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I n (2], Cao defined the Hens tock integral of a Banach-valued function 
on a compact interval [a,b]. We call such integral the Henstock 
Bochner integral and denote by H([a,b],X) the space of Henstock-

Bochner integrable functions on [a,b] with values in a Banach space X. 
Also, we denote by E([a,b],X) the space of all X-valued Denjoy integrable 
functions on [a,b]. It is known that E([a,b],R) = H([a,b],R) where R is the 
space of real numbers (see ref. [5]). However, Cao in his work showed 
that for some Banach space X, E([a,b],X) is properly contained in the space 
H([a,b],X). 

The space H([a,b],X) is not complete under the norm given by 
t, 

II f II H = eup { U ( ;HE ) J f ff ; a < t < b } , 
a 

(seeref.[5]). Ang,Lee,and Vyin[l] showed thatthecompletionof E([a,b],R) 
is a subspace of the space of distributions. In this paper, we will show 
that in general, this result is valid. That is, for any Banach space X, the 
completion of H([a,b],X) under the norm defined above is a subspace of 
the space of distributions. In particular, we will show that every Henstock-
Bochner integrable function on [a,b] defines a distribution. In order to 
obtain this result, we need the vectorextensionofthenotionofdistributions 
[8,p 30]. Throughout this paper, Xis a real Banach space and O is the zero 
vector in X. 

To proceed, we need the following definitions and results: 
Definition 1. A function f : [a,b] -> X is Henstock-Bochner 

integrable on [ a,b] if there is a vector A in X such that • for every e > 0 there 
exists a d(x) >Osuch that for any d-fine division D = {[u,v], x} of [a,b], we 
have 

ll<D>E f(x(v-u) - Al< e. 
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In the above definition, we write 
b 

(HB>f f = A 
a 

if th 
D~finitiofunn2. _A function f: [a,b]->XisDenjoy integrable on [ab] 

th 
er~ exists a cbon F: [a,b]-> X which is ACG* on [a,b] and su'ch 

at F (t) = f(t) almost everywhere in [a,b]. 
~or a more detailed discussion of the above concepts as well as their 

properties, see refs. [3] and [5]. 
Definition 3. A function g : [ a,b] -> R is said to be of bounded 

variation on [a,b] if 

V-( g; [a, b] ) : = sup ( D) E I g ( v) - g ( u) I 
is finite, where the suprernum is over all divisions D = ([u,v]} of [a,b). 

Definition 4. Let F: [a,b]-> X and g: [a,b]-> R. We say that F 
is Henstock-Stieltjes integrable to A (in X) with respect to g on [a,b) if for 
every e > 0 there exists a d(x) > 0 such that for any d-fine division 
D = {([u,v], x)} of [a,b], we have 

N<D>E (g(v) - g(u))F(x) - AU< e. 

We remark that if d(x) = n, a constant, for all x in [a,b], then we say that F 
is Riemann-Stieltjes integrable with respect to g on [a,b]. In ~y case, we 

write 
b 

(HS)f Fds =A. 
a 

The next theorem is known as the Cauchy criterion. The proof is 

standard (see ref. [31). . k 
Theorem 5. LetF: [a,b]->Xandg: [a,b]->R. ThenF 1s Hens!o;2 

Stieltjes integrable with respect to g _on [ a~b for every e > 0 there ;x~~ == 

d(x) > O such that for any two d~.fine d1v1S1ons D = {(u,v],x} an 
{[u',v'],x'} of [a,b], we have • 

U<D> E (g(v) - g{u))F(x) 

- (D .. >I: <s<v .. ) - s<u .. > )F(x' > ffx < e • 

. . [ b] -> R is of 
Theorem 6. If F: [a,b]-> Xis continuous and g • a, 
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bounded variation, then Fis Henstock-Stieltjes integrable with respect to g 
on (a,b). . . . . . . . 

Proof: Smee IS continuous on [ a,b ], 1t IS uniformly continuous 
there. That is, given e > 0, there exists_n > 0 such that for all t and t' in [a,b], 

It - t ... I < n implies IF(t > - F( t/ > Ix < e -

Define d(x). n/2 forallxin[a,b). Thenforany d-finedivisions 
o and·D' of [a,b ], there exists another d-fine division D" which is finer tl)an 
both D and D'. Let [u,v] be a division interval in D. Then • 

where :( z 1 _ 1, z 1 l is in D" for i =.1,2,3, ... ,r. Consider the following 
difference: . r 
A:= c,t<v> - s<u>JF<x> - .k~

1
cs<zk> - s<z1r_1 >JF<xk> 

Then 

For D = ([u,v];x}, we write 

p(g,F;D) = CD)E Cs<v> - g(u))F(x). 

Therefore, 

IP(g,F;D) 

s· ilarl un y, 

p < g, F; D" ) :I < e. V ( g; Ca, bl ) . 

IP ( g, F; D"' ) - p < s, F; D" ). I < e. V Ci; Ca.bl > • 

Thus, 
IP(g,F;D) - p(g;F;D"')I < 2e.V(g;[a,b]). 

By the Cauchy criterion, it follows that Fis Henstock-Stieltjes integrable with 
respect tog on [a,b]. 

The following two results are seen to be similar (but considerably 
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not special cases) to those in the article of Rey and Lee [7]. The first is prov d 
as in the real-valued case (see [51). e 

Theorem 7. If f: [a,b ]-> Xis Henstock-Bochner integrable and g . 

[a,b] -> R is of bounded variation, then the function g(.)f(.): [a,b]-> X 
is Henstock-Bochner integrable on [a,b]. 

The following result is a quick consequence of the above theorem. 

Corollary 9. If f: [a,b]-> Xis Henstock-Bochner integrable with 

primitive F and g: [a,b] -> R is of bounded variation, then 

b b 
<HB>f gf = F(b)g(b) - F(a)g(a) - f Fd1· . 

a a 
Definition 10. Let D([a,b]) denote the space of all infinitely 

differentiable real-valued function g : [a,b ]-> R with compact support on 

(a,b). The space of vector distributions, denoted by D'([a,b]), is the space of 

all continuous linear operators on D([ a,b ]) taking values in a Banach space 

X: That is, T is in D'([a,b]) if • 

(T,g~k)>--+ (T,g(k)> in X as n--+ m 

whenever .g~ ~g Ck >uniformly on [a,b] as n goes to infinity. Furthermore, 

if T is a distribution, its derivative is a distribution DT and 

(DT,g) = - (T,g 1
) for every g E .!>([a,b]). 

Let f: [ a,b] -> X be a continuous function. Then it is easy to verify 

that f defines a distribution. That is, it can be shown that T(f) defined by 
b 

<T<t>,g >=I at 
a 

where the integral is in the Henstock-Bochner sense, is a continuous linear 

operator on D([ a,b ]. Here, we also use the fa~t that a continuous functi?n is 

Bochner integrable on [a,b] (see ref. [4]). Next, we agree to identify a 

continuous function with the 'distribution which it defines. Consequently, 

we have the following: . 
Theorem 11. Every continuous function f: [a,b] -> X 15 

differentiable in the distribution sense. 
Consider G = {fin D'([a,b]): there exists Fin C([a,b],X) with F' == f 

in the distribution sense } . Then G is the set of all distributional derivatives 

of X- valued continuous functions on [ a,b]. Since primitives of the element 

f of G differ only by co~tant functions, it follows that for eveir f G there 
exists a unique F(f) in C([ a,b ],X) such that F(f)' = f in the distribution sense 
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and F(f)(a) = o. 
We define the following norm in G: 

If I G = IF ( f) I~ = eup J F ( f) ( ) I ; a < t < b} . 

It is not difficult to verify that the ab~ve definiton is really a norm in G. 
:Finally, we have the following result: . 
Theorem 12. ThecompletionofH([a,b],X)underthe norm given 

earlier is the space G together ~th the norm defined above. Moreover, 
the space G is isomorphic to the space C'([a,b],X) with the uniform norm, 
where C'([a,b],X) = {Fin C([a,b],X); F(a) = O}. 

Proof: First, we show that C'([~,b],X) is a closed subspace of 
C([a,b],X), the space of all )_(-valued continuous functions on [a,b], under 
the sup norm. So, let {f(n)} be a sequence of functions in C'([a,b],X) that 
converge uniformly to.f. Then for every e > 0, there exists a natural number 
N such that • 

nt<N)(t) - f(t>lx < e 

for all tin [a,b]. It follows that the norm of f(a) in Xis less than e for every 
e >- 0. Hence, f(a) = 0 and we have the desired result. Thus C' ([ a,b ],X) under 
the sup or uniform norm is a Banach space. 

Now, define the following mapping: 

T : ( G, U • I G) _. ( C ... ( [a, b] , X) , 11 · Im) by 

T(f) = F(f). 

Then T is linear and injective. Also, if F is in C' ([ a,b ],X), ~en F' = f (in the 
distribution sense) is in G and T(f) = F. Hence Tis surjective. Moreover, T 
is nonn preserving since 

fltff 0 = IIF<f>llm = UT<f> Um 

Therefore, T is an isomorphism. It follows that G under the defined norm 
18 a Banach space and T is a Banach isomorphism. 

Next, let f: [a,b ]-> X be a Henstock-Bochner integrable function on 
[a,b] with primitive F given by 

t 
F(t) = (HB>f f 

a 
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Clearly, F(a) = 0. Also, F is continuous (see [21). Define 
b 

<f,g > = (HB>J gf forge .2:>([a,bJ). 
a 

Note that the existence of the above definition follows from The 7 
N • • fC orem 

ow, m view o orollary 8, • 

b 
<f,g > = F{b)g{b)- - J Fdg = - <F,g'>, g e .2:>([a,bJ). 

a 

Thus, 

I < f , g> II a F n a> I g I cf ( [ a , l> ] , R ) • 

It follows that f is a distribution and Fis a distributional primitive off. 

Furthermore, we see that f is in G, F(f) = F and 

This means that 

Next, we will show that E([ a,b ],X) is dense in G. Let f be an element 

of G. Since F(f) is continuous, there exists a sequence {F(n)} of piecewise 

linear functions (hence ACG*) such that F(n)-> F(f) uniformly on [a,b]. 

Without loss of generality, we may assume further that F(n)(a)=O for all n. 

Then f(n)=F(n)' is in E([a,b],X), F(n)=F(f(n)) for all n and 

l_f{n) - fUG = flF(n) - F( f) Hm --+ 0 as n --+ a, ., 

i.e.,f(n)->fin G asngoestoinfinity. This shows thatE([a,b],X) is dense 

in G. Accordingly, H([a,b],X) is also dense in G. 
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