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Introduction

For the general linear pProgramming problem

Maximize CX =
such that AX =
X 2
C is the objective function coefficient matrix, X is the cclumn matrix corresponding
to the basic and non-basic variables, A is the coefficient matrix of X and b is the

right-hand side constants. Z = CX is called the objective function while AX = b, x>0
are the constraints of the linear model.

z
b (*)
)

The simplex method of Dantzig [1] provides an effective way to solve for the
values of X which maximizes the objective function in (*) and at the same time
satisfying the given constraints. A detailed discussion of the steps in the simplex
method is made to facilitate the reader’s understanding of this article. We shall
call the Cj, A-ij’ b; as the parameters. It is assumed in Linear Programming that these
parameters should be constants and accurately known in advance. However, this
sounds unrealistic since in most cases this assumption is never fully satisfied. These
parameter values usually vary frequently, significantly and independently, as in the
feed-mix (blending) problem.

Considering price fluctuations in our unstable market today and assuming
that the constraints are fixed, chances are that the current optimal solution to a
given feed-mix problem would be affected. Given this situation, a decision-maker
would like to determine the range within which the parameter of the problem can
be altered without affecting the optimal solution. This can only be done through
2 method known as Sensitivity Analysis or Parametric Programming. Hence, the
objective of this paper is to demonstrate the procedures of Sensitivity Analysis on
the Coefficients of the objective function of (*) by the primal-dual approach.
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The Simplex Method

The three basic steps of the simplex method are the following:

Initialization step : Identify an initial basic feasible solution.

Iterative step : Move to a better adjacent basic feasible solutiop

Stopping rule ; Stop when no adjacent basic feasible solution ig
better.

Let us consider one example of linear programming problem and apply tp,
three steps above to obtain the optimal solution.

Maz Z = 3X1 + 5x2

Subject to:
X1 < 4

g

2xg < 12
3x1 29 < 18
x1,%22 0

Initialization step: Introduce slack variables (S1, Sg, S3), then select the original
variables (X1, Xo) to be the initial non-basic variables, set equal to zero, and the
slack variables to be the initial basic variables.

When solving a problem by hand, it is more convenient to use the t
Instead of writing down each set of equation in detail, simply use a simplex tableau,
recording only the essential information, namely: (1) the coefficients of the va
riables, (2) the constants on the right-hand side of the operations, and (3)the
basic variable appearing in each equation. The initial simplex tableau of the example

is shown in Table I.

abular form,

Table I. Initial Simplex Tableau

. . Coefficient of
Basic variable | Z | x 1 Xo Sy Sq Sg Constant Column

Sq 0 (1 1 0 4

So 0 0 0 12

S3 0 3 2 0 0 1 18
e

(Cj = Zj) Max |—1 | 3 5 0 0 0 0
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Table 1 shows th.at the initial basic feasible solution is (0, 0, 4, 12, 18). Go
next to the stopping rule to determine if this solution is optimal.

Stopping ru-le: The current basic feasible solution is optimal if and only if every
coefficient in ((?j — Z;) row is negative or zero (< 0). If it is, stop: otherwise
go to the iterative step to obtain the next feasible solution— which involves

changing one nonbasic variable to a basic variable and vice-versa, and then
compute for the new solution.

The example has two positive coefficients in the Ci —Zjrow, 3 for xq and
5 for X9, 50 g0 to the iterative step.

Iterative step:

Part I. Determine the entering basic variable by selecting the non-basic
variable with the largest positive coefficient in the Cj = Zj row. (This is the

non-basic variable that would increase Z at the fastest rate by being increased
from zero). Put a box around the column above this coefficient, and call this

the pivot column.

In the example, the largest positive coefficient is 5, so X9 becomes a basic
variable.

Part II. Determine the leaving basic variable by;

(a) picking out each coefficient in the boxed column that is strictly positive
(=0);

(b) dividing each of these coefficients into the constants on the right side for
the same row;

(c) 1identifying the equations that have the smallest of these ratios; and

(d) selecting the basic variable for this equation. (This is the basic variable
that reaches zero first as the entering basic variable is increased). Put a box
around this equation’s row in the tableau and call the boxed row the
pivot row. Call the number in the intersection of the two boxes the pivot
number.

The result of Parts I and II for the example (before placing a box on the
row) is shown in Table II. Thus, the leaving basic variable is S2.

Part III. Determine the new basic feasible solution by constructing a new
simplex tableau below the current one. The leaving basic variable in the first
column is replaced by the entering basic variable. The coefficient of the new
basic variable should be changed to +1 by dividing the entire pivot row (i.e.
every number in that row including the right side) by the pivot number, so that:

_ old pivot row

New pivot row
pivot number
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To eliminate the new basic variable from the other equations, every roy

: : e
the pivot row is changed for the new tableau by using the following formula. o

New row = old row — (pivot cal. coefficient) x new pivot row, Whey
“pivot column coefficient” is the number in thisrow that is in the pivot c:olurnne

Table II Calculation to show the first leaving variable.

Iteration 0
Coefficient of
Basic Variable | Z X1 X9 $4 So S3| Constant Columj
S
Sq 0 |1 0 ) | 0 0 4
So 0 (0 2 0 1 0 12— 12 _ ¢
2
S3 0 (3 2 0 0 1| 18 182=9
(C]-—Zj) Max | —1]|3 5 0 0 0 0
To illustrate, the new rows for the example are obtained below:
Row 1 is unchanged because its pivot column coefficient is 0.
old Row 2
Row2 NewRow?2 = p—ivot i ber
=00101206
Row3 [03 2 0 0 1 18]
—2[0 0 1 0 120 ¢
New Rg =0 3 0 0-1 1 6
(C;—Zprow (1 8 5 0 0 0 0]
-5 [0 0 1 0 120 6]
New(Cj—Zj)row -1 +43 0 0 -5/2 0 —30
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This yields the new tableau shown in Tapje III for Iteration 1

Table 1. Iteration 1
. . Coeffi(!ient of
Variable
- Z1X1| X 8 8, s

—

Sq 0 1 0 1 . . )

Xl 0 0 1 0 1/9 . )

S3 0 3 0 0 3 - :
& I -1 |13 0 0 -52 0 |-30

Table III shows that the new basic feasible solution is (0, 6, 4, 0, 6), with
Z = 30.

This completes the iterative step. Next, turn to the stopping rule to check
whether the new solution is optimal. Since the C; — Z. row still has a +3 coefficient,
the stopping rule indicates that the solution is not optimal.

Repeating the iterative steps, X, enters the basis while Sg leaves (6/3 < _)
the basis. We then apply the pivot rule to obtain Table IV.

Table IV. Iteration II

Coefficients of
Basic Variable | Z X4 Xq S S2 Sg |Constant column
Sq 0 0 0 1 1/3 —1/3 2
XX, 0 0 1 0 V2 0 6
X1 0 1 0 0 —1/3 1/3 2
(Cj —Zj) Max |—1 0 0 0 —-3/2 =1 —36

Since the C; — Z; < 0, Table IV is an optimal simplex tableau the optimal
solution is (2, 6, é 0, 0& with Z = 36.
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Primal-Dual of Linear Programming

Given a maximization linear programming problem, there correspongs a miy
mization problem which has the same solution as the original one. The first Prob i
is called the primal while the latter is its dual. Similarly, if the primal js , N
zation problem, then the dual should be a maximization one.

It is advantageous to know the primal-dual relationship since in some case
is more convenient to obtain the solution of the primal through the dua j thl
number of constraint equations of the dual is less is than that of the prima], rn].e
can be attributed to the fact that the number of iterations (simplex tableays),,
quired to obtain an optimal solution depends on the number of equations apq noy
on the number of variables.

The primal-dual relationship can best be illustrated by means of a Simpl
example on blending problem. This will facilitate the presentation of principles a
computation procedures in a manner which will hasten the reader’s understanding

Mip,

An Illustrative Example

Consider a chemical company which produces two liquid fertilizers — Alf;
phosphate and Beta phosphate (X and Xo). These two fertilizers are produced fron
a blend of three kinds of crude oil: Light Arabian, Basra, and Nigerian. The pro
duction requirements of the two fertilizers and the maximum available quantity
of each crude oil are shown in Table 1. Regarding the selling prices, the company |
has set them so as to realize contribution margins of 30¢ and 20¢per gallon of Alfs E
phosphate and Beta phosphate, respectively. The problem which this company |
faces is the determination of the optimum fertilizer mix that maximizes the totd |
daily contribution margin. [4] |

Table 5. Production Requirements for Alfa Phosphate and Beta Phosphate Fertilizes

Production Require- Production Require- | Maximum Availabl
ments per Gallon of ments per Gallon of Quantity
Crude Oil | AlfaPhosphate (X;) | AlfaPhosphate (Xg) | in Gallons |
from Crude Oil from Crude Oil per Day /‘
Light |
Arabian 1 3 1,200 4
Basra 3 4 3,000
Nigerian 8 4 4 Pﬂ/
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Mathematically, we can formulate the above problem as follows:

Maximize p = 30x1 + 20x2

s.t. X7 * 3x9 < 1,200
3xq + 4x9 < 3,000
8X1 T 4X2 < 4,000

xl, X2 ? 0

A. LetSq, So, Sg be the slack variables (non-basic), the matrices C =
c = [30, 20, 0,0, 0];

X = [X] . b~ [1,200] ;
X9 3,000
S, 4,000
So
53

A={13100
34010
84001

B. The dual of this maximization problem is
minimize C = 1200y + 3000y 4 +4000y3

s.t. y1+3y2+8y3 ;30
3y1 +4y9 + 4yg= 20

y1,¥2,y3= 0

The following are the steps in changing a primal problem to a dual:

(1)

(2)
(3)

4)

(5)

Transpose the columns in the primal coefficient matrix to rows in the
dual coefficient matrix.

Replace the variable X; in the primal by Yq in the dual.

The coefficients of the objective function of the primal should become
the constants of the dual equations.

The constants of the primal equation should become the objective func-
tion coefficients of the dual.

The direction of the inequalities of the dual should be opposite to that of
the primal.
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C. To solve the pri
variables Sq, So, Sg,
Maximize: P = 30xq+ 20x 9 + Osq + Osq + 053
s.t. X1 + 3){2 -+ Sl + 052 + OS3 = 1200
3]{1 + 4X2+ 081 + Sz + 083 = 3000

8}{1 + 4X2 + (B]_ + 052 + S3 = 4000

mal problem above by the simplex method, we add t},, 3

and the problem comes: Vag)

Xl, X2, Sl’ 82, S3 Z 0

The optimal tableau for the primal problem is shown in Table II.

Table VI
(b)
Basis p Xq X9 51 So Sg Constant Colum,
x9 | 0 0 1 2/5 0 —1/20 280
Sog |0 0 0 —1 1 —1/4 800
Xq 0 1 0 —1/5 0 3/20 360
(Cj - Zj) -1 0 0 —2 0 — T2 —16400

From Table VI, the primal optimal solutions are

xq = 280
S2 = 800 S; = 0
x; = 360 S3 = 0

Maximum profit: 16,400 (cents)

From Table VI, we also pick up the optimal solutions for the dual problem by
scanning the valuesin the Cj --Zj row as follows:

Yl = 2
Y2 =0
Y3 = 7/2

D. Now, we can check our results in C by solving the dual problem. Let Sq and )
be the surplus variables and A; and Aq be the artificial variables. So the d
problem is:

b
The Technician Vol. V No. 1 July 19%° |
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Minimize C=1,200y; + 3,000y, + 4,000y, — 08,

+MA1+MA2
st. y1+3ya+8yg—S;+A; =30
3yq1 +4yg+ 4y3'—52+A2 =90

Y]_iyz:s]_’ SZ$ AI,AZ 2 0

Using the big-M method in [6], the optimal tableau for the dual problem is

shown below in Table 3.
Table VI1
(b)
Basis C 1 Y2 y3 Sq Sg Ay Ay |Constant col.
y3{0 1|0 1/4 1 -3/20 1/20 3/20 —1/20 /2
v1{0 1|1 1 0 1/5 —2/5 —1/5 2/5 2

(G, —ZjO 1 0 800 0 360 280 M-360 M-280 16400
in

From Table VII above, the optimal dual values are:

y1 = 2
y9 = 0 Min.C = 16,400 (cents)
yg < /2
Scanning through the Cj == Zj row, the primal solutions
are: xq = 360

xg = 280  Sg = 800

It is very apparent that the solutions obtained in D are consistent with those in
C

E. Sensitivity Analysis on the coefficient of the objective Functions of the Primal,
First, it is necessary to determine whether the coefficient under considera-

tion is for a basic or a non-basic variable. A basic variable is one which appears
in the Basis columns, otherwise, it is non -basic.
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For our primal problem Py (30) is a coefficient of a basic varia), %
We are interested in the query of how much the cost of ).{1 can increase ( dle:
crease) without affecting the current variables in the basis. Since the Yim
is a maximization one, the variables in the basis will not be altered so long )

<
the (!J"‘Z‘l 0

Suppose we let DPq represent the change on Py of thg variable X1 the
new Py will be Py* = Py + DPy (P1*= 30 + D). TableIV shows the final simpley
tableau after changing the Py of x1 by D.

Table VIII

Basis P X1 2, S1 Sq Sg Constant (b)
X 0 0 i 9/5 0 —1/20 280
So 0 0 0 ] 1 —1/4 800
x1 0 1 0 —1/5 0 3/20 360
(c;~Z;) Min| 1 0 o —2+.D/5 0 —7/2—39/20| —16400

The solutions of Table VIII will only be optimal if all the C; —Z;= 0. Thus
D should satisfy the following inequalities:

—2+ (D/5)£0 and —7/2 —(3D/20) £ 0
Solving the above inequalities algebraically, we find the limits of D that satisfy them

as: —70< D<10. This result can be interpreted as: the coefficient of the profit of
3

x1 can lincrease by as much as 10 and decrease by 23 (1/3) and yet the optimd
solution is not changed in the basis.

F. If we work on the optimal tableau of the dual, we will find out that the resultis
identical. To summarize, one can determine the range of optimality of any linear
programming parameter from the primal or the dual tableau by the following
procedures:

Primal Tableau Range of Dual Tableau Range of
Optimality of Optimality of
bl corresponds to ¢
¢ corresponds to b;
The Technician Vol. V No. 1 suly 195
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REMARKS

This paper has’so far d?monstrated the primal-dual relationship and its role
to sensitivity analysis. The discussion was centered on the perturbation of the ¢
parameter which is the coefficient of the objective function.

The method and procedure discussed above has its limitations. First, if changes
on the cost coefficients will not fall on the sensitivity analysis ranges, a decision-
maker has to do computer reruns especially for large programs to be able to obtain
a new set of op timal solutions. This sounds quite costly. Secondly, in conducting
sensitivity analyses on the coefficients of the objective function, we have to hold
other parameters constant.

The recent publication of Prof. Ralph E. Steuer entitled “Algorithms of Linear
Programming Problems with Interval Objective Function Coefficients,” offers a
remedy to the limitations stated above. In this article, he presented three algorithms
which solve (*) where c-e [o{W]. These algoriths output all extreme points and
unbounded edge directions that are “multiparametrically optimal” with respect to
the ranges placed on the objective function coefficients. If the interval [o{/# ] is the
sensitivity analysis range that preserves the optimality of the generated solution,
these algorithms would provide the decision-maker with the optimal solution desired
with due considerations to variations on the parameter C:. However, the presenta-
tion of these algorithms is not within the scope of this article.
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