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Abstract

A number of parametric tests for detecting SETAR (self-exciting threshold
autoregressive) - type nonlinearity have been developed in the literature including those
of Keenan (1985), Petrucelli and Davies (1986), Tsay (1986, 1989) and Luukkonen et al.
(1988). These tests are test-based approaches which require distribution of the particular
parametric test. In this paper, a nonparametric test procedure for testing SETAR-type
nonlinearity is proposed. The nonparametric test procedure is based on the concept of a
model selection criterion, the Akaike’s information criterion (AIC), in which the problem
of detecting the presence of threshold effects is viewed as a model selection problem among
two competing models given by the linear specification and its threshold counterpart. The
performance of the proposed test is evaluated by means of simulations. The merits, in terms
of size and power, of the proposed test are evaluated relative to Keenan’s test and Tsay’s F
test. The simulation results indicate that the proposed nonparametric test has comparable
power to the parametric tests when the entire data generating process is securely stationary
and the sample sizes are sufficiently large.

1 Introduction

Since the earlier contribution of Box and Jenkins (1970), stationary time series models like
the Autoregressive Moving Average (ARMA) models have been the central focus across diverse
fields of endeavor, for which it becomes the standard statistical tools for various time series
analysis. However, it is widely recognized that the class of ARIMA models may fail to capture
fully the dynamics of real phenomena since these data are often characterized by strong nonlinear
components (Corduas, 1994). Tong (2010) studied real-world time series like the Iceland Jokulsa
River System data and Mackenzie River lynx data which exhibit some characteristics that are
not shown by linear processes such as time irreversibility, non-normality, asymmetric cycles,
nonlinear relationship between lagged variables, and sensitivity to initial conditions. With
these shortcomings highlighted above, recent developments on nonlinear time series models
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and methodology arise such that these nonlinear characteristics have been successfully modeled
(Tong, 1990).

This paper focuses on one useful class of nonlinear models introduced by Howell Tong
(1978), the Self-Exciting Threshold Autoregressive (SETAR) model, a special case of Threshold
Autoregressive (TAR) model. It is specified by the following equation:

Yt = ϕ
(j)
0 +

p∑
i=1

ϕ
(j)
i Yt−i + ε

(j)
t , if rj−1 ≤ Yt−d ≤ rj , (1)

where j = 1, 2, ..., k, t = p+ 1, ..., n, d ≤ p are both positive integers, εt ∼ i.i.d N(0, σ2
εt). The

parameters p and d denote the autoregresive (AR) order and the delay parameter, respectively.
Furthermore, k is the number of regimes, rjs are the threshold paramaters such that −∞ ≤
r0 < r1 < ... < rk = +∞, and n is the number of observations. In this way, different regimes

possess different AR(p) models. If ϕ
(j)
i = ϕ

(s)
i , for each i = 0, 1, ..., p and j ̸= s = 1, 2, ..., k, then

the model reduces to a linear AR(p) process. A more generalized version of the SETAR model
allows different order of AR models inside different regimes. With threshold parameters, rjs,
the process switches among different linear autoregressive models.

The SETAR model is a class of piecewise linear autoregressive model that can effectively
capture jump phenomena, amplitude-dependent frequency, and limit cycles. It is piecewsie
linear, not in time, but in the space of the threshold variable. In application, there has been
growing interests in exploiting potential forecast gains from the nonlinear structure of SETAR
models (Hung et al., 2009).

With the emerging interest on nonlinear time series models like the SETAR model and its
inherently flexible properties, there seems to have high probability of getting a spuriously good
fit to any time series data. Hence, it is very important to conduct preliminary evaluation of the
model adequacy whether or not a univariate or multivariate time series may be generated by a
linear model against the alternative that they were nonlinearly related instead before building
a complex nonlinear model.

A number of parametric tests have already been developed in the literature exhibiting
SETAR-type nonlinearity in observed time series including those of Keenan (1985), Tsay (1986),
Petrucelli and Davies (1990), Luukkonen et al. (1988). Basically, these parametric tests are
based solely on strong distributional assumptions and analytical formulas. In practical statis-
tical situations, traditional parametric approaches to inference is sometimes less ideal in cases
where distributional assumptions are violated. With these reasons, developing a nonparametric
test statistics is indeed indispensable. Due to the reliance on fewer assumptions and the model
structure of the data is not specified a priori, nonparametric statistics are more robust and
simpler, and its applicability is much wider than the parametric test statistics.

On the basis of the aforementioned premises, a nonparametric test to detect SETAR-type
nonlinearity based on the Akaike Information Criterion (AIC) is proposed. This is motivated
from the fact that AIC is a model selection criterion. Thus, this proposed test takes a model-
selection-based approach in which the problem of detecting the presence of threshold effects is
viewed as a model selection problem among two competing models given by the linear specifi-
cation and its threshold counterpart.
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2 The Proposed Methodology

The proposed nonparametric test is model specific. For a stationary time series {Xt}, we test
the following hypotheses:

H0 : AR(p) model fits the time series data.

H1 : SETAR(2; p,d) model fits the time series data.

Now, suppose a SETAR(2; p, d) model fits the time series data {Xt} with

Xt =(ϕ
(1)
0 +

p∑
i=1

ϕ
(1)
i Xt−i)I(Xt−d ≤ r)

+ (ϕ
(2)
0 +

p∑
i=1

ϕ
(2)
i Xt−i)I(Xt−d > r) + εt

(2)

where t = p+ 1, ..., n, and εt
iid∼ N(0, 1).

Under H0, the model in (2) reduces to linear AR(p) model as

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + εt. (3)

From model (3), the conditional log-likelihood function of ϕ and σ2
ε is given by

ℓ(ϕ, σ2
ϕ) = −n

2
ln(σ2

ε)−
1

2σ2
ε

S(ϕ)− n

2
ln(2π).

Maximizing the function with respect ϕ and σ2
ε and substituting it to the conditional log-

likelihood function gives us

ℓ(ϕ̂, ̂σ2
ε(AR)) = −n

2
ln ̂σ2

ε(AR)− n

2
(1 + ln 2π).

Hence, the computed AIC of the AR model is given as

AICAR = n ln ̂σ2
ε(AR) + 2(p+ 1) + n (1 + ln 2π) ,

where σ̂2
ε is the maximum likelihood estimate of the residuals, and 2(p + 1) is the number of

parameters in the AR model. Using similar argument above, under H1, the computed AIC of
the SETAR model is

AICSETAR = n ln σ̂2
ε + 2(2p+ 1) + n (1 + ln 2π) .

Note that if the fitted model is correctly selected, the computed AIC is minimal. Thus, H0 is
not rejected when AICAR ≤ AICSETAR. Otherwise, reject H0. The algorithm of the proposed
nonparametric test is given as follows:

1. Estimate the parameters of the SETAR (2; p, d) model in (2) and predict Xt by

X̂t =(ϕ̂
(1)
0 +

p∑
i=1

ϕ̂
(1)
i Xt−i)I(Xt−d ≤ r)

+ (ϕ̂
(2)
0 +

p∑
i=1

ϕ̂
(2)
i Xt−i)I(Xt−d > r)

(4)

where t = p + 1, ..., n, and Φ̂ is the estimate of the corresponding parameters. Let
AICDIFF = AICAR − AICSETAR be the parameter of interest. Compute AICDIFF

from the predicted X̂t. Construct centered residual εt from model (4).
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2. Generate R bootstrap samples from the centered residual εt, for t = p+1, ..., n, to obtain
simulated innovation ε∗t .

3. Generate R series for each bootstrap sample in Step 2 using the estimated model (4). The
series X∗

t = (X∗
p+1, ..., X

∗
n) will be simulated as follows:

(i) Initialize X∗
0 , X

∗
1 , ..., X

∗
t−p.

(ii) Then

X̂∗
t =(ϕ̂

(1)
0 +

p∑
i=1

ϕ̂
(1)
i X∗

t−i)I(X
∗
t−d ≤ r)

+ (ϕ̂
(2)
0 +

p∑
i=1

ϕ̂
(2)
i X∗

t−i)I(X
∗
t−d > r) + ε∗t .

(5)

4. Estimate the parameters of the SETAR (2; p, d) model for every simulated time series in
Step 3 and compute

ÂIC
∗
DIFF = ÂIC

∗
AR − ÂIC

∗
SETAR.

for the time series {X∗
t } in (5).

5. Sort R bootstrap parameter estimates ÂIC
∗
DIFF from Step 4 in either ascending or de-

scending order and find the appropriate percentile for the upper limit of the distribution

of ÂIC
∗
DIFF to construct the corresponding interval.

6. Reject the null hypothesis that the AR(p) model fits the time series data with (1−α)∗100%
coverage probability if more than (α%) of the intervals fail to contain the computed

ÂICDIFF in Step 1.

3 Results and Discussion

3.1 Simulation Studies

Simulation experiments were conducted to evaluate the performance of the proposed nonpara-
metric test procedures based on the concept of the Akaike’s information criterion (AIC) for
SETAR-type nonlinearity in terms of their size and power of the test relative to the parametric
tests introduced in this paper. The sample sizes are set to T = 50, 100, 150, 300, and 500, and
the number of bootstrapped replicates is R = 200. As pointed out by Efron and Tibshirani
(1981), as the number of bootstrapped samples m → ∞, the bootstrapped estimate of the sam-
pling distribution of the statistic approaches the sampling distribution of the original estimator,
but little improvement in the approximation occurs when m exceeds 50 to 200 samples. For
each realization of sample size T in the simulation, 50 + T , 100 + T , 150 + T , 300 + T , and
500 + T observations for T = 50, 100, 150, 300 and T = 500, respectively, are generated and the
first 50, 100, 150, 300 and 500 observations, respectively, are discarded to avoid dependence on
the initial value, that is, setting Xt and εt equal to zero for t ≤ 0. The test will be performed

with p = d = 1, r = 0, no intercept term (that is, ϕ
(1)
0 = ϕ

(2)
0 = 0) in the data generated by the

model in (2).

In the simulation process, comparison between the existing parametric tests (Keenan’s test
and Tsay-F test) and the proposed nonparametric test are made based on the size and power
of the test.
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3.2 Size of the Tests

To compare the performance in terms of size of the tests, a SETAR(2; 1; 1) model without
marked volatility given by

Xt =

{
ϕ
(1)
1 Xt−1 + εt if Xt−1 ≤ 0,

ϕ
(2)
1 Xt−1 + εt if Xt−1 > 0,

is used to generate the data with ϕ
(1)
1 = ϕ

(2)
1 = 0.5 (securely stationary process in each regime)

and ϕ
(1)
1 = ϕ

(2)
1 = 0.1 (nearly independent process in each regime) , and εt

iid∼ N(0, 1). This
SETAR model comprises AR processes with the same parameter values in each regime, that is,

ϕ
(1)
1 = ϕ

(2)
1 . Thus, this indicates that the data generating process is non-SETAR or AR to be

precise. The size of the test is the probability of Type 1 error (the probability of rejecting H0

when it is true). Hence, the empirical frequencies of rejecting the null hypothesis should be low
for this model.

3.2.1 Securely Stationary Process

Table 1 shows the empirical frequencies of rejecting the null hypothesis of an AR process
based on N = 100 replications with 1% and 5% critical values, and sample sizes of T =
50, 100, 150, 300, and 500.

Table 1: Empirical Frequencies of Rejecting an AR Model based on N = 100 replications of a

SETAR(2;1;1) Model with ϕ
(1)
1 = ϕ

(2)
1 = 0.5

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 T K F NP K F NP

0.5 0.5 50 18 1 0 6 0 0

0.5 0.5 100 23 5 1 9 0 0

0.5 0.5 150 21 6 2 7 3 0

0.5 0.5 300 22 8 15 11 2 1

0.5 0.5 500 20 11 20 10 4 1
T: Sample Size, K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

As depicted in Table 1, we observe that when the data generating process considers ϕ
(1)
1 = ϕ

(2)
1 =

0.5 (securely stationary process in each regime), the empirical frequencies of the nonparametric
test (NP) in rejecting the null hypothesis were remarkably lower than those of Keenan and
Tsay-F test for samples of size T = 50, 100, 150, 300 and T = 500. This indicates that the
proposed test has smaller Type 1 errors when the data generating process is of an AR process.

3.2.2 Nearly independent process

Table 2 shows the empirical frequencies of rejecting the null hypothesis of an AR process
based on N = 100 replications with 1% and 5% critical values, and sample sizes of T =
50, 100, 150, 300, and 500.

Based on the results obtained in Table 2, we observe that compared to the nonparametric
test, the parametric tests (Keenan, Tsay-F ) performed better in identifying the AR models

when the data generating process considers ϕ
(1)
1 = ϕ

(2)
1 = 0.1 (nearly independent process in

each regime) as the sample size T increases, since the empirical frequencies of the parametric
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Table 2: Empirical Frequencies of Rejecting an AR(1) Model based on N = 100 replications of

a SETAR(2;1;1) Model with ϕ
(1)
1 = ϕ

(2)
1 = 0.1; 5% and 1% critical values

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 T K F NP K F NP

0.1 0.1 50 4 8 13 4 5 5

0.1 0.1 100 9 9 30 5 6 14

0.1 0.1 150 6 9 43 2 4 15

0.1 0.1 300 9 5 72 3 0 49

0.1 0.1 500 10 3 94 1 1 82
T: Sample Size, K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

tests in rejecting the null hypothesis were remarkably lower than of the nonparametric test,

when there is no change in the parameter values of the upper regime (ϕ
(2)
1 ) relative to that of

the lower regime (ϕ
(1)
1 ). This indicates that the parametric tests have smaller Type 1 errors

than of the proposed nonparametric test when the data generating process is of an AR process.

3.3 Power of the Tests

To compare the performance in terms of the power of the tests, a SETAR (2; 1; 1) model without
marked volatility given by

Xt =

{
ϕ
(1)
1 Xt−1 + εt if Xt−1 ≤ 0,

ϕ
(2)
1 Xt−1 + εt if Xt−1 > 0,

is used to generate the data, where εt
iid∼ N(0, 1). Hence, the empirical frequencies of rejecting

the null hypothesis should be high for this model. Moreover, a critical important aspect in
evaluating the performance of the tests in terms of their power is the change of the parameter

values for ϕ
(1)
1 as for the parameter value for ϕ

(2)
1 in order for the existing parametric tests

(Keenan, Tsay-F ) and the proposed nonparametric test to detect a SETAR-type nonlinearity

on a given time series. Hence, different parameter values for the upper regime (ϕ
(2)
1 ) relative to

that of the lower regime ϕ
(1)
1 are set for this study.

3.3.1 Securely Stationary Process

Tables 3 to 7 show the empirical frequencies of rejecting an AR(1) model based on N = 100

replications of a SETAR(2; 1; 1) Model, with parameter combinations for ϕ
(1)
1 and ϕ

(2)
1 : ϕ

(1)
1 =

0.5 (securely stationary), ϕ
(2)
1 = 0,−0.5,−1,−2.
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Table 3: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.5 (securely stationary); T = 50

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.5 −2.0 26 26 49 16 18 26

0.5 −1.0 29 19 4 25 19 10 5

0.5 −0.5 18 12 11 7 5 4

0.5 0 3 6 5 0 1 0
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 4: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.5 (securely stationary); T = 100

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.5 −2.0 33 40 74 16 18 26

0.5 −1.0 52 42 47 47 27 27

0.5 −0.5 53 28 23 31 9 8

0.5 0 6 1 14 2 1 5
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 5: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.5 (securely stationary); T = 150

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.5 −2.0 19 43 77 16 37 60

0.5 −1.0 59 53 69 52 38 42

0.5 −0.5 66 33 53 41 15 30

0.5 0 5 5 26 1 1 11
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 6: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.5 (securely stationary); T = 300

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.5 −2.0 35 46 93 30 42 88

0.5 −1.0 89 92 94 87 89 83

0.5 −0.5 98 65 79 93 43 59

0.5 0 1 3 43 1 0 23
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Based on the results depicted from Table 3 to 7, we observe that the nonparametric test
performed better than other tests since it has higher emprical frequencies in rejecting the null
hypothesis than those of Keenan and Tsay-F test, when the parameter value of the upper regime

(ϕ
(2)
1 ) relative to that of the lower regime (ϕ

(1)
1 ) decreases significantly. In addition, the power
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Table 7: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.5 (securely stationary); T = 500

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.5 −2.0 34 44 100 32 41 100

0.5 −1.0 99 99 100 97 98 100

0.5 −0.5 100 81 95 99 58 84

0.5 0 6 11 64 1 1 43
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

of the nonparametric test increases as the sample size also increases, which is evidently shown
in the table.

3.3.2 Nearly Independent Process

Tables 8 to 12 show the empirical frequencies of rejecting an AR(1) model based on N = 100

replications of a SETAR(2; 1; 1) Model, with parameter combinations for ϕ
(1)
1 and ϕ

(2)
1 : ϕ

(1)
1 =

0.1 (nearly independent), ϕ
(2)
1 = 0,−0.5,−1,−2.

Table 8: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.1 (nearly independent); T = 50

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.1 −2.0 88 86 1 82 71 0

0.1 −1.0 60 42 0 42 20 0

0.1 −0.5 15 18 4 7 13 1

0.1 0 3 12 10 2 7 5
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 9: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.1 (nearly independent); T = 100

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.1 −2.0 92 98 1 91 94 1

0.1 −1.0 90 73 1 83 50 0

0.1 −0.5 29 24 2 17 12 1

0.1 0 7 11 25 3 4 9
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

From the results obtained in Table 8 to 12, when the data generating process considers

ϕ
(1)
1 = 0.1 (nearly independent), the empirical frequencies of the nonparametric test in rejecting

the null hypothesis were remarkably low even for large samples of size T = 500 as the parameter
value of the upper regime relative to that of the lower regime decreases significantly. The low
frequency of the proposed test may be due to the fact that the data generating process is nearly
independent process.
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Table 10: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.1 (nearly independent); T = 150

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.1 −2.0 97 97 1 97 97 1

0.1 −1.0 98 85 1 94 72 0

0.1 −0.5 34 20 3 15 10 0

0.1 0 4 10 34 2 6 17
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 11: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.1 (nearly independent); T = 300

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.1 −2.0 99 100 0 99 100 0

0.1 −1.0 98 96 0 98 96 0

0.1 −0.5 73 51 3 62 31 2

0.1 0 4 8 67 0 3 39
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 12: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.1 (nearly independent); T = 500

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.1 −2.0 100 100 0 100 100 0

0.1 −1.0 99 99 0 99 98 0

0.1 −0.5 86 68 9 81 49 1

0.1 0 2 5 94 2 1 72
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

3.3.3 Nearly Nonstationary Process

Tables 13 to 17 show the empirical frequencies of rejecting an AR(1) model based on N = 100

replications of a SETAR(2; 1; 1) Model, with parameter combinations for ϕ
(1)
1 and ϕ

(2)
1 : ϕ

(1)
1 =

0.9 (nearly inonstationary), ϕ
(2)
1 = 0,−0.5,−1,−2.

77



3.3 Power of the Tests Redeemtor R. Sacayan, Daisy Lou L. Polestico, Calixto G. Elnas, Jr.

Table 13: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.9 (nearly nonstationary); T = 50

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.9 −2.0 27 38 23 18 30 12

0.9 −1.0 30 24 7 14 10 3

0.9 −0.5 13 8 6 3 1 2

0.9 0 2 4 1 0 0 1
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 14: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.9 (nearly nonstationary); T = 100

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K FF NP K F NP

0.9 −2.0 40 78 48 25 64 30

0.9 −1.0 44 48 10 24 23 3

0.9 −0.5 34 28 7 16 5 2

0.9 0 2 1 0 0 0 1
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 15: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.9 (nearly nonstationary); T = 150

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.9 −2.0 56 88 62 33 70 35

0.9 −1.0 53 54 14 26 28 10

0.9 −0.5 40 21 6 17 5 2

0.9 0 1 2 0 0 0 0 3
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Table 16: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.9 (nearly nonstationary); T = 300

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.9 −2.0 66 98 62 48 92 51

0.9 −1.0 80 91 21 66 71 3

0.9 −0.5 83 58 10 66 31 1

0.9 0 2 2 7 0 0 1
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

Based from the results depicted in Table 13 to 17, when the data generating process considers

ϕ
(1)
1 = 0.9 (nearly nonstationary), the power of the nonparametric test is not so remarkable as

compared to the parametric tests (Keenan and Tsay-F ) even for sufficiently large samples of
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Table 17: Empirical Frequencies of Rejecting an AR(1) Model on N = 100 replications of a

SETAR(2; 1; 1) Model with ϕ
(1)
1 = 0.9 (nearly nonstationary); T = 500

α = 0.05 α = 0.01

ϕ
(1)
1 ϕ

(2)
1 K F NP K F NP

0.9 −2.0 83 99 80 65 99 69

0.9 −1.0 87 94 26 75 88 11

0.9 −0.5 93 74 17 75 55 7

0.9 0 2 2 10 0 0 2
K: Keenan’s test, F: Tsay-F test, NP: Nonparametric test

size T = 500, when the parameter value of the upper regime (ϕ
(2)
1 ) relative to that of the lower

regime (ϕ
(1)
1 ) decreases significantly.

4 Conclusions and Recommendations

In this paper, not one of the tests considered performs best in detecting SETAR-type non-
linearity based on N = 100 replications of a SETAR(2; 1; 1) model. However, there are clear
differences apparent in the performance of the parametric tests (Keenan, Tsay-F , and Tsay
TAR-F ) and the proposed nonparametric test.

1. When the SETAR(2; 1; 1) data generating process considers

ϕ
(1)
1 = ϕ

(2)
1 = 0.5 (securely stationary process in each regime), the proposed nonpara-

metric test tends to exhibit smaller Type 1 error than the parametric tests (Keenan and
Tsay-F ) when the data generating process is of an AR process with securely stationary
process in each regime.

2. When the SETAR(2; 1; 1) data generating process considers ϕ
(1)
1 = 0.5 (securely station-

ary), the nonparametric test performed better than Keenan and Tsay-F test, when the

parameter value of the upper regime (ϕ
(2)
1 ) relative to that of the lower regime (ϕ

(1)
1 )

decreases significantly. In addition, the power of the nonparametric test increases as the
sample size also increases.

In light of the simulation results obtained, it is recommended to use the nonparametric test
in real-world data exhibiting stationary SETAR(2;1,1) series without marked volatility to fully
appreciate the significant contribution of the proposed test and modify the nonparametric test
procedure with marked volatility in the data generating process and investigate its performance
in detecting SETAR-type nonlinearity in time series.
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