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ALGORITHMS FOR SOLVING LINEAR PROGRAMS: 

SIMPLEX VS. ELLIPSOID 

by: Carolina B. Baguio1 

1. Introduction 

A linear programming problem of the form 

Min cT X 

s. t. Ax ::!-, b (lA) 

X::!-,O 

can be solved either by George B. Dantzig's simplex method, which has efficiently 
solved large linear programs for over three decades and by the latest ellipsoid algo-
rithm developed by Yudin, Nemirovskii and Shor. 

You may ask which of these two is efficient and good. But what is a good 
algorithm, by the way? How is the speed of the algorithm to be measured? Perhaps, 
one may compare the performance of true algorithms for the same problem on a 
few instances of special interest, but how relevant is that to their performance on 
other instances? On the other hand, one may base the comparison on a large number 
of instances chosen in a regular or random fashion, but this can be very expensive 
and yet might not provide a reliable indication of performances on instances much 
higher than those tested. Each instance is associated with particular numerical data 
and a problem is the class of instances or a specified form. It is expected that large 
instances will usually be solved more slowly than small instances. A good algoritbm 
is one that is polynomially bounded, is of complexity O(np aq) for some P aod q_ 
The exponents p and q should be as small as possible (see Klee [ 3] ). 

2. Objectives of the paper: 

1. To give an update on the computing efficiency of the simplex method and 
ellipsoid algorithms. 

2 T tl· th • • t of the • 0 ou me e different steps of the dimensional reduction varian 
ellipsoid algorithm. 
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3. To illustrate the steps of the algorithm through a simplex example and 
compare the results with both the graphical and simplex methods. 

3. Khachiyan's Stunning Theoretical Breakthrough 

The simplex method has appeared in practice to run in polynomial time, i.e., 
the number of operations to solve a problem grows at worst polynomially with the 
number of digits needed to specify it. But it seems that neither a proof of this fact 
nor a satisfactory theoretical explanation for the success of the simplex method has 
ever appeared in any literature. In fact, with the several standard pivot rules, the 
simplex method is known to solve artificially-constructed examples in exponential 
time. It has been found out by many researches along this field that a major and 
long outstanding problem is whether there exists a pivot rule for the simplex method 
that permits it to run in (low order) polynomial time. This problem has remained 
unsolved for quite some time. However, the broader questions of whether there is 
any algorithm that will solve linear programs in polynomal time has been settled 
lately. 

-

A young Russian mathematician, Yeonid G. Khachiyan, ha,; made a somewhat 
incredible theoretical breakthrough by showing that linear programs can be solved 
in polynomial time by a variant of an iterative ellipsoidal algorithm developed by 

N.Z. Shor. The algorithm is simple, and has the feature not shared by the simplex 
method: that successive iterates are neither normally basic 9utions nor even 
rational wh~n the data are rational [ 1]. 

Apparently, the ellipsoid algorithm does not appear to be competitive with the 
simplex for some practical problems. However, Khachiyan's finding does renew 
interest in seeking for a version of the simplex method that always runs in poly-
nomial time. Moreover, it motivates researchers to possibly refine the algorithm 
and arrive at other approaches in solving large-scale programs as efficiently as the 
simplex. 

4. Dimensional Reduction Variant of the Ellipsoid Algorithm 

In order to solve (lA), duality theory [a] is applied to generate a system 

MZ < dl (lB) -
Where Z =[ 

C -B 0 
-A 0 -b 

M = 0 AT and d1 = C 

-I 0 0 
0 -I 0 

The Technician Vol. V No. I July 1986 



90 

If z* ~ ~: J solve (lB) then x * solves the primal (lA) 

To solve (lB) using the ellipsoid method, the system must be perturbed: Mz. 
d1 + 0 where O is a vector of appropriately chosen numbers. The solution obtained 
from such a perturbation necessarily is an approximate solution of (lB). 

Geometrically, the method generates a sequence of ellipsoids with decreasing 
volumes and whose centers approach the solution set. The solution sets of linear 
programming problems are tiny simplexes or triangular cylinders and the ellipsoids 
may become very elongated. For this reason, there is the inherent instability if 
Khachiyan's algorithm is implemented. But Judin and Nemirovski [a.I redefined the 
ellipsoid to be a positive definite linear transformation. Using this idea to define a 
change of variables, the problem can be transformed to one of finding the solution 
in a spheroid, thus making the algorithm stable. • 

Based on these geometric ideas, we shall discuss the acceleration techniques of 
the variant of ellipsoid algorithms. 

A. Consider the system (lB). We shall start with the unit sphere by setting 

Z = 0 0 

d<i>J= d1 

ro 
S0 = I 

where ro is the appropriately chosen radius. The algorithm generates a sequence 

Zk, dk, Sk where 
Z - ap • k - proxunate solution in the original space 
dk = the updated right-hand side in the current space 
S = th h . k to the k e c ange of vanables mapping the current space bac 

original one. 
Hence, the system of Ii . . . . . d the teSt for 1 t· . near mequahties is transformed at each iteration, an bleill· sou ion 1s to check if d :::,.. 0 1 . • al pro 0th · k - • f so,> 0 K is a solution to the origin erwise, some constraint t b . mus e violated, say constraint i. . t 

For a simpler notatio l . suii;crtP' 
and the next iterat ·th n, et .us denote the current iterate without a t ·terateS. 
th,,n the t e WI a subscnpt "plus,"+. If z d and Sare the curren I • nex ones are defined by: • ' 
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m· /= sT m· (4A) :A 1 , 

g = m/1 I . (4B) 
q = 1 (4C) 

n+l g, 
Z+ = Z +. Sq, (4D) 
d+ = d-MSq (4E) 
S+ = SA½ (4F) 

Where A½ is given by the unique Choleskey decomposition of 

A=.!!; '1-~ g g;l (4G) 
n.:i-l L n+l J 

A is a symmetric positive definite. Hence, A ½ is a lower triangular matrix with 
positive diagonal elements. 

B. Basic Method vs. Acceleration Techniques 

This constructs an ellipsoid based on the subspace parallel to the violated 
constraint. (Fig. 1). This ellipsoid contains the half-spheroid contai.ning the solution 
set. Instead, we may construct the ellipsoid based on the constraint itself. (Figure 2). 
The solution set is proportionally larger within the latter ellipsoid, and hence, the 
growth factor of the solution set within the unit spheroid will be larger and the 
algorithm accelerated. 

constraint 
' ' subspace 

Figure 1: Basic Ellipsoid Method 
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(a) Deep-Cut Method 

. 1 t d variant is defined by replacing (4B) and(4G) with 'The first acce era e 

_ (1 + 118) g, 
q = (n + 1 ) 

n2 (1-82) A=----
n 2 -1 [

l _ 2 (l+.n6) ggT] 
(n+l) (1+6) 

x2 

(4H) 

, (41) 

Constraint 

Figure 2. Accelerated Ellipsoid Method 

Where S is the distance between the constraint and the origin, given by 

= I d;. I I 11 mi 11 (4J) 

and denotes the ith component of d , 

(b) The second acceleration technique is based on the duality theory. Through 

a proces.5 of dimensional reduction, this notion provides a more fundmental ac· 
celeration than does the deeper cut technique. 

The complementary slackne$ conditions of ( A) and its dual are: 

yT [Ax - b] = 0 (4K) 
c yTA-cT1 x = o (4L) 

The above conditions must be satisifed for optimality and to avoid degenerac~ 
I . ' 'ti and on exact Y one of each pair (Yi, Axi - bi) defined by (4K) shall be pos1 ve 

equal to zero. Similar remarks apply to the pairs defined by (4L). 
(c) Reducing dimension 

·nts 
Wh 

·1 f • h f' d constral 1 e per ormmg t e accelerated ellipsoid steps, we may m . fied 
lying outside the current spheroids. If the constraint, is not currently satts 
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we may c~nclu~e. that the system ~lB) is infeasible. If, on the other hand, the 
nstraint 1S satisfied, we may conclude that it is nonbinding and hence its com-co b' d' lement must be m mg at any solution of the system (lB). The nonbinding con-

ptraint is eliminated from further consideration and the dimension of the system 
:an be reduced by restricting the search to the hyperplane defined by the binding 
constraint. 

'Ibis procedure has several advantages. First, the growth factor is controlled 
by the ratio (n+ 1)/n where n denotes the number of variables. By reducing the 
dimension, this ratio is increased, thus accelerating the algorithm. Secondly, as-
suming nondegeneracy, we must eventually eliminate one of every pair defined by 
(4K) and (4L). Hence, we will be performing n dimensional reductions and get a 
point satisfying all binding constraints. This yields an exact solution to the com-
plementary slackness conditions and hence to the linear program. 

D. Test for constraints lying outside the sphere at each iteration in the accelerated 
variant algorithm: 

If the inequality }d;Jjllm~ll>l (4M)issatisfied then tht- constraint could be 
nonbinding and may be eliminated (if di >0); the system is infeasible (dA <0). The 
elimination procedure on a binding constraint j = j (i) is carried out as follows: 
The solution must lie in the intersection of the hyperplane defined by the binding 
constraint and the sphere (Fig. 3). A special st.ep is taken to the binding constraint 
(Fig. 3) given by: 

q = Sg 
Z+ = Z + Sq 
d+ = d-M Sq, 
S+ = S 

where now ~ ldjl/mj// , defines both distance and direction. 

binding constraint 

nonbinding constraint 
Figure 3: Special Step 
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Finally, using a Householder transformation, H, which defines a reflection th 
ient of the binding constraint is transformed onto the first coordinate :X· grad. 
current space [ 4]. The -restriction to this su biphere yields a smaller dimis 1~ the 

ens1on~ 
problem. Since His orthogonal, the system 

M HT H Sw d (4N) 

is equivalent to the original problem (lB) scaled to the unit sphere. We reduce the 
dimension by deleting rows i and j from M and zeroing the first column of MHT 
The radius of the new su bsphere is r = J l - 62 and the reduced system is denoted~ 

"'""L -"' M S w - d (4N) 

The right-hand side is rescaled in the unit sphere, d = d/ r. For a step, q, made in 
the subsphere. the corresponding step in the previous higher - dimensional space is 

/\ "T ,,._ I'. given by r H S q. 

'The accelerated variant is then applied to the reduced system until another 
constraint is identified which lies outside the current spheroid. We proceed in this 
manner until either the system is determined to be infeasible or n reductions have 
been performed yielding a solution. 

5. An illustrative Example 

(a) We will choose a simple linear program to illustrate the various steps of 
the algorithm: 

Minx 
s. t. x)-1 

x~O 

the dual of which is 

Max y 
s.t. Y ' 1 

y? 0 

(5A) 

(5B) 

In our notation in (lB), we have 

-1 -1 
M = -1 0 and d1 = 

0 1 
-1 0 

0 -1 
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(a) First Iteration -

Choosing a circle of radius r0 = 2, we have 

Zo : [ g] , d? : (0 ---½, ½, 0, 0), and S
0 

= 

Check: Mz d 
----, 

L~} 1 -1 0 
-1 0 -½ 

0 1 ½ 
-1 0 0 

0 -1 0 

0 0 
0 -½ 
0 ½ 
0 0 
0 0 

(b) Second It.era ti on 

Apparently, constraint 2 is violated and an accelerated ellipsoid step (Fig. 
4) is calculated: 

6 = ½ 

q : ~n A : • A½ :Et 
and z1 = 12/37 L oJ , d1 T = (2/31 1161 1121 2131 O) 

andS1 : ~3
0 

(c) Third Iteration 
Next constraint 4 is outside the new sphere (Fig. 5) and must be inactive ' since 

2/3 = 2>1, where m4 = f-1;~7 II m4II L 
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Its complement is constraint 3 which must be bindin . 

g since 

1121// mall" 1/2 < 1 wherem3 {~] 

1(2-

Figure 4: Accelerated ellipsoid step 

'The special step (Fig. 5) is calculated: 

Figure 5: Step to binding constraint 

m3 = S=½ 

q 

and 

d2T = (-1/6, 1/6, 0, 2/3, 1/2) 
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Eliminating on the third constraint gives 

H =~0 -~ MHT = 
-1 0 ' 

1 -1 
0 1 

-1 0 
0 1 
1 0 

and the reduced dimensional system is 

/\A Q 
MS= 0 

* 
* 
0 

-1 

:1 ~1~3 j 
0 

while the new starting radius is r = j3i2 

I° 4 
, HS= h13 

-1/3 
1/3 

* 
* 
1/ 

3 
3 

3 
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Since the problem is now in one dimension (Fig. 6 ), we take a final step to any 
violated constraint, in this case the first constraint, 

to obtain: 
violated constraint, in this case the first constraint, 

to obtain: m1 = r/~] ' g = [~ 1 ' S = -113./3 

" q : r-1/ ofa.] r HT Sq : [-vg l 
Z3 = [~!] 

Since all remaining constraints are satisfied, Z3 is a solution in the unit sphere and 
z, = roZ3 = 223 = [:] is a solution to the original problem. 

(b) Using the graphical Method, we have 
I z Y•X 

X•l 

1'he Technician Vol. V No. 1 July 1986 
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From the shaded region, we can see that the minimum value of the function (( 
= xis at the point (1, 1), which is consistent with the result of (a). x) 

(c) Using the simplex method, it is convenient to use the dual problem. 

Max Y 
s.t. y L.. 1 

y 0 

Add only one slack variable s1. So, the problem becomes 

Initial Tableau: 

Max Y 
s.t. Y + S1 = 1 

Y, s1 0 

Basis Z y Current values 

1 1 

Max -1 1 0 

S1 leaves the basis while Y ent.ers itJ 

Second Iteration yields the maximum values 

1 

0 

Basis Z y Current values 

y 0 1 1 1 

Max -1 0 -1 -1 

Hence, Max Z = 1 and Y = 1 (dual value) 

Scanning the last row, the primal value can be picked up as X = 1 which is in the 51 
column. And Min Z = 1, by the Weak-Duality Theory. 

6. Concluding Remarks 

. . 
ThlS paper so far has exposed the theoretical breakthrough in these 01 

algorithm which solves linear programs in a polynomial time which is an inhe:01 
limitation of the simplex method of George B. Dantzig. This recent developn 
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seems uncompetitive with the simplex method since it.s practical importance appears 
premature. Neverthel~, we can predict that Khachiyan's result will inspire mathe-
maticians to discover more efficient techniques for solving very large programs 
which resist current metho~. 

In the discussion of the ellipsoid algorithm, it 1s apparent that the choice of 
starting guess Z0 and initial radius r0 will surely have a bearing on the practical 
importance of the new algorithm. In terms of Khachiyan's polynomial time result, 
r0 = 2L, where L is a logarithmic function of the elements of M and d and the 
dimension of the problem. In our example in the last section we could have used a 
very large radius - r0 = 2048. This will make the constraint lie relatively close to the 
origin and the accelerated step is practically the same as the basis ellipsoid step. 

What this paper really points to is a development of simple heuristics to generate 
an initial Z0 and a radius r0 such thatll Z0 -Z ll<r0 . It is highly evident that much 
development has yet to be done. It could be that such heuristics combined with the 
dimensional reduction algorithm will provide a procedure which might be com-
petitive with the simplex method. 
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