = (1/2)n/2]
<[n21 =12 n/2]
=12[n2] <2,

when n < 7. Thus rn/.ﬂ <2+ l_n/ﬂ when n < 7. Hence, Xl C, O E‘” ) < %.(C,) +
Yool E',,) whenn <7,

i)y if n>7, it is easy to verify that [ n/2

1-Twals o Thus, [n/2] > 2 +
[n/4]. Therefore, 7.(C, U Cp) > X C) + 7,

(En)WhennZI

The following observations can be easily verified.

Theorem 3. [f P, is a path of order n, n 2 1, then y E) =[n/4],

Proof. The proof is similar to that of Theorem 1. (|

Theorem 4. For complete bipartite graphs K, ,

Xeo(Kmn) = max {Xoo(Km),xm(K,,)}.

Proof. Let K,,,

be a complete bipartite graph. Then the complement of X, ,
denoted by K, nha

§ two components, which are complete graphs K,, and K,
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Clearly, the path chromatic number of Kmn is the maximum of the path
chromatic numbers between K, and K,,. U

Theorem 5. For complete bipartite graphs K, ,, m 2 n,

(i) xw(K,,,_n) + X,co(Km,n) > Yoo (Kman ) if 722, 0rn =3 and m is odd.

(i1) Xoo(Km,n) + Xoo(Km.n) = Xoo(Kn,+,,) ifn=3and mis even,orn=4,o0rn
=5and mis odd.

(dii) xw(Km_,,) + xm(l_(m,,,) < xw(KmH,) if n=75and m is even, or n 2 6.

Proof. KmnU Kmn = Kppins Yoo K man )= (m +n)/2] by [1];
xw(K,,,’,,) =2 and XOO(I—(m,n) =[m/2]

from Theorem 4 and m > n. Consider [ (m+n)/ 2|-[m/2]

Case 1. Rm+n)/2-\—‘_m/2-\<2.

Subcase 1.1. m is odd, and 7 is even. In this case we have (m + n)/2 + 1/2 -
m/2 —1/2 < 2. Hence, n/2 < 2 and thus n < 4.

Subcase 1.2. m is even, and n is even. Then (m + n)/2 —m/2 <2. Hence, n/2
<2 and thusn < 4.

Subcase 1.3. m is even, and n is odd. Then (m + n)/2 + 1/2 — m/2 <2. Hence,

n/2 < 3/2 and thus n < 3.
Subcase 1.4. m is odd, and 7 is odd. Then (m + n)/2 — m/2 = 1/2 < 2. Hence,

n/2 < 5/2 and thus n <5.

Thus, [(m+n/ 2)|-[n/ 2]<2 ifn<2,0rn=3andmis odd Therefore,

[(m+n)/2'\<2+[m/21.

Hence,
Xao(Km,n v Km,n) < Xco(—knl.ll)+ X_w(Em,n)

fn<2,0orn= 3 and m is odd.
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Case 2. [(m + n)2]1 = m/21= 2. Using a similar argument as in case 1, we
also have the following subcases:

Subcase 2.1. When m is odd, and » is even, then n = 4;
Subcase 2.2. When m is even, and » is even, then n = 4;
Subcase 2.3. When m is even, and # is odd, then n = 3;
Subcase 2.4. When m is odd, and # is odd, then n = 5.
Thus, E_(m+n), 2

_Ti ‘l-m." 2’| =2,ifn=4,orn=3and miseven,orn=>35
and m 1s odd. Therefore,

[_(m +n)/ 21\ =2+ |_m 2—|.

Hence, ¥ (K, , U Eyn.n) = xx(Km,n)+ Xx(E,,,,,,) if n=4 orn=23and
m is even, or n =S5 and m is odd.

Case 3. [(m+n)/ 21-[m7/ 2]>2. Again, using an argument similar to that
n case 1, we have:

Subcase 3.1. When m is odd, and # is even, then n < 4;
Subcase 3.2. When m is even, and » is even, then n < 4;
Subcase 3.3. When m is even, and » is odd, then n < 3;

Subcase 3.4. When m is odd, and 7 is odd, then n < 5.

Thus,

(m+n)/ 2—‘ —|—m 2_| >2 ifn 26,orn=>5and m is even. Hence,

[(m+n)/2]>2+[m/2]

Hence, Xx(Km,n ) Em,n) > Xoc(Km,n)+Xao(Em,n) ifn> 6, orn=35 and
miseven. _
Corollary 1. For K1, Yoo (K1 O Km1) <% (Komy).

Proof. This falls under case 1 of Theorem 5(iii).

Two of the many results dealing with the chromatic numberg of
articular, is the chromatic number of a graph and its compleme
If:ordhaus’and Gaddum [5]. They are given in the next two theoremy

graphs, in
nt due to
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Theorem 6. If G is a graph of order p and y(G) and (G

. ) denote respec-
(ively the chromatic numbers of a graph G and its complement G _ then

() 24/p < 1(G)+ X(E) <p+l:
0 XK sl

Jjohn Mitchem presented an analogous result in (4] involving point

arboricity. The point arboricity p(G) of a graph G is the minimum number of
subsets into which the yemces of G can be partitioned so that each subset induces
an acyclic subgraph. His result may now be stated:

Theorem 7. If G is a graph of order p, then
(i) Y7 <p(G)+p(G) < (p+3)/2;

(i) pl4< P (@) +p G <[(p+3)/4]".

Looking at Theorems 6 and 7, we can now formulate analogous results for
the path chromatic number. First, let us observe that if G is a graph such that
1=(G) = t, then V(G) can be partitioned into ¢ subsets such that each subset
induces a linear forest. Now, since these are acyclic graphs,

P(G) < x=(G).

Note that the path chromatic number of an acyclic graph does not exceed
two, thus x(G) < 2p(G). Hence,

X=(G)/2 < p(G) < x=(G).

Itis easy to see that these bounds for p(G) are best possible. If G = K,,, (n > 1),
then %.(G) =2 and p(G)=2/2=1.1fG= P, , then x(G) = 1 = p(G).

Theorem 8. For 1 > 2, let Gi=(V, E),i=1,2, ..,

‘ t be mutually disjoint
/mearforestswichS' Vi Is |V2] <. < | V,| and |E,.| > 1,

i=1,2,...,t

. t
() Then y..(G) = t where G= 3 G; ;
i=1

() If each G, is a path then 3.(G) = [pr41, where p = max { 1G.1)
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Proof. (i) Let H be the induced subgraph of G containing two adjacent
points from each G..

......

V.1s a path partition of ¥(G) so that ¥-(G) < 1. Thus ¢ < x<(G) <t which implies
%=(G) = 1. We are left to prove (i7). G has at least 1 components which are

complements of paths. The component of G with maximum number of edges is
the complement of a G, with maximum order p, i.e., G.. Since G, is a path, from

Theorem 2 we know that y_x(a) =[p/4], where p is the order of G, But the

path chromatic number of a graph is the path chromatic number of its largest
component. Therefore,

pa G)= rp."4_}.
Theorem 9. Let G be a graph of order p, then
) VP <4=(G) + %(G) s p+ 1
(if) p/4 < %(Gy(G) < [(p+ 1)2 ).

Proof. Theorem 7 and Lemma 5.4 in (2] imply the lower bounds of (1) and
(i7). Theorem 6 implies the upper bounds since .(G) < 1(G)

The lower bound p for %.(G) + 1.( G ) is best possible. To see this, let G,

4
=P, i=1,2,3,4and let ) G;. By Proposition 5.1 in [2), %.(G) = 4 and
i=1

1(G) = [16/41=4. Thus, %.(G) + 1. (G) =4 + 4= § = V1657 - /7. Note
that Xr(G)xx(E) 1s also the best possible.
The upper bound for Theorem 9(i) may be improved.

Theorem 10. Ler G be a graph of order p, then

1(G) + % G) <p.

Proof. Case 1. G =K,. From [1], %-(G) =[p/2] and 1=(G)=1. Therefore,

1(G) + 1 G) =Lpr2) + [pr21=p.
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Dece
» G # K. This implies that G is a subgraph of K, — e, where ¢ is an
edge of Kp- Thus X=(G) £ X (Kp =€) = Lp/2). Also, since G is of order p, then
OB fp/ﬂ. Therefore, Xo(G) + X G) < Lpi2)+ [pi2]=p. O

Case
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