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Abstract: In this note, we provide an alternative proof of
the Harnack Extension by means of equi-integrability.
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1 Introduction

In the classical theory of Denjoy-Perron integral, it contains
basically one proof, the proof by category argument. See
for example, Lee [3, p.47] and Saks [7, p.253]. In fact, when
Denjoy first defined his integral, which is known to be equiv-
alent to the Henstock integral, he used transfinite induction
to extend the Lebesgue integral by means of Cauchy and
Harnack extensions [7]. In [5], Lee also extends the Har-
nack extension for the Henstock integral on R to R"™ so that
it is real-line independent.

Using the concept of equi-integrability, we provide an
alternative means to prove the Harnack Extension for the
Henstock integral on the real line.

5Research is partially supported by the Commission on Higher Ed-
ucation (CHEA), Philippines.
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2 Preliminary Results

Definition 2.1 A function f : [a,b] — R is said to be
Henstock integrable to a real number A on [a,b] if for any
e > 0, there exists a function ¢ : [a,b] — R such that for
any Henstock d-fine division D = {([u,v],&)} of [a,b], we

have
’ Z f(&)(v—u) ‘ < €.
If f:[a,b] — R is Henstock integrable to A on [a,b], then

we write ,
— ) [

By a Henstock d-fine division D = {([u,v];£)} of [a, b] we
mean that £ € [u,v] C (§—0(€),£+5(E)), for all ([u,v];€) €
D.

Lemma 2.2 (Henstock’s Lemma) If f : [a,b] — R is
Henstock integrable on |a, b] with primitive F', then for each
€ > 0 there exists ¢ : [a,b] — RT such that

D) |F(O)w—u) = F(v) + F(u)| < e

for any Henstock d-fine partial division D = {([u,v],&)} of
[a,b].

Definition 2.3 [2] A sequence (f,) of Henstock integrable

functions on [a, b] is equi-integrable on |a, b] if for any € > 0,
there exists §(§) > 0 such that for each n, we have

(D) hw - -0 [ 1] <

whenever D = {([u,v],£)} is a Henstock J-fine division of
la, b].

7
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180 Equi-integrability in Harnack Extension

Theorem 2.4 Let (f,,) be a sequence of Henstock integrable
functions on [a,b]. If (f,) is equi-integrable on |a,b] and

lim fo(2) = f(x)

n—oQ

for each x € |a,b], then f is Henstock integrable and

i) [n=00 [ s

Definition 2.5 Let X € R. The function 1y : R — R
define by

1, if xelX,
Lyx(z) = { 0, if z¢X.

is called the characteristic function on X.
Definition 2.6 Let X C [a,b]. We say that f is Henstock

integrable on X if the function f-1x is Henstock integrable
on [a,b] and we write

o [ s=00 [ 10

Definition 2.7 [8] A sequence (f,) of Henstock integrable
functions on [a, ] is said to be uniformly gauge Cauchy on
la,b] if for any € > 0, there exists a gauge 6(§) > 0 and a
positive integer N such that for each n,m > N, we have

(D) Sl =) = (D) Y ful )0 —w)| < €

whenever D = {([u,v],€)} is a Henstock d-fine division of
[a, b].

Theorem 2.8 [8] Let (f,) be a sequence of Henstock inte-
grable functions on [a,b]. The following are equivalent:
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(1) (fn) is uniformly gauge Cauchy.

b
(17) <(7—[)/ fn> converges and (f,) is equi-integrable on
la, b]. ’

Definition 2.9 Let F : [a,b] — R be a function and [c, d] C
la,b]. The oscillation of F' over [c,d|, denoted by w(F’; [c, d]),
is given by

w(F;[c,d])) =sup {|F(y) — F(z)| : c <z <y < d}.

Geometrically, the oscillation of a function F' over [c, d]
is just the “diameter” of the image set F([c,d]).

3 Results

Here, we give a version of the Harnack Extension and pro-
vide an alternative proof of it. First, we prove the following
Lemma.

Lemma 3.1 Let f : [a,b] — R be a function. Suppose the
following conditions hold:

(1) there exists an increasing sequence (X,) of non-empty
subsets of [a,b] such that [a,b] = |J)—, X, and f is
Henstock integrable on each X, and

(13) for every e > 0, there exists a positive integer N such
that for all n > N, there exists 6,(§) > 0 on |[a,b]
such that for all Henstock d,,-fine partial division P =
{([u,v], &)} of [a,b] with £ ¢ X,,, we have

(P> 1O )| <e
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182 Equi-integrability in Harnack Extension

Then the sequence (f -1y, ) is equi-integrable on [a,b] and

b
the sequence <(H)/ (f- 1Xn)> converges.

Proof: For each n € N, let f, = f-1x,. We will show
that (f,) is uniformly gauge Cauchy on [a,b]. Now, let
€ > 0. Then there exists a positive integer N such that for
all n > N, there exists 6,(£) > 0 on [a, b] such that for all
Henstock d,-fine partial division P = {([u,v],£)} of [a,]]
with € ¢ X,,, we have

()Y Fe)w—w)| <

[NRINe

Define 6(§) = dny(§) for all £ € [a,b]. Let n > m > N
and
D = {([u,v],£)} be any Henstock d-fine division of [a, b].
Let P, € D and P, C D such that £ € Xy and £ ¢ Xy,
respectively. Because (X,,) is increasing, we note that if
¢ € Xn, then f,(&) — fin(€) = 0; and if £ ¢ Xy, then

0 ,if € ¢ X,
fﬂ(g) _fm(g) = _f(g) ’ ifgeXm\XN;
&) i€ Xo X

Thus,

(D)D" Ful©)w =) = (D) D fnl©) (0 = )|

= | (D) [al®) = Sn(©)] (v = w)
(P [1al©) = fn©)] (0 =)
+[(P) Y2 [£1(6) = Fn©) (0 — )|

IN
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= (P Y [l = @] (0 = )
< \(P2> > [ AOv-u)

geXm\XN
D DR GICE]
EeXn " Xm
=\ > HEOw=u)
&GXm\XN
DR IGICE]
EeXn " Xm
< E+€
2 "2
= €.

This shows that (f,) is uniformly gauge Cauchy. Hence, by
b
Theorem 2.8, (f,,) is equi-integrable on [a, b] and <(7—[) / fn>

converges. [

Lemma 3.2 Let f : [a,b] — R be a function. Suppose
that there exists an increasing sequence (X,) of non-empty
subsets of [a, b] such that [a,b] = J.—, X,, and f is Henstock
integrable on each X,,. If for every e > 0, there exists a
positive integer N such that for all n > N, there exists
3,(§) > 0 on [a,b] such that for all Henstock 0,-fine partial
division P = {([u, U] &)} of [a,b] with £ ¢ X,,, we have

Zf v—u‘

then the sequence (f -1y, ) is equi-integrable on |a,b] and f
is Henstock integrable on [a,b]. Moreover,

/f_JLIEo /(f 1x,).
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184 Equi-integrability in Harnack Extension

Proof: For each n, let f, = f-1x,. By Lemma 3.1, (f,) is
b
equi-integrable on [a, b] and <(’H) / fn> converges.

Now, let ¢ > 0. For all z € [a,b], there exists a posi-
tive integer N(x) € N such that # € Xy(,). Since (X,) is
increasing, € X, for all n > N(x). Thus, for all n > N(x)

[fal2) = f@)] = |(f1x,)(@) = f(2)]
= |f(z) - f(2)]
< €
This implies that f, — f pointwisely on [a,b]. Hence, by
Theorem 2.4, f is Henstock integrable on [a, b] and
b b
) [ 1= tm () [ 0
We now state and prove the Harnack Extension.
Theorem 3.3 (Harnack Extension) Let f : [a,b] — R

and X be a closed subset of [a,b]. Suppose the following
conditions are satisfied:

(1) (a,b)~X = Up_,(ck, di), where {(cx,di)} is a collec-

tion of pairwise disjoint open intervals and

(17) f is Henstock integrable on X and on each [cy, dy] with

w(Fg; [ex, di]) < o0,
k=1

where Fy, denotes the primitive of f on [ck, di].
For each n € N, let X,, = X U (UZ:1(Ck>dk)> and f, =

f-1x,. Then (f,) is equi-integrable and f is Henstock in-
tegrable on [a,b]. In this case,

<H>/abf:ggn;o<m/abfn:<H>Lf+§:ij<ck,dk>.
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Proof: We assume that a,b € X. Then

[CL,b] = [j X, =XU (Cl,dl) U (CQ,dQ) U (03,d3) U---

n=1
and f is Henstock integrable on each X,. Since X and
(ck, dy) are pairwise disjoint, we have

b n
(H)/ fo=(H) /X [+ ZFk(ck,dk) , for all n.
a k=1

Let € > 0. By Henstock Lemma (Theorem 2.2), there exists
0x(&) > 0 on [a,b] such that whenever D = {([u,v],{)} is a
Henstock dg-fine division of [a, b],we have

€
(D) Z ‘(f-l[%dk])(é“)(v—u)—Fk(u,v) < Zir1 for each k.
Since each (cg, d) is open, we may assume that

(€ = 0k(£), &+ 0k(€)) < (ck, di)

[e.o]

if £ € (cg,dy). Since Zw(Fk; [ck, di]) < oo, there exists a

k=1
positive integer N such that
= €
> w(Fis or, di]) < 5
k=N

Note that because X and (¢, dy) are pairwise disjoint, we
have

6 g_ﬁ Xn = XU (Cl,dl) U (Cg,dg) U---u (Cn,dn)
— ¢£¢€ U(Ckadk)-
k=n+1
Thus, for all n > N and for any Henstock §,-fine partial
division P = {([u,v],€)} of [a,b] with £ ¢ X,,, we have
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im S se )
= I SR (GICEN

EEU;o ni1(Ck,dk)

< { ) S ‘ ) ()0 — ) - Fk(u,v)H

k=n+1 56 Ck, dk

ns [(P) 3 |Fk<u,v>|}
k=n+1 £€(cn,dy)

< Z ohil T ZW Fi; [k, di])

k=1 k=N
< € + €

2 2
= €.

By Lemma 3.2, then the sequence (f,) is equi-integrable on
la,b] and f is Henstock integrable on [a, b]. Moreover,

H)/abfzggom)/abfnz<H>Lf+§:ij<ck,dk>. 0
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