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Path Chromatic Number of 

Complementary Graphs 

The path chromatic number of a graph G, denoted by X(G), is the mini 
mum number of colors the points of G can be given so that each monochromatic 
color class induces a linear forest. Equivalently, it is the minimum number of 

subsets V, V2, ..., V, into which V(G) can be partitioned so that each <V> is a 

linear forest. A path partition of a graph G is a partition of the vertices of G such 

that each subset in the partition induces a linear forest. 
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This paper presents analogues of some interesting theorems due to Nordhaus 

and Gaddum (5] and John Mitchem [4]. 

Lemma 1. Let C, = (V1, V2, .., VA, Vi) be a cycle, n > 5. The subgraph 

induced by any four points labeled consecutively in Ch is a Pa in Cn. 

Proof. Any four consecutive vertices in a cycle CH, n 5, form a path P, and 

Pa is self-complementary. Hence, the same vertices also form a path in Cn . 

Lemma 2. Let C, = (V), V2, .., Vns Vi) be a cycle, n > 6. The subgraph 

induced by at least five points of V( Cn) contains a cycle. 

any 

Proof. Given any five points oi Cn 1t 1s easy to see that there exist three 

points that are mutually non-adjacent. Thus, these three points are mutually adia 

cent in Cu. forming a triangle. Hence, the subgraph induced by at least five 

points of V( Cn) contains a cycle. O 

Observation 1. Let P, be a path of order n, n24. The subgraph induced by 

four points labeled consecutively in P, is a P4 in P,. 

Observation 2. The subgraph induced by at least five points of V( P, ) con-

tains a cycle, where P, is path, n > 5. 
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Theorem 1. fC, is a cycle of order n, n 23, then x.( Cn) =In/4]. 
Proof. It is easy to check the theorem in the case n=3, and 4. Let C. be a 

cycle of order n, n 25. Label V(C,) consecutively by vi, 2, .., V,. Note that VC) 
V( Cn). From Lemma 2, the subgraph induced by at least five points in C. 

contains a cycle. Thus, x Cn) > n/5. But from Lemma 1 any four consecutive 
points of V(Cn) induces a path of order four. Thus, we color V(Cn) by coloring 

every four consecutive vertices by a distinct color. Since the path chromatic 
number is an integer, we have Xol Cn)=l n/4. 0 

Theorem 2. For cycles Ch, n 23, 
(i) x(C) + X( Ch) >lKi) if n<7; 
(ii) x(Ch) + X Cn) s X(K,) if n>7. 
Proof. () Since z.(K,) =\n/2, x(C) = 2, and z( Ch) =n/4l, we have 

Tn/2]-[n4]=fn/2]-T(/2)n/2] 
sn/2] - 1/2[n/2] 
= 1/2|n/2] <2, 
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when n <7. Thus n/2 |<2 +|n/4|when n <7. Hence, (C, æ Ch ) <LC) + Xol Cn) when n <7. 
(ii) if n 27, it is easy to verify that n/2| -n/4|> 2. Thus, n/21> 2 + n/41. Therefore, X(C æ Cn) > XCh) + Xol Cn) when n 7. 0 
The following observations can be easily verified. 
Theorem 3. IfP, is a path of order n, n> 1, then Xl P. ) =n/41. 
Proof. The proof is similar to that of Theorem 1. n 

Theorem 4. For complete bipartite graphs Kmn 

Le(Km,n)= max Xo (Km).X(K)} 
Proof. Let Kmn be a complete bipartite graph. Then the complement of Kmn denoted by Km,n has two components, which are complete graphs Km and K,. 
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Clearly, the path chromatic number of Km,n is the maximum of the path 
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chromatic numbers between K and K. n 

Theorem 5. For complete bipartite graphs Kmn, m 2n, 
() XaKmn)+ XKmn)> xoKm+n) if n2 2, orn=3 and m is odd. 

(i) xe{Kmn) + XKma)-Xe(Km.) ifn=3 and m is even, or n = 4, or n 
=5 and m is odd. 

(ii) Xo(Km.n)+ XoKmn<XooKm+n) ifn= 5 and m is even, or n 2 6. 

Proof. KmaÜ Kmn = Km+n: Xe(Km+n)=(m+n)/2| by [1]. 

xKm)=2 and x(Kmn )=[m/2] 

from Theorem 4 and m 2n. Consider(m+n)/2-m/2 

Case 1. [(m +n)/2]-[m/2]<2. 
Subcase 1.1. m is odd, and n is even. In this case we have (m + n)/2 + 1/2 -

m/2 -1/2 < 2. Hence, n/2<2 and thus n <4. 

Subcase 1.2. m is even, and n is even. Then (m + n)/2 -m/2 < 2. Hence, n/2 

<2 and thus n < 4. 

Subcase 1.3. m is even, and n is odd. Then (m + n)/2 + 1/2- m/2 <2. Hence, 

n/2 < 3/2 and thus n <3. 

Subcase 1.4. m is odd, and n is odd. Then (m + n)/2 - m/2-1/2 <2. Hence. 

n/2 < 5/2 and thus n < 5. 

Hence, 

Thus, (m + n /2) |-n/2|<2 ifn s 2, or n = 3 and m is odd. Therefore, 

[(m+n)/2]<2 +[m/2]. 

Xoo (m,n æ Km,n)< XKmn+xo (Km,n) 

if ns2, or n = 3 and m is odd. 
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Case 2. T(m + ny2\-m/2]= 2. Using a similar argument as in case 1, we 
also have the following subcases: 

Subcase 2.1. When m is odd, andn is even, then n =4; 

Subcase 2.2. When m is even, and n is even, then n = 4; 

Subcase 2.3. When m is even, and n is odd, then n =3; 

Subcase 2.4. When m is odd, and n is odd, then n =5. 

Thus, ( +n)/2|-[m/2]= 2, ifn = 4, or n =3 and m is even, or n =$ 
and m is odd. Therefore, 

T(m +n)/2=2+[m/2, 
Hence, X(Km,n U Km,n)=XoKm.n)+Xo (Km,n ) if n = 4, or n = 3 and 

m is even, or n =5 and m is odd. 

Case 3. (m+n)/2-m/2]>2. Again, using an argument similar to that 
in case 1, we have: 

Subcase 3.1. When m is odd, and n is even, then n < 4; 

Subcase 3.2. When m is even, and n is even, then n < 4: 

Subcase 3.3. When m is even, and n is odd, then n <3: 
Subcase 3.4. When m is odd, and n is odd, then n<5. 

Hence, Xoo(K m,n 
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Thus. (m+n)/2|-m/2>2 if n 6, or n = 5 and m is even. Hence, 

m is even. 

[(m +n)/ 2|>2+[m/2\, 

U Km.a)>X(Km.n)+X (Km,n) if n > 6, or n = 5 and 

Corollary 1. For Kml, Xo (Kml æ Km,l) <Xo(Km,l ). 
Proof. This falls under case 1 of Theorem 5(iii), 

Tauo of the many results dealing with the chromatic numbers of granhs in 
Darticular. is the chromatic number of a graph and its complement da 

Nordhaus and Gaddum (5]. They are given in the next two theorems 
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PLrem 6. If G is a graph of order p and x(G) and x( G) denote 
tively the chromatic numbers ofa graph G and its complement G,then 

() 2/ps x(G)+ xG)sp+1l; 

Iohn Mitchem presented an analogous result in [4] involving point horicity. The point arboriciíy p(G) of a graph G is the minimum number of 
hsets into which the vertices of G can be partitioned so that each subset induces 

an acyclic subgraph. His result may now be stated: 

Theorem 7. fG is a graph of order p, then 

(0 psp(G) +eG)s (p+3) /2; 

(i) pl4 S p (G) +p (G) s[(p+3)/4}. 
Looking at Theorems 6 and 7, we can now formulate analogous results for 

the path chromatic number. First, let us observe that if G is a graph such that 

XG) = 1, then V(G) can be partitioned into t subsets such that each subset 
induces a linear forest. Now, since these are acyclic graphs, 

p(G) s Xo(G). 

Note that the path chromatic number of an acyclic graph does not exceed 
two, thus Xo(G) s 2p(G). Hence, 

Xo(G)/2 s p()s xo(G). 

respec 

lt 1s easy to see that these bounds for p(G) are best possible. If G = Kin (n> l), 
then x(G) = 2 and p(G) = 2/2 =1. If G = P, ,then (G) =l=p(G). 

Iheorem 8. For t > 2, let G, = (V, E), i = 1, 2, ., t be mutually disjoint 
mear forests with 2 s| vls lvls...s|v and |E,2 1, i=1,2, .. 

(i) Then y(G) =t where G=G;: 
i=l 

(i) f each G, is a path then y G)=Ipl4, where p =max {|GI}. 
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Proof. (i) Let H be the induced subgraph of G containing two adjacent 
points from each Gi. 

Then H = Ky and z-(K) =1. Note that (H) SX(G). Clearly, Vi, V, 
V, is a path partition of V(G) so that -(G) st. Thus t s X(G) sIwhich implies 
X(G) = t. We are left to prove (i). G has at least t components which are 
complements of paths. The component of G with maximum number of edges is 
the complement of a G, with maximum order p. i.e., G,. Since G, is a path, from 
Theorem 2 we know that x( G, ) =lp4 , where p is the order of G. But the 
path chromatic number of a graph is the path chromatic number of its largest 
component. Therefore, 

X(G)=lp/4). 

Theorem 9. Let G be a graph of order p, then 

() p <%(G) + X(G) Sp + 1; 

(ii) p/4 s X(G)x(G)s [p+ 1y2 j. 

Proof. Theorem 7 and Lemma 5.4 in [(2] imply the lower bounds of (i) and (ii). Theorem 6 implies the upper bounds since x(G) s x(G). 

The lower bound p for x(G) + X( G) is best possible. To see this, let G, 
4 

= Ph i = 1, 2, 3, 4 and letG;. By Proposition 5.1 in [2), X(G) = 4 and i=l 
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YG)= 16/4|= 4. Thus, z-(G) + %-(G) = 4 + 4 = 8= 16x4 = D. Note 
that z(G)x( G) is also the best possible. 

The upper bound for Theorem 9(i) may be improved. 

Theorem 10. Let G be a graph of order p, then 

X(G) + Xo(G) sp. 

Proof. Case 1. G= K,. From [1], X-(G) =lpl2 \ and x..(G) = 1. Therefore 

xG) + x(G) =lp2] + [p2]=p. 
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Case 2. G Kp. This implies that G is a subgraph of K, -e, wheree is an 

cdge of Kp. Thus x(G) s Xo (K, - e) =Lp/2. Also, since G is of order p, then 
L-(G)slp21. Therefore, Xo(G) + XolG) slp/2J+ p/2l=p. O 
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