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on a compact interval [a,b]. We call such integral the Henstock

Bochner integral and denote by H([a,b],X) the space of Henstock-
Bochner integrable functions on [a,b] with values in a Banach space X.
Also, we denote by E([a,b],X) the space of all X-valued Denjoy integrable
functions on [a,b]. It is known that E([a,b],R) = H([a,b],R) where R is the
space of real numbers (see ref. [5]). However, Cao in his work showed
that for some Banach space X, E([a,b],X) is properly contained in the space
H([a,b],X).

The space H([a,b],X) is not complete undér the norm given by

I n [2], Caodefined the Henstock integral of a Banach-valued function

-b
£l = sup {|(HB)[ £ |5 a <t < b},
a

(seeref.[5]). Ang, Lee, and Vy in [1] showed that the completion of E([a,b],R)
is a subspace of the space of distributions. In this paper, we will show
thatin general, this resultis valid. That is, for any Banach space X, the
completion of H([a,b],X) under the norm defined above is a subspace of
the space of distributions. In particular, we willshow that every Henstock-
Bochner integrable function on [a,b] defines a distribution. In order to
obtain this result, we need the vector extension of thenotion of distributions
[8,p 30]. Throughout this paper, X is a real Banach spaceand O is the zero
vector in X.

To proceed, we need the following definitions and results:

Definition 1. A function f : [ab] —> X is Henstock-Bochner
integrable on [a,b] if there is a vector A in X such that for every e >0 there
ﬁxists ad(x) > 0 such that for any d-fine division D = {[u,v], x} of [a,b], we

ave

|(DYE f(x(v-u) - A} < e.
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In the above definition, we write
b
(HB)[ £ = A
a

. Definition 2. A function f: [a,b] —> Xis Denjoy integrable on [a,b]
if there exists a function F:[a,b] —> X which is ACG* on [a,b] and Sulch
that F’(t) = f(t) almost everywhere in [a,b].

For a more detailed discussion of the above concepts as well as their
properties, see refs. [3] and [5].

Definition 3. A function g:[ab]—> Rissaid to be of bounded
variation on [a,b] if

V(g;[a,bl) := sup (D)E |g(v) - g(w)]

is finite, where the supremum is over all divisions D = {[u,v]} of [ab].

Definition 4. Let F:[a,b]—> Xand g: [a,b] — R. We say thatF
is Henstock-Stieltjes integrable to A (in X) with respect to g on [a,b] if for
every e > 0 there exists a d(x)>0 such that for any d-fine division
D = {([u,v], x)} of [a,b], we have

| (D)E (g(v) - g(w)F(x) - A < e .

We remark that if d(x) = n, a constant, for all x in [a,b], then we say that F
is Riemann-Stieltjes integrable with respect to g on [a,b]. In any case, we

write
b

(HS)[ Fdg = A .
a

The next theorem is known as the Cauchy criterion. The proof is

dard (see ref. [3]). - :
stanca Tlfeorem 5. LetF:[ab]—>Xand g: [a,b]—>R.ThenF is Henstock

i 1 0 there exists @
olties integrable with respect to g on [a,b] if for every e> b2
3t(1;3)1f1>e S0 I;qu:l% that for any two d-fine divisions D = ([u,v]x} and D
([u’,v'1x’} of [ab], we have
D) E (g(v) - 8())F(x)

- (D)E (8(V™) -~ g(u‘))F(x')le <e -
[a,b] —> Ris of

Theorem 6. If F:[ab]—> Xis continuous and g :
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pounded variation, then F is Henstock-Stieltjes integrable with respect to g

’b 3 > . . .
ot ]Proof". Since F is continuous on [a,b], it is uniformly continuous

there. That is, given e > 0, there exists n > 0 such that for all t and t’ in [a,b],
s
|t - t°| < n implies |F(t) - F(t )|x < e.

Define d(x)=n/2 forallxin [a,b]. Then forany d-fine divisions
Dand D’ of [a,b], there exists another d-fine division D” which is finer than
both D and D’. Let [u,v] be a division interval in D. Then

= < <-.-<z =v
u zo Azl r

where (24_4-24 1 isinD”fori=1,2,3,..,r. Consider the following
difference:

r
A) = [&(v) - g(u)IF(x) - (B (8(z) - 8(zy_)IFGy)
r .
= L [8(2)) - &8(zy_;)1[F(x) - F(xp)].
k=1
Then

jay) < e.V(g;[u,v].

For D = {[u,v];x}, we write

! P(g,F;D) = (D)X (&(v) - g(u))F(x).

Therefore,

le(g,F;D) - p(g,F;D")] < e.V(g;[a,bl).
Similarly,

le(g,F;D°) - o(g,F;D")} < e.V(g;[a,bl).

Thus,

le(g,F;D) - p(g,F;D°)| < 2e.V(g;[a,bl).

By the Cauchy criterion, it follows that Fis Henstock-Stieltjes integrable with
fespect to g on [a,b]. .
The following two results areseento be similar (butconsiderably
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notspecial cases) to thosein thearticleof Rey and Lee[7]. The firstis proyeq
as in the real-valued case (see [5]).

Theorem 7. If f: [ab] —> X is Henstock-Bochner integrableand g .
[ab] —> Ris of bounded variation, then the function g(.)f(.): [a,b] —> X
is Henstock-Bochner integrable on [a,b].

The following resultis a quick consequence of theabovetheoren;

Corollary 9. If £ : [a,b] —> X is Henstock-Bochner integrable with
primitive Fand g : [ab] —> Ris of bounded variation, then

b b
(HB)[ gf = F(b)a(b) - F(a)g(a) - [ Fdg .
a a

Definition 10. Let D([a,b]) denote the space of all infinitely
differentiable real- valued function g : [a,b] —> Rwith compact supporton
(a,b). The space of vector distributions, denoted by D’([a,b]), is the space of
all continuous linear operators on D([a,b]) taking values in a Banach space
X: That is, T is in D’([ab]) if )

(T,g;k)) — <T,8(k)> in Xas n — o

whenever g:‘lfz'g (K uniformly on [a,b] asngoes to infinity. Furthermore,
if T is a distribution, its derivative is a distribution DT and

<KDT,> = - <T,g”> for every g € P([a,b]).

Let f: [a,b]—> X be a continuous function. Then it is easy to verify
that f defines a distribution. That is, it can be shown that T(f) defined by

b
<T(f),g > = [ 8f
a

where the integral is in the Henstock-Bochner sense, is a continuous linear
operator on D([a,b]. Here, we also use the fact that a continuous function s
Bochner integrable on [a,b] (see ref. [4]). Next, we agree to identify a
continuous function with the distribution whichit defines. Consequently,

we have the following: .
Theorem 11. Every continuous function f: [ab] — X 18

differentiable in the distribution sense. ’
Consider G = { fin D’([a,b]): there exists F in C([a,bl.X) with F'=f
in the distribution sense }. Then Gis the set of all distributional derivatives
of X- valued continuous functions on [a,b]. Since primitives of the element
f of G differ only by constant functions, it follows that forevery f in G therz
exists a unique F(f) in C([a,b], X) such that E(f) = f in the distribution sens
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F(f)@) =0
and (f\)/s(/e define the following norm in G:

Iflg = IF(E)l, = sup {]F(E) ()]s a < t < bt

It is not difficult to verify that the above definiton is really a norm in G.

Finally, we have the following result:

Theorem 12. The completion of H([a,b],X) under the norm given
earlier is the space G together with the norm defined above. Moreover,
the space G is isomorphic to the space C’([a,b], X) with the uniform norm,
where C’([a,b],X) = {F in C([a,b],X); F(a) = 0}.

A Proof: First, we show that C’([a,b]X) is a closed subspace of

C([a,b],X), the space of all X-valued continuous functions on [a,b], under
the sup norm. So, let {f(n)} be a sequence of functions in C’([a,b],X) that
converge uniformly to f. Then for every e > 0, there exists a natural number
N such that '

IEQD () - £y < e

for all t in [a,b]. It follows that the norm of f(a) in X is less than e for every
e> 0. Hence, f(a) = 0and we have the desired result. Thus C’([a,b],X) under
the sup or uniform norm is a Banach space.

Now, define the following mapping:

T :(G’II' “G) — (C‘([a,b],x)yll‘ lm) by
T(f) = F(£f).
Then T is linear and injective. Also, if Fis in C’([a,b],X), then F’ =f (in the
distribution sense) is in G and T(f) = F. Hence T is surjective. Moreover, T
Is norm preserving since
I£lg = IFE ]y = ITE g
Therefore, T is an isomorphism. It follows that G under the defined norm

is a Banach space and T is a Banach isomorphism.
Next, let f: [a,b] —> X be a Henstock-Bochner integrable function on

[a,b] with primitive F given by

F(t) = (HB)f £
a
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Clearly, F(a) = 0. Also, F is continuous (see [2]). Define
b
<f,g > = (HB)[ gf for g € D([a,bl).
a

Note that the existence of the above definition follows from Theorem 7
Now, in view of Corollary 8, '

b
<f,g > = F(b)a(b) - [ Fdg = - <F,g">, g € D([a,b])
R :

Thus,

I<£.e>l = IFl,l8lct(ra,p1,R)"

It follows that fis a distribution and Fis a distributional primitive of f.
Furthermore, we see that f is in G, F(f) = F and

N£llg = IFly = IFD) ]y = I£lg-
This means that
(H( [a’b] ,X),“' “H) < (G- "' “G)-

Next, we will show that E([a,b],X)is densein G. Let f be an element
of G. Since F(f) is continuous, there exists a sequence {F(n)} of piecewise
linear functions (hence ACG*) such that F(n) —> F(f) uniformly on [a,b].
Without loss of generality, we may assume further that F(n)(a)=0 for alln.
Then f(n)=F(n)' is in E([a,b],X), F(n)=F(f(n)) for alln and

f£(n) - £llg = |F(n) - F(E)j, — O asn— @

—> fin G asn goes to infinity. This shows that E([a,b],X) is dense

ie., f(n)
is also dense in G.

in G. Accordingly, H([a,b],X)
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