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Abstract: Given a connected graph G and two vertices u

and v in G, IG[u, v] is the set consisting of u, v and all
vertices lying on some u � v geodesic of G. A subset S of
V (G) is called a geodetic set of G if IG[S] = V (G), where
IG[S] = [u,v2SIG[u, v]. The geodetic number of G, denoted
by g(G) is the smallest cardinality of a geodetic set of G. In
this paper, we give the geodetic number of the composition
of a complete graph Kn and a (connected) graph G.

Keywords: geodesic, geodetic number, path absorbing, hull
number, composition

1 Introduction

Let G be a connected simple graph and u, v 2 V (G), where
V (G) is the vertex set of G. The distance dG(u, v) between
u and v in G is the length of a shortest path P (u, v) in G.
Any u� v path of length dG(u, v) is called a u� v geodesic.
For any two vertices u and v of G, the set IG[u, v] is the
closed interval consisting of u, v and all vertices lying on
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some u � v geodesic of G. For any subset S of V (G), the
closure of S is IG[S] =

S
u,v2S IG[u, v].

A subset S ✓ V (G) is called a geodetic set if IG[S] =
V (G). The geodetic number g(G) of G is the minimum car-
dinality of a geodetic set of G. Any subset S of V (G) of car-
dinality equal to g(G) is called a geodetic basis of G. These
concepts were introduced in [9]. It was further investigated
in [2], [2], [4], [5], [6] and [7].

A vertex in a graph G is an extreme vertex if the sub-
graph induced by its neighbors is complete. The set of ex-
treme vertices in G is denoted by Ex(G). For convention,
we set Ex(G) = V (K1) if G = K1. For other graph theo-
retic terms which are assumed here, readers are advised to
see [8].

In [3], the authors determined the geodetic number of
the composition H[Kn] of a connected graph G and the
complete graph Kn of order n.

2 The Geodetic Number of the Com-
position Kn[G]

The composition of two graphs H and G, denoted by H[G],
is the graph with V (H[G]) = V (H) ⇥ V (G) and (u1, u2) is
adjacent to (v1, v2) if either u1v1 2 E(H) or u1 = v1 and
u2v2 2 E(G).

Theorem 2.1 Let G be a non-complete graph and Kn the
complete graph of order n � 2. Then 2  g(Kn[G])  4.

Proof : Let G be a non-complete graph and Kn the com-
plete graph of order n � 2. Since Kn[G] is a non-trivial
graph, g(Kn[G]) � 2. Pick distinct vertices a, b 2 V (Kn)
and vertices x, y 2 V (G) such that xy /2 E(G). Let S =
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54 Another Look at Geodetic and Hull Numbers of a Graph

{(a, x), (a, y), (b, x), (b, y)} and let (c, z) 2 V (Kn[G]) \ S.
Clearly, c 6= a or c 6= b. Assume that c 6= a. Then
[(a, x), (c, z), (a, y)] is an (a, x)-(a, y) geodesic. This implies
that (c, z) 2 IKn[G][(a, x), (a, y)] ✓ IKn[G][S]. Therefore,
V (Kn[G]) ✓ IKn[G][S]; hence S is a geodetic set of Kn[G].
By definition, g(Kn[G])  |S| = 4. This proves the theo-
rem. ⇤

We will now characterize all non-complete graphs G such
that g(Kn[G]) = 2.

Theorem 2.2 Let G be a non-complete graph and Kn the
complete graph of order n � 2. Then g(Kn[G]) = 2 if and
only if G = K2 or G is connected with g(G) = diam(G) = 2.

Proof : Suppose g(Kn[G]) = 2, say S = {(a, x), (b, y)} is
a geodetic basis of Kn[G]. Note that since (Kn[G]) 6= K2,
a = b and xy /2 E(G). First, suppose thatG is disconnected.
Suppose further that G has more than two components,
say G1, G2, · · · , Gk are the components of G, where k �

3. If x 2 V (Gi) and y 2 V (Gj) (i may possibly be equal
to j), then (a, z) /2 IKn[G][(a, x), (a, y)] for all z 2 V (Gt),
where t 6= i, j. This clearly contradicts the fact that S is a
geodetic set of Kn[G]. Hence, G has only two components.
Furthermore, by a similar argument as above, each of these
two componets is the trivial graph. Thus, G = K2.

Next, suppose that G is connected and let SG = {x, y}.
Let z 2 V (G)\SG. Then (a, z) is in the interval IKn[G][(a, x), (a, y)].
Since dKn[G]((a, x), (a, y)) = 2, it follows that [(a, x), (a, z), (a, y)]
is an (a, x)-(a, y) geodesic inKn[G]. This implies that [x, z, y]
is an x-y geodesic in G. Thus, z 2 IG[x, y] = IG[S]. This
shows that S is geodetic set in G; hence, g(G)  2 by def-
nition. Further, since G is not the trivial graph, g(G) � 2.
Therefore, g(G) = 2.
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Now, let u, v 2 V (G) with dG(u, v) > 1. Since u, v 2

IG[x, y], it can easily be verified that dG(u, v) = 2. Conse-
quently, diam(G) = 2.

For the converse, suppose first that G = K2 and let
V (G) = {w, z}. Pick a 2 V (Kn) and let T = {(a, w), (a, z)}.
Since wz /2 E(G), it follows that dKn[G]((a, w), (a, z)) = 2.
Moreover, if b 2 V (Kn) \ {a}, then

(b, w), (b, z) 2 IKn[G][(a, w), (a, z)].

This implies that V (Kn[G]) = IKn[G][T ], that is, T is a
geodetic set of Kn[G]. Therefore, g(Kn[G]) = 2.

Finally, suppose that G is connected and

g(G) = diam(G) = 2.

Let U = {u, v} be a geodetic basis of G. Choose a 2

V (Kn) and consider Ua = {(a, u), (a, v)}. Since G 6= K2,
uv /2 E(G). Now, because diam(G) = 2, it follows that
dG(u, v) = 2. Hence, if x 2 V (G) \ U , then [u, x, v] is a u-v
geodesic since x 2 IG[u, v]. It follows that [(a, u), (a, x), (a, v)]
is an (a, u)-(a, v) geodesic, showing that {a} ⇥ V (G) ✓

IKn[G][Ua]. Clearly, [V (Kn)\{a}]⇥V (G) ✓ IKn[G][Ua]. Thus,
V (Kn[G]) = IKn[G][Ua], that is, Ua is a geodetic set ofKn[G].
Therefore, g(Kn[G]) = 2. ⇤

Our next goal is to characterize those non-complete graphs
G such that g(Kn[G]) = 3. To do this, we first define a con-
cept in a connected graph which we find very useful to our
ends.

Definition 2.3 LetH be a connected graph and S ✓ V (H).
The 2-path closure of S is

P2[S] = S [ {x 2 V (H) : x 2 IH [u, v] for some u, v 2 S

with dH(u, v) = 2}.
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56 Another Look at Geodetic and Hull Numbers of a Graph

A subset S ✓ V (H) is 2-path closure absorbing in H if
P2[S] = V (H).

Example 2.4 Consider the graph H in Figure 1. If S =
{1, 3, 5, 8}, then P2[S] = S [ {2, 4, 6, 7} = V (H). Thus, S is
a 2-path closure absorbing set in H.

Example 2.4 Consider the graph H in Figure 1. If S = {1, 3, 5, 8}, then
P2[S] = S [ {2, 4, 6, 7} = V (H). Thus, S is a 2-path closure absorbing set
in H.
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Figure 1: A graph H with a 2-path closure absorbing set

Theorem 2.5 Let G be a non-complete graph and Kn the complete graph
of order n � 2 such that g(Kn[G]) 6= 2. Then g(Kn[G]) = 3 if and only if
one of the following holds:

(i) G = K3;

(ii) G = K1 [H, where H is connected and g(H) = diam(H) = 2;

(iii) G is connected and there exists a subset T ✓ V (G) such that |T | = 3
and T is 2-path closure absorbing in G.

Proof. Suppose g(Kn[G]) = 3. Let S = {(a, x), (b, y), (c, z)} be a geodetic
basis of Kn[G]. If a, b and c are all distinct, then the induced graph hSi of
S is complete. This, however, is not possible because Kn[G] 6= K3. Assume
that a = b and suppose that c 6= a. Then (a, x)(c, z), (a, y)(c, z) 2 E(Kn[G]).
Again, since Kn[G] 6= K3, xy /2 E(G). It follows that dKn[G]((a, x), (a, y)) =
2. This implies that if w 2 V (G) with xw 2 E(G), then (a,w) 2 IKn[G][(a, x), (a, y)];
hence, [(a, x), (a,w), (a, y)] is an (a, x)-(a, y) geodesic. Consequently, [x,w, y]
is an x-y geodesic. In other words, dG(x, y) = 2. Suppose that [V (G) \
{x, y}] ✓ IG[x, y]. Then (a, v) 2 IKn[G][(a, x), (a, y)] for all v 2 V (G).
This means that [{a} ⇥ V (G) ✓ IKn[G][(a, x), (a, y)]. Also, since (d, v) 2

IKn[G][(a, x), (a, y)] for all d 2 V (Kn) \ {a} and all v 2 V (G), it follows
that [V (Kn) \ {a} ⇥ V (G)] ✓ IKn[G][(a, x), (a, y)]. Thus, S \ {(c, z)} is a
geodetic set in Kn[G], contrary to our assumption of S. Therefore, there
exists u 2 V (G) \ {x, y} such that u /2 IG[x, y]. This implies that (a, u) /2

IKn[G][(a, x), (a, y)]. Since (a, u) /2 IKn[G][(a, x), (c, z)] [ IKn[G][(a, y), (c, z)],
it follows that (a, u) /2 IKn[G][S]. Therefore, S is not a geodetic set in Kn[G],
contrary to our assumption. Accordingly, c = a.

4

Figure 1: A graph H with a 2-path closure absorbing set

Theorem 2.5 Let G be a non-complete graph and Kn the
complete graph of order n � 2 such that g(Kn[G]) 6= 2.
Then g(Kn[G]) = 3 if and only if one of the following holds:

(i) G = K3;

(ii) G = K1 [ H, where H is connected and g(H) =
diam(H) = 2;

(iii) G is connected and there exists a subset T ✓ V (G)
such that |T | = 3 and T is 2-path closure absorbing in
G.

Proof : Suppose g(Kn[G]) = 3. Let S = {(a, x), (b, y), (c, z)}
be a geodetic basis of Kn[G]. If a, b and c are all distinct,
then the induced graph hSi of S is complete. This, however,
is not possible because Kn[G] 6= K3. Assume that a = b

and suppose that c 6= a. Then (a, x)(c, z), (a, y)(c, z) 2
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E(Kn[G]). Again, since Kn[G] 6= K3, xy /2 E(G). It fol-
lows that dKn[G]((a, x), (a, y)) = 2. This implies that if w 2

V (G) with xw 2 E(G), then (a, w) 2 IKn[G][(a, x), (a, y)];
hence, [(a, x), (a, w), (a, y)] is an (a, x)-(a, y) geodesic. Con-
sequently, [x, w, y] is an x-y geodesic. In other words,
dG(x, y) = 2. Suppose that [V (G) \ {x, y}] ✓ IG[x, y]. Then
(a, v) 2 IKn[G][(a, x), (a, y)] for all v 2 V (G). This means
that [{a}⇥ V (G) ✓ IKn[G][(a, x), (a, y)]. Also, since

(d, v) 2 IKn[G][(a, x), (a, y)]

for all d 2 V (Kn) \ {a} and all v 2 V (G), it follows that
[V (Kn) \ {a} ⇥ V (G)] ✓ IKn[G][(a, x), (a, y)]. Thus, S \

{(c, z)} is a geodetic set in Kn[G], contrary to our assump-
tion of S. Therefore, there exists u 2 V (G)\{x, y} such that
u /2 IG[x, y]. This implies that (a, u) /2 IKn[G][(a, x), (a, y)].
Since (a, u) /2 IKn[G][(a, x), (c, z)][IKn[G][(a, y), (c, z)], it fol-
lows that (a, u) /2 IKn[G][S]. Therefore, S is not a geode-
tic set in Kn[G], contrary to our assumption. Accordingly,
c = a.

Now, since a = b = c, x, y, and z are distinct ver-
tices of G. Let T = {x, y, z}. Suppose first that G is
disconnected. Then G can only have at most three com-
ponents. If G has exactly three components, then each of
these components is the trivial graph. For, if one compo-
nent is not trivial, then there exists w 2 V (G) \ {x, y, z}

such that (a, w) /2 IKn[G][S], contrary to our assumption.
Thus, G = K3. Suppose now that G contains two compo-
nents H 0 and H. Suppose further that both components are
non-trivial. Then again, there exists w 2 V (G) \ {x, y, z}

such that (a, w) /2 IKn[G][S], contrary to our assumption.
Consequently, one of these components, say H

0, is the triv-
ial graph K1. If H = K2, then we are done. So, suppose
H 6= K2. Note that since g(Kn[G]) 6= 2, G 6= K2. This
implies that H 6= K1; hence, g(H) � 2. Without loss of
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58 Another Look at Geodetic and Hull Numbers of a Graph

generality, suppose that V (H 0) = {x}. Then y, z 2 V (H).
Let v 2 V (H)\{y, z}. Clearly, (a, v) 2 IKn[G][(a, y), ((a, z)],
that is, [(a, y), (a, v), (a, z)] is an (a, y)-(a, z) geodesic. Thus,
[y, v, z] is a y-z geodesic in H, showing that {y, z} is a (min-
imum) geodesic set in H. Hence, g(H) = 2. Further, it is
routine to show that diam(H) = 2. Therefore, conditions
(i) and (ii) hold.

Next, suppose that G is connected and let u 2 V (G) \
T . Then (a, u) 2 IKn[G][S]. This means that (a, u) 2

IKn[G][(a, x), (a, y)][IKn[G][(a, x), (a, z)][IKn[G][(a, z), (a, y)].
Assume that (a, u) 2 IKn[G][(a, x), (a, y)]. Since

dKn[G]((a, x), (a, y)) = 2,

it follows that [(a, x), (a, u), (a, y)] is a geodesic; hence, [x, u, y]
is an x-y geodesic. This implies that v 2 P2[T ]. Therefore,
V (G) = P2[T ], that is, T is a 2-path closure absorbing set
in G.

For the converse, suppose first that (i) holds. Let V (G) =
{u, v, w} and put S1 = {(a0, u), (a0, v), (a0, w)}, where a0 2

V (Kn). Then (a, x) 2 IKn[G][(a0, u), (a0, v)] for all (a, x) 2
V (Kn[G])\S1. Thus, V (Kn[G]) = IKn[G][S1], that is, S1 is a
geodetic set in Kn[G]. Since Kn[G] 6= K1 and g(Kn[G]) 6= 2,
it follows that g(Kn[G]) = |S1| = 3.

Next, suppose that (ii) holds. Let V (K1) = {x1} and
T = {x2, x3} a geodetic basis of H. Choose b 2 V (Kn)
and put S2 = {(b, x1), (b, x2), (b, x3)}. Clearly, (a, x) 2

IKn[G][(b, x1), (b, x2)] for all a 2 V (Kn) \ {b} and all x 2

V (G). Also, since g(H) = diam(H) = 2, it follows that
(b, y) 2 IKn[G][(b, x1), (b, x2)] for all y 2 V (H). This implies
that V (Kn[G]) = IKn[G][S2], that is, S1 is a geodetic set in
Kn[G]. By assumptions, g(Kn[G]) = |S2| = 3.

Finally, suppose V (G) has a 2-path closure absorbing
subset T with |T | = 3, say T = {u, v, w}. Pick a 2 V (Kn)
and consider S3 = {(a, u), (a, v), (a, w)}. It is easy to show
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that IKn[G][S] = V (Kn[G]), that is, S is a geodetic set in
Kn[G]. Again, since Kn[G] 6= K1 and g(Kn[G]) 6= 2, it fol-
lows that g(Kn[G]) = |S1| = 3. This completes the proof of
the theorem. ⇤

The following results are direct consequences of Theo-
rem 2.2.

Corollary 2.6 For n � 2,

g(Kn[Pm]) =

8
<

:

2, if m = 3
3, if m = 4, 5
4, if m � 6.

Corollary 2.7 For m � 4,

g(Kn[Cm]) =

8
<

:

2, if m = 4
3, if m = 5
4, if m � 6.

3 The Hull Number of the Compo-
sition G[H ]

In [GC], the authors determined the hull number of the com-
position G[H], where G is connected and H is a connected
non-complete graph. In this section, we show that a similar
result holds even if H is a disconnected graph.

In what follows, N(x) denotes the set of neighbors of x
in a connected graph G. We shall prove our result through
the following simple lemmas.

Lemma 3.1 Let G be a nontrivial connected graph, H a
non-complete graph and u, v 2 V (H) with uv /2 E(H). Let
x 2 V (G) and let Ax = {(x, u), (x, v)} ✓ V (G[H]). If
y 2 N(x), then (y, w) 2 IG[H][Ax] for all w 2 V (H).
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60 Another Look at Geodetic and Hull Numbers of a Graph

Proof : Let u, v 2 V (H) with uv /2 E(H), and x 2 V (G).
Consider the set Ax = {(x, u), (x, v)} ✓ V (G[H]). If y 2

N(x) and w 2 V (H), then [(x, u), (y, w), (x, v)] is an (x, u)-
(x, v) geodesic in G[H]. Thus, (y, w) 2 IG[H][(x, u), (x, v)].
Therefore, (y, w) 2 IG[H][Ax] for all w 2 V (H). ⇤

Lemma 3.2 Let G be a nontrivial connected graph, H a
non-complete graph and u, v 2 V (H) with uv /2 E(H). Let
x 2 V (G) and Ax = {(x, u), (x, v)} ✓ V (G[H]). If N(x) 6=
;, then (x, w) 2 I

2
G[H][Ax] for all w 2 V (H).

Proof : Let u, v 2 V (H) with uv /2 E(H), and x 2 V (G).
Consider the set Ax = {(x, u), (x, v)} ✓ V (G[H]). Obvi-
ously, (x, u), (x, v) 2 I

2
G[H][Ax].

Let y 2 N(x). By Lemma 3.1, (y, w) 2 IG[H][Ax] for all
w 2 V (H). Let B = {(y, u), (y, v)}. Then B ✓ IG[H][Ax].
It follows that IG[H][B] ✓ IG[H][IG[H][Ax]] = I

2
G[H][Ax]. Since

x 2 N(y), (x, w) 2 IG[H][B] for all w 2 V (H) by Lemma 3.1.
Therefore, (x, w) 2 I

2
G[H][Ax] for all w 2 V (H). ⇤

Lemma 3.3 Let G be a nontrivial connected graph, H a
non-complete graph and u, v 2 V (H) with uv /2 E(H). Fur-
ther, let x 2 V (G) and set Ax = {(x, u), (x, v)}. For each
r � 1, if y 2 V (G) and dG(x, y) = r, then (y, w) 2 I

r

G[H][Ax]
for all w 2 V (H).

Proof : Let u, v 2 V (H) with uv /2 E(H), and

Ax = {(x, u), (x, v)} ✓ V (G[H])

for x 2 V (G). By Lemma 3.1, the assertion holds for r = 1.
Suppose the assertion holds for r = k (k � 2), that is,

if y 2 V (G) and dG(x, y) = k, then (y, w) 2 I
k

G[H][Ax] for
all w 2 V (H). Suppose y 2 V (G) and dG(x, y) = k + 1.
Consider an x-y geodesic Pk+1 = [x, x1, x2, . . . , xk, y]. Since
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dG(x, xk) = k, (xk, w) 2 I
k

G[H][Ax] for all w 2 V (H) by
the inductive hypothesis. Let Bk = {(xk, u), (xk, v)}. Then
Bk ✓ I

k

G[H][Ax]; hence, IG[H][Bk] ✓ I
k+1
G[H][Ax]. Since y 2

N(xk), we have (y, w) 2 IG[H][Bk] for all w 2 V (H) by
Lemma 3.1. Thus, (y, w) 2 I

k+1
G[H][Ax] for all w 2 V (H).

This completes the proof of the lemma. ⇤

Theorem 3.4 Let G be a connected nontrivial graph and
H a non-complete graph. Then h(G[H]) = 2.

Proof : Let G and H be connected graphs, where H is non-
complete. If G = K1, then G[H] ⇠= H. This implies that,
h(G[H]) = h(H).

Suppose G 6= K1. Since H is non-complete, there ex-
ist u, v 2 V (H) such that uv /2 E(H). Choose x 2 V (G)
and let Ax = {(x, u), (x, v)}. Since N(x) 6= ;, (x, w) 2

I
2
G[H][Ax] ✓ [Ax] for all w 2 V (H) by Lemma 3.2. Now,
let y 2 V (G)\{x} and let dG(x, y) = r (r � 1). By
Lemma 3.3, (y, w) 2 I

r

G[H][Ax] ✓ [Ax] for all w 2 V (H).
Since [Ax] ✓ V (G[H]), it follows that [Ax] = V (G[H]).
Therefore, h(G[H]) = 2. ⇤

References

[1] M. Atici, Graph operations and geodetic numbers.
Congressus Numerantium 141 (1999) 95-110.

[2] F. Buckley, and F. Harary, Distance in Graphs.
Addison-Wesley, Redwood City, CA (1990).

[3] S. R. Canoy Jr. and G. B. Cagaanan, On the hull num-
ber of the composition of graphs, Ars Combinatoria.
To appear.

Volume 3 Issue 1
May 2012

The MINDANAWAN
Journal of Mathematics



62 Another Look at Geodetic and Hull Numbers of a Graph

[4] S. R. Canoy Jr., and G. B. Cagaanan, On the geodesic
and hull numbers of the sum of graphs, Congressus
Numerantium. 161 (2003) 97-104.

[5] G. Chartrand, F. Harary, and P. Zhang, Geodetic sets
in graphs. Discuss. Math. Graph Theory 20 (2000) 129-
138.

[6] G. Chartrand, F. Harary, and P. Zhang, On the geode-
tic number of a graph. Networks 39 (2002) 1-6.

[7] G. Chartrand and P. Zhang, Extreme geodesic graphs.
Czechoslovak Math J. 52 (2002) 771-780.

[8] F. Harary, Graph Theory. Addison-Wesley, Reading
MA (1969).

[9] F. Harary, E. Loukakis and C. Tsourus, The geodetic
number of a graph.Mathl. Comput. Modeling 17 (1993)
89-95.

The MINDANAWAN
Journal of Mathematics

Volume 3 Issue 1
May 2012


