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Abstract

In this paper, we revisit the concept of θ-preopen set defined by Noiri [17], and then
investigate the connection of this set to the other well-known concepts in topology such
as the classical open, θ-open, and preopen sets. We also investigate the concept of θ-
precontinuous and strongly θ-precontinuous functions from an arbitrary topological space
into the product space.

1 Introduction and Preliminaries

The first initiation to develop different versions of open sets was done by Levine [13] in 1963
where he introduce the concepts of semi-open set, semi-closed set and semi-continuity of a
function.

A subset O of a topological space X is semi-open [13] if O ⊆ Cl(Int(O)). Equivalently, O
is semi-open if there exists an open set G in X such that G ⊆ O ⊆ Cl(G). A subset F of X is
semi-closed if its complement X \F is semi-open in X. Let A be a subset of a space X. A point
p ∈ X is a semi-closure point of A if for every semi-open set G in X containing x, G ∩ A ̸= ∅.
We denote by sCl(A) the set of all semi-closure points of A.

In 1968, Veličko [22] introduce the concept θ-continuity between topological spaces and
defined the concepts of θ-closure and θ-interior of a set. The work of Veličko was pursued by
Dickman and Porter [4, 5], Joseph [10], and Long and Herrington [14]. Numerous authors then
have obtained interesting results related to θ-open sets, see [1, 3, 8, 9, 11, 20].

Let (X,T) be a topological space and A ⊆ X. The θ-closure and θ-interior of A are,
respectively, defined by

Clθ(A) = {x ∈ X : Cl(U) ∩A ̸= ∅ for every open set U containing x}

and Intθ(A) = {x ∈ X : Cl(U) ⊆ A for some open set U containing x}, where Cl(U) is the
closure of U in X. A is θ-closed [22] if Clθ(A) = A and θ-open [22] if Intθ(A) = A. Equivalently,
A is θ-open if and only if X \A is θ-closed. It is known that the collection Tθ of all θ-open sets
forms a topology on X, which is strictly coarser that T.
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In 1980, Mashhour et al. [15] introduced the concepts of preopen and weak preopen sets,
precontinuous and weak precontinuous funnctions, and preopen and weak preopen functions on
topological spaces.

A set A ⊆ X is said to be preopen [16] if O ⊆ Int(Cl(O)). A subset F of X is called
preclosed if the complement of F is preopen. The preclosure of A, denoted by pCl(A), is the
intersection of all preclosed sets containing A and the preinterior of A, denoted by pInt(A), is
the union of all preopen sets contained in A.

Let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For each
α ∈ A, let Tα be the topology on Yα. The Tychonoff topology on Π{Yα : α ∈ A} is the topology
generated by a subbase consisting of all sets p−1

α (Uα), where the projection map pα : Π{Yα :
α ∈ A} → Yα is defined by pα(⟨yβ⟩) = yα, Uα ranges over all members of Tα, and α ranges over
all elements of A. Corresponding to Uα ⊆ Yα, denote p−1

α (Uα) by ⟨Uα⟩. Similarly, for finitely
many indices α1, α2, . . . , αn, and sets Uα1 ⊆ Yα1 , Uα2 ⊆ Yα2 , . . . , Uαn ⊆ Yαn , the subset

⟨Uα1⟩ ∩ ⟨Uα2⟩ ∩ · · · ∩ ⟨Uαn⟩ = p−1
α1

(Uα1) ∩ p−1
α2

(Uα2) ∩ · · · ∩ p−1
αn

(Uαn)

is denoted by ⟨Uα1 , Uα2 , . . . , Uαn⟩. We note that for each open set Uα subset of Yα, ⟨Uα⟩ =
p−1
α (Uα) = Uα ×Πβ ̸=αYβ. Hence, a basis for the Tychonoff topology consists of sets of the form

⟨Bα1 , Bα2 , ..., Bαn⟩, where Bαi is open in Yαi for every i ∈ {1, 2, . . . , n}.
Now, the projection map pα : Π{Yα : α ∈ A} → Yα is defined by pα(⟨yβ⟩) = yα for each

α ∈ A. It is known that every projection map is a continuous open surjection. Also, it is well
known that a function f from an arbitrary space X into the Cartesian product Y of the family
of spaces {Yα : α ∈ A} with the Tychonoff topology is continuous if and only if each coordinate
function pα ◦ f is continuous, where pα is the α-th coordinate projection map.

In this paper, the concept of θ-preopen set defined by Noiri [17] will be revisited and inves-
tigated further. Some topological concepts related to θ-preopen sets will also be defined and
studied.

2 θ-Preopen and θ-Preclosed Functions

In this section, we define and characterize the concepts of θ-preopen and θ-preclosed functions.

Definition 2.1. LetX be a topological space and A ⊆ X. A point x ∈ X is called a θ-precluster
(or pre θ-cluster [17, p.286]) point of A if pCl(U) ∩ A ̸= ∅ for every preopen set U containing
x. The set of all θ-precluster points of A is called the θ-preclosure (or pre θ-closure [17, p.286])
of A, and is denoted by pClθ(A). A subset A of X is said to be θ-preclosed (or pre θ-closed
[21]) if A = pClθ(A). A subset A of X is said to be θ-preopen (or pre θ-open [17, p.286]) if its
complement X \A is θ-preclosed.

The next result characterizes that concept of a θ-preopen set.

Lemma 2.2. Let X be a topological space. A ⊆ X is θ-preopen if and only if for every x ∈ A,
there exists a preopen set U containing x such that pCl(U) ⊆ A.

Proof. Suppose that A is θ-preopen. Let x ∈ A. Then X \ A = pClθ(X \ A), so that x is
not a θ-precluster point of X \ A. This means that for some preopen set U containing x,
pCl(U) ∩X \A = ∅, or equivalently, pCl(U) ⊆ A.

To verify the converse, let x ∈ pClθ(X \ A). Suppose further that x /∈ X \ A, that is,
x ∈ A. By assumption, there exists a preopen set U containing x such that pCl(U) ⊆ A, or
equivalently, pCl(U)∩X \A = ∅. This means that x is not a θ-precluster point of X \A. Hence,
x /∈ pClθ(X \A), a contradiction. Thus, pClθ(X \A) = X \A, that is, A is θ-preopen.
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Theorem 2.3. Let X be a topological space.

(i) If A ⊆ X is θ-open, then A is θ-preopen but not conversely.

(ii) If A ⊆ X is θ-preopen, then A is preopen but not conversely.

(iii) θ-preopen and open sets are two independent notions.

Proof. (i): Suppose that A is θ-open. Let x ∈ A. Then there exists an open set U containing
x such that Cl(U) ⊆ A. Since U is open, U = Int(U) and U is preopen [18, p.1009]. By [2,
Theorem 1.5],

pCl(U) = U ∪ Cl(Int(U)) = U ∪ Cl(U) = Cl(U) ⊆ A.

In view of Lemma 2.2, A is θ-preopen.

To show that the converse is not necessarily true, consider X = {a, b, c, d} with topology
T1 = {∅, X, {a, b}, {c, d}}}. Then {b, c} is θ-preopen but not θ-open.

(ii): Suppose that A is θ-preopen. Let x ∈ A. Then there exists a preopen set U containing
x such that U ⊆ pCl(U) ⊆ A. Since U is preopen, U ⊆ Int(Cl(U)) ⊆ Int(Cl(A)) ⊆ Cl(A).
Let O := Int(Cl(U)), which is an open set containing x and O ⊆ Cl(A). It follows that
x ∈ Int(Cl(A)). Accordingly, A is preopen.

To show that the converse is not necessarily true, consider X = {a, b, c, d} with topology
T2 = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}}. Then {a, b, c} preopen but not θ-preopen.

(iii): From (X,T2), {a, c} is open but not θ-preopen and from (X,T1), {b, c} is θ-preopen
but not open.

Remark 2.4. The following diagram holds for a subset of a topological space.

θ-preopen preopen

θ-open open

We also remark that the above diagram is also true for their respective closed sets. The
reverse implications are not true as shown in Theorem 2.3.

Definition 2.5. Let X be a topological space and A ⊆ X. The θ-preinterior of A is denoted
and defined by pIntθ(A)=∪{U : U is θ-preopen and U ⊆ A}.

Remark 2.6. The arbitrary union of θ-preopen sets is θ-preopen.

We note that by Remark 2.6, pIntθ(A) is the largest θ-preopen set contained in A. Moreover,
x ∈ pIntθ(A) if and only if there exists a θ-preopen set U containing x such that U ⊆ A.

Remark 2.7. Let X be a topological space and A,B ⊆ X. Then

(i) If A ⊆ B, then pClθ(A) ⊆ pClθ(B).

(ii) pClθ(A)=∩{F : F is θ-preclosed and A ⊆ F}.

(iii) pClθ(A) is the smallest θ-preclosed set containing A.

(iv) x ∈ pClθ(A) if and only if for every θ-preopen set U containing x, U ∩A ̸= ∅.

(v) pClθ(pClθ(A)) = pClθ(A).
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(vi) pClθ(A ∪B) = pClθ(A) ∪ pClθ(B).

(vii) A ⊆ pClθ(A) ⊆ Clθ(A).

(viii) If A ⊆ B then pIntθ(A) ⊆ pIntθ(B).

(ix) A is θ-preopen if and only if A = pIntθ(A).

(x) pIntθ(A) = pIntθ(pIntθ(A)).

(xi) pIntθ(A ∩B) = pIntθ(A) ∩ pIntθ(B).

(xii) x ∈ pIntθ(A) if and only if there exists a preopen set U containing x such that pCl(U) ⊆ A.

(xiii) Intθ(A) ⊆ pIntθ(A) ⊆ A.

(xiv) pClθ(X \A) = X \ pIntθ(A).

(xv) pIntθ(X \A) = X \ pClθ(A).

Next, we characterize the concepts of θ-preopen, θ-preclosed, strongly θ-preopen, and strongly
θ-preclosed functions.

Definition 2.8. Let X and Y be topological spaces. A function f : X → Y is said to be θ-
preopen (resp., θ-preclosed, strongly θ-preopen, strongly θ-preclosed) on X if f(G) is θ-preopen
(resp., θ-preclosed, θ-preopen, θ-preoclosed) in Y for every θ-open (resp., θ-closed, open, closed)
set G in X.

Remark 2.9. Every strongly θ-preopen (resp., strongly θ-preclosed) function is θ-preopen
(resp., θ-preclosed) but not conversely.

We note that θ-preopen and θ-preclosed (strongly θ-preopen and strongly θ-preclosed) func-
tions are equivalent if f is bijective.

Theorem 2.10. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θ-preopen on X.

(ii) f(Intθ(A)) ⊆ pIntθ(f(A)) for every A ⊆ X.

(iii) For each x ∈ X and for every open set U in X containing x, there exists a preopen set V
in Y containing f(x) such that pCl(V ) ⊆ f(U).

Proof. (i)⇒(ii): Suppose that f is θ-preopen on X. Let A ⊆ X. Then f(Intθ(A)) ⊆ f(A).
Since Intθ(A) is θ-open, f(Intθ(A)) is θ-preopen in Y contained in f(A). Since pIntθ(f(A)) is
the largest θ-preopen set contained in f(A), f(Intθ(A)) ⊆ pIntθ(f(A)).

(ii)⇒(iii): Let x ∈ X and U be open in X containing x. Note that Cl(U)∩(X \Cl(U)) = ∅.
This means that x /∈ Clθ((X \ Cl(U))) = X \ Intθ(Cl(U)) ⊆ X \ Intθ(U). It follows that
f(x) ∈ f(Intθ(U)) ⊆ pIntθ(f(U)). In view of Remark 2.7 (xii), there exists a preopen set V
containing f(x) such that pCl(V ) ⊆ f(U).

(iii)⇒(iv): Let U be θ-open in X. Let y ∈ f(U). Then there exists x ∈ X such that
f(x) = y. By assumption, there exists a preopen set V containing y such that pCl(V ) ⊆ f(U).
By Lemma 2.2, f(U) is θ-preopen.

Theorem 2.11. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:
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(i) f is θ-preclosed on X.

(ii) pClθ(f(B)) ⊆ f(Clθ(B)) for each B ⊆ X.

Proof. (i)⇒(ii): Suppose that f is θ-preclosed on X. Let B ⊆ X. Then f(B) ⊆ f(Clθ(B)).
Since Clθ(B) is θ-closed, f(Clθ(B)) is θ-preclosed in Y containing f(B). Since pClθ(f(B)) is
the smallest θ-preclosed set containing in f(B), pClθ(f(B)) ⊆ f(Clθ(B)).

(ii)⇒(iii): Let U be θ-closed inX. Then U = Clθ(U). By assumption, f(U) ⊆ pClθ(f(U)) ⊆
f(Clθ(U)) = f(U). Thus, f(U) is θ-preclosed.

Following the same argument as in Theorems 2.10 and 2.11, respectively, the following two
results hold.

Theorem 2.12. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is strongly θ-preopen on X.

(ii) f(Int(A)) ⊆ pIntθ(f(A)) for every A ⊆ X.

(iii) f(B) is θ-preopen for every basic open set B in X.

(iv) For each x ∈ X and for every open set U in X containing x, there exists an open set V
in Y containing f(x) such that pCl(V ) ⊆ f(U).

Theorem 2.13. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is strongly θ-preclosed on X.

(ii) pClθ(f(G)) ⊆ f(Cl(G)) for each G ⊆ X.

3 Strongly θ-Precontinuous Functions in the Product Space

This section provides a characterization of a θ-precontinuous function [17, p.286] and strongly
θ-precontinuous function [19, p.308] from an arbitrary topological space into the product space.

Definition 3.1. Let X and Y be topological spaces. A function f : X → Y is said to be
θ-precontinuous [17, p.286] (resp., strongly θ-precontinuous [19, p.308]) on X if for each x ∈ X
and each open set V of Y containing f(x), there exists a preopen set U containing x such that
f(pCl(U)) ⊆ Cl(V ) (resp., f(pCl(U)) ⊆ V ).

Theorem 3.2. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θ-precontinuous on X.

(ii) f(pClθ(A) ⊆ Clθ(f(A)) for each A ⊆ X.

(iii) pClθ(f
−1((B)) ⊆ f−1(Clθ(B)) for each B ⊆ Y .

(iv) f−1(G) is θ-preopen in X for each θ-open subset G of Y .

(v) f−1(F ) is θ-preclosed in X for each θ-closed subset F of Y .
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Proof. The equivalence of (i), (ii), (iii) is proved in [17, Theorem 3.1].
(iii)⇒(v): Let F be θ-closed in Y . Then Clθ(F ) = F so that

pClθ(f
−1(F )) ⊆ f−1(Clθ(F )) = f−1(F ) ⊆ pClθ(f

−1(F )).

This means that f−1(F ) is θ-preclosed in X.
(v)⇒(iii): Let B ⊆ Y . In view of [12, Lemma 2], Clθ(B) is θ-closed. By assumption,

f−1(Clθ(B)) is θ-preclosed containing f−1(B). Using Remark 2.7 (iii), pClθ(f
−1((B)) ⊆

f−1(Clθ(B)).
(iii)⇔(v): This is immediate since the inverse mapping preserves set operations.

Following the same argument as in Theorems 3.2, the following result holds.

Theorem 3.3. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is strongly θ-precontinuous on X.

(ii) f−1(G) is θ-preopen in X for each open subset G of Y .

(ii) f−1(F ) is θ-preclosed in X for each closed subset F of Y .

(iii) f−1(B) is θ-preopen for each (subbasic) basic open set B in Y.

(iv) f(pClθ(A) ⊆ Cl(f(A)) for each A ⊆ X.

(v) pClθ(f
−1((B)) ⊆ f−1(Cl(B)) for each B ⊆ Y .

The proof of the following result is standard, hence omitted.

Theorem 3.4. Let X and Y be topological spaces and fA : X → D the characteristic function
of subset A of X, where D is the set {0, 1} with discrete topology. Then fA is θ-precontinuous
if and only if fA is strongly θ-precontinuous if and only if A is both θ-preopen and θ-preclosed.

In the following results, if Y = Π{Yα : α ∈ A} is a product space and Aα ⊆ Yα for each
α ∈ A, we denote Aα1 ×· · ·×Aαn ×Π{Yα : α /∈ K} by ⟨Aα1 , . . . , Aαn⟩, where K = {α1, . . . , αn}.

If Y = Π{Yi : 1 ≤ i ≤ n} is a finite product, denote A1 × · · · ×An by ⟨A1, . . . , An⟩.

Theorem 3.5. Let X be a topological space and Y = Π{Yα : α ∈ A} be a product space.
A function f : X → Y is strongly θ-precontinuous on X if and only if pα ◦ f is strongly
θ-precontinuous on X for every α ∈ A.

Proof. Assume that f is strongly θ-precontinuous on X. Let α ∈ A and Oα be open in Yα. Since
pα is continuous, p−1

α (Oα) is open in Y . Hence, f−1(p−1
α (Oα)) = (pα ◦ f)−1(Oα) is θ-preopen in

X. Thus, pα ◦ f is strongly θ-precontinuous for every α ∈ A.
Conversely, assume that each coordinate function pα ◦f is strongly θ-precontinuous. Let Gα

be open in Yα. Then ⟨Gα⟩ is a subbasic open set in Y and (pα ◦ f)−1(Gα) = f−1(p−1
α (Gα)) =

f−1(⟨Gα⟩) is θ-preopen in X. In view of Theorem 3.3 (iii), f is strongly θ-precontinuous on
X.

Corollary 3.6. Let X be a topological space, Y = Π{Yα : α ∈ A} be a product space, and
fα : X → Yα be a function for each α ∈ A. Let f : X → Y be the function defined by
f(x) = ⟨fα(x)⟩. Then f is strongly θ-precontinuous on X if and only if each fα is strongly
θ-precontinuous on X for each α ∈ A.
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Lemma 3.7. [6, 17] Let Y = Π{Yα : α ∈ A} be a product space, K := {α1, α2, . . . , αn} ⊆ A

and ∅ ̸= Uαi ⊆ Yαi for each αi ∈ K. Then

(i) U = ⟨Uα1 , . . . , Uαn⟩ is preopen in Y if and only if each Uαi is preopen in Yαi; and

(ii) pCl(Π{Aα : α ∈ A}) ⊆ Π{pCl(Aα) : α ∈ A}.

Theorem 3.8. Let Y = Π{Yα : α ∈ A} be a product space and Aα ⊆ Yα for each α ∈ A. Then
pClθ(Π{Aα : α ∈ A}) ⊆ Π{pClθ(Aα) : α ∈ A}.

Proof. Let x = ⟨xα⟩ ∈ pClθ(Π{Aα : α ∈ A}). Suppose that x /∈ Π{pClθ(Aα) : α ∈ A}. Then
xβ /∈ pClθ(Aβ) for some β ∈ A. This means that there exists a preopen set Uβ ∋ xβ such that
pClθ(Uβ) ∩Aβ = ∅. In view of Lemma 3.7, ⟨Uβ⟩ is preopen, x ∈ ⟨Uβ⟩, and

pCl(⟨Uβ⟩) ∩Π{Aα : α ∈ A} ⊆ ⟨pCl(Uβ)⟩ ∩Π{Aα : α ∈ A}
= Π{Aα : α ̸= β} × (pCl(Uβ) ∩Aβ)

= ∅.

This is a contradiction to the assumption that x ∈ pClθ(Π{Aα : α ∈ A}) . Thus, x ∈
Π{pClθ(Aα) : α ∈ A}.

Theorem 3.9. Let Y = Π{Yi : 1 ≤ i ≤ n} be a finite product space and Ai ⊆ Yi for each
i = 1, . . . , n. Then ⟨pIntθ(A1), . . . , pIntθ(An)⟩ ⊆ pIntθ(⟨A1, . . . , An⟩).

Proof. Let x = ⟨xi⟩ ∈ ⟨pIntθ(A1), . . . , pIntθ(An)⟩. Then xi ∈ pIntθ(Ai) for all i = 1, 2, . . . , n.
This means that there exists a preopen set Ui ∋ xi such that pCl(Ui) ⊆ Ai. In view of
Lemma 3.7, ⟨U1, U2, . . . , Un⟩ is preopen containing x and

pCl(⟨U1, . . . , Un⟩) ⊆ ⟨pCl(U1), . . . , pCl(Un)⟩ ⊆ ⟨A1, . . . , An⟩ .

Hence, x ∈ pIntθ(⟨A1, . . . , An⟩).

Theorem 3.10. Let Y = Π{Yα : α ∈ A} be a product space and ∅ ̸= Oα ⊆ Yα for each α ∈ A.
Then O = ⟨Oα1 , . . . , Oαn⟩ is θ-preopen in Y if each Oαi is θ-preopen in Yαi.

Proof. Suppose that each Oαi ̸= ∅ is θ-preopen in Yαi . Let x = ⟨xα⟩ ∈ O. Then xαi ∈ Oαi

for all αi ∈ K. Hence, there exists a preopen set Uαi ∋ xαi such that pCl(Uαi) ⊆ Oαi . Let
U = ⟨Uα1 , . . . , Uαn⟩. By Lemma 3.7, U is preopen containing x and

pCl(U) = pCl(⟨Uα1 , . . . , Uαn⟩)
⊆ ⟨pCl(Uα1), . . . , pCl(Uαn)⟩
⊆ ⟨Oα1 , . . . , Oαn⟩
= O.

Thus, O is a θ-preopen set in Y .

Theorem 3.11. [17, Theorem 4.7] Let X = Π{Xα : α ∈ A} and Y = Π{Yα : α ∈ A} be product
spaces and for each α ∈ A, let fα : Xα → Yα be a function. If each fα is θ-precontinuous on
Xα, then the function f : X → Y defined by f(⟨xα⟩) = ⟨fα(xα)⟩ is θ-precontinuous on X.

The following result can be proved using the same technique employed by the author in [17,
Theorem 4.7]. However, we will give an alternative proof for the following theorem.
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Theorem 3.12. Let X = Π{Xα : α ∈ A} and Y = Π{Yα : α ∈ A} be product spaces and for
each α ∈ A, let fα : Xα → Yα be a function. If each fα is strongly θ-precontinuous on Xα, then
the function f : X → Y defined by f(⟨xα⟩) = ⟨fα(xα)⟩ is strongly θ-precontinuous on X.

Proof. Let ⟨Vα1 , . . . , Vαn⟩ be a basic open set in Y . Then

f−1(⟨Vα1 , . . . , Vαn⟩) =
〈
f−1
α1

(Vα1), . . . , f
−1
αn

(Vαn)
〉
.

Since each fαi is strongly θ-precontinuous, by Theorem 3.3 (iii), f−1
αi

(Vαi) is θ-preopen in Xαi .

Let x = ⟨xα⟩ ∈ f−1(⟨Vα1 , . . . , Vαn⟩). Then xαi ∈ f−1
i (Vαi) for all αi ∈ K. This means that

there exists a preopen set Oαi ∋ xαi such that pCl(Oαi) ⊆ f−1
αi

(Vαi). By [17, Lemma 4.6],
⟨Oα1 , . . . , Oαn⟩ is preopen in X containing x and

pCl(⟨Oα1 , . . . , Oαn⟩) ⊆ ⟨pCl(Oα1), . . . , pCl(Oαn)⟩
⊆

〈
f−1
α1

(Vα1), . . . , f
−1
αn

(Vαn)
〉

= f−1(⟨Vα1 , . . . , Vαn⟩).

This implies that f−1(⟨Vα1 , . . . , Vαn⟩) is θ-preopen in X. Thus, f is strongly θ-precontinuous
on X.

4 θ-Preconnected Space and Versions of Separation Axioms

This section characterizes the concepts of θ-preconnected space and some versions of separation
axioms.

Definition 4.1. A topological space X is said to be a θ-preconnected (resp., θ-connected [23],
connected) if it is not the union of two nonempty disjoint θ-preopen (resp., θ-open, open) sets.
Otherwise, X is θ-predisconnected (resp., θ-disconnected [23], disconnected). A subset B of X
is θ-preconnected (resp., θ-connected [23], connected) if it is θ-preconnected (resp., θ-connected,
connected) as a subspace of X.

In view of Theorem 3.4, the following result holds.

Theorem 4.2. Let X be a topological space. Then the following statements are equivalent:

(i) X is θ-preconnected.

(ii) The only subsets of X that are both θ-preopen and θ-preclosed are ∅ and X.

(iii) No θ-precontinuous function f : X → D is surjective.

(iii) No strongly θ-precontinuous function f : X → D is surjective.

By Remark 2.4, we have the following result.

Theorem 4.3. If a topological space X is θ-preconnected, then X is θ-connected.

Since connected and θ-connected spaces [8] are equivalent, the following result holds.

Corollary 4.4. If a topological space X is θ-preconnected, then X is connected.

Remark 4.5. The following diagram holds for a subset of a topological space.

θ-preconnected θ-connected connected
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θ-Preopen Sets on Topological Spaces

Definition 4.6. A topological space X is said to be

(i) θ-preHausdorff if given any pair of distinct points p, q in X there exist disjoint θ-preopen
sets U and V such that p ∈ U and q ∈ V ;

(ii) θ-preregular if for each closed set F and each point x /∈ F , there exist disjoint θ-preopen
sets U and V such that x ∈ U and F ⊆ V ;

(iii) θ-prenormal if for every pair of disjoint closed sets E and F of X, there exist disjoint
θ-preopen sets U and V such that E ⊆ U and F ⊆ V .

The following three results can be proved using the same techniques employed in [7].

Theorem 4.7. Let X be a topological space. Then the following statements are equivalent:

(i) X is θ-preHausdorff.

(ii) Let x ∈ X. For y ̸= x, there exists a θ-preopen set U containing x such that y /∈ pClθ(U).

(iii) For each x ∈ X, C = ∩{pClθ(U) : U is θ-preopen containing x}={x}.

Theorem 4.8. Let X be a topological space. Then the following statements are equivalent:

(i) X is θ-preregular.

(ii) For each x ∈ X and an open set U containing x, there exists θ-preopen set V such that
x ∈ V ⊆ pClθ(V ) ⊆ U .

(iii) For each x ∈ X and closed set F with x /∈ F , there exists a θ-preopen set V containing x
such that F ∩ pClθ(V ) = ∅.

Theorem 4.9. Let X be a topological space. Then the following statements are equivalent:

(i) X is θ-prenormal.

(ii) For each closed set A and an open set U ⊇ A, there exists a θ-preopen set V containing
A such that pClθ(V ) ⊆ U.

(iii) For each pair of disjoint closed sets A and B, there exists a θ-preopen set V containing A
such that pClθ(V ) ∩B = ∅.

A topological space X is said to be a T1-space if for each p, q ∈ X with p ̸= q, there exist
open sets U and V such that p ∈ U , q /∈ U and q ∈ V , p /∈ V .

Theorem 4.10. Let X be a T1-space. Then

(i) If X is θ-preregular, then X is θ-preHausdorff.

(ii) If X is θ-prenormal, then X is θ-preregular.

Proof. (i): Suppose that X is θ-preregular. Since X is a T1-space, for each x, y ∈ X with x ̸= y,
there exist disjoint open sets U and V such that x ∈ U and y /∈ U , and y ∈ V and x /∈ V . This
implies that x /∈ X \ U and y /∈ X \ V . Since X is θ-preregular, there exist disjoint θ-preopen
sets A and B such that x ∈ A and X \ U ⊆ B. Note that y ∈ X \ U . Hence, y ∈ B. Thus, X
is θ-preHausdorff.

We can prove (ii) by following the same argument used in (i).
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